A COMMUTATOR FORMULA FOR A PAIR OF SUBGROUPS AND A THEOREM OF BLACKBURN

Tsit-Yuen Lam

Let $G=K_{1}(G) \supseteq K_{2}(G) \supseteq \ldots \supseteq K_{n}(G) \ldots$ be the lower central series of a group G, where $K_{2}(G)=[G, G]$ and inductively $K_{n+1}(G)=\left[K_{n}(G), G\right]$. A theorem of Blackburn ([1], Hilfssatz) states that

THEOREM 1. The exponent of $K_{n+1}(G) / K_{n+2}(G)$ divides the exponent of $K_{n}(G) / K_{n+1}(G)$.

In this note we shall establish

THEOREM 2. Let G_{1}, G_{2} be subgroups of a group G, and $L=\left[G_{1}, G_{2}\right]$. Define $L_{i}=G_{i} \cap L, G_{i}^{\prime}=\left[G_{i}, G_{i}\right]$ and $e_{i}=\exp \cdot\left(G_{i} / G_{i}^{\prime} \cdot L_{i}\right)$, $(i=1,2)$; then for $e=\left(e_{1}, e_{2}\right)$ (the greatest common divisor of e_{1} and e_{2}) we have

$$
L^{e}=\left[G_{1}, G_{2}\right]^{e} \subseteq\left[L,\left\langle G_{1}, G_{2}\right\rangle\right]
$$

where $\left\langle G_{1}, G_{2}\right\rangle$ denotes the subgroup of G generated by G_{1} and G_{2}.

We claim that Theorem 2 implies Theorem 1. Indeed suppose H is a normal subgroup of G and let us apply Theorem 2 with $G_{1}=G$ and $G_{2}=H$. Then clearly

$$
\mathrm{L}_{1}=\mathrm{L}_{2}=[\mathrm{G}, \mathrm{H}]=\mathrm{L} .
$$

Also $e_{1}=\exp \cdot\left(G / G^{\prime} \cdot[G, H]\right)=\exp \cdot\left(G / G^{\prime}\right)$ and $e_{2}=\exp \cdot(H /[G, H])$. We have thus proved:

COROLLARY. If $H \Delta G$, then the exponent of $[G, H] /[G,[G, H]]$ divides both
(1) the exponent of G / G^{\prime}
(2) the exponent of $H /[G, H]$.

$$
|[G, H] /[G,[G, H]]|, \quad\left|G / G^{\prime}\right|,|H /[G, H]|
$$

then $[G, H]=[G,[G, H]]$.
If we set now $H=K_{n}(G)$, then $[G, H]=K_{n+1}(G)$ and $[G,[G, H]]=K_{n+2}(G)$, so the second part of the corollary reproduces the theorem of Blackburn.

From the corollary, it follows trivially, for example, that for $G=S_{3}, S_{4}$ (and of course the other symmetric groups), A_{4}, or $|G|$ square free, $K_{2}(G)=K_{3}(G)=\ldots$.

Proof of Theorem 2. We first recall that $L=\left[G_{1}, G_{2}\right]$ is normal in $\left\langle G_{1}, G_{2}\right\rangle$. Replacing G by $\left\langle G_{1}, G_{2}\right\rangle$ we may suppose, from now on, that L and hence $W=\left[L,\left\langle G_{1}, G_{2}\right\rangle\right]=[L, G]$ are normal in G. Write $\bar{L}=L / W$. For x_{1} in G_{1} consider a map $\beta\left(x_{1}\right): G_{2} \rightarrow \bar{L}$ defined by $\left(\beta\left(x_{1}\right)\right)\left(x_{2}\right)=\left[x_{1}, x_{2}\right] W \in \bar{L}$. In virtue of the formula

$$
[x, y z]=[x, z] \cdot z^{-1} \cdot[x, y] \cdot z
$$

$\beta\left(x_{1}\right)$ is a homomorphism. This homomorphism clearly vanishes on $G_{2} \cap \mathrm{~L}=L_{2}$. Moreover it vanishes on $G_{2}{ }^{\prime}$ since the range \bar{L} is abelian. $\beta\left(x_{1}\right)$ thus induces a homomorphism $G_{2} / G_{2}^{\prime} \cdot L_{2} \rightarrow \bar{L}$ which we again denote by $\beta\left(x_{1}\right)$. Now using the formula

$$
[x y, z]=y^{-1} \cdot[x, z] \cdot y \cdot[y, z]
$$

we see that $\beta: G_{1} \rightarrow \operatorname{Hom}\left(G_{2} / G_{2}^{\prime} \cdot L_{2}, \bar{L}\right)$, sending x_{1} to $\beta\left(x_{1}\right)$, is again a homomorphism. This likewise induces an element

$$
\beta \in \operatorname{Hom}\left(G_{1} / G_{1}^{\prime} \cdot L_{1}, \quad \operatorname{Hom}\left(G_{2} / G_{2}^{\prime} \cdot L_{2}, \bar{L}\right)\right)=x
$$

The exponent of the group X clearly divides both $e_{1}=\exp \cdot\left(G_{1} / G_{1}^{\prime} \cdot L_{1}\right)$ and $e_{2}=\exp \cdot\left(G_{2} / G_{2}^{\prime} \cdot L_{2}\right)$. Consequently $\beta^{e}=1$ where $e=\left(e_{1}, e_{2}\right)$.

This means that $\left[x_{1}, x_{2}\right]^{e} \in W$ for all x_{1} in G_{1} and all x_{2} in G_{2}, and hence that $\left[G_{1}, G_{2}\right]^{e} \subseteq W$, which is the desired conclusion.

REFERENCE

1. N. Blackburn, Über das Produkt von zwei zyklischen 2-Gruppen. Math. Z. 68 (1958) 422-427.

University of California
Berkeley
California 94720

