Perturbations of Von Neumann Subalgebras With Finite Index

Shoji Ino

Abstract. In this paper, we study uniform perturbations of von Neumann subalgebras of a von Neumann algebra. Let M and N be von Neumann subalgebras of a von Neumann algebra with finite probabilistic index in the sense of Pimsner and Popa. If M and N are sufficiently close, then M and N are unitarily equivalent. The implementing unitary can be chosen as being close to the identity.

1 Introduction

In 1972, the uniform perturbation theory of operator algebras was initiated by Kadison and Kastler [15]. They defined a metric on the set of operator algebras on a fixed Hilbert space by the Hausdorff distance between their unit balls. We get basic examples of close operator algebras by small unitary perturbations. Namely, given an operator algebra $N \subset \mathbb{B}(H)$ and a unitary operator $u \in \mathbb{B}(H)$, if u is close to the identity operator, then $u N u^{*}$ is close to N. Conversely, Kadison and Kastler suggested that suitably close operator algebras must be unitarily equivalent. This conjecture was solved positively for injective von Neumann algebras in [5, 12, 24] with earlier special cases [4, 18]. Cameron et al. [2] and Chan [3] gave classes of non-injective von Neumann algebras for which this conjecture was valid. In [6], for von Neumann subalgebras in a finite von Neumann algebra, Kadison-Kastler conjecture was solved positively. However, for general von Neumann algebras, this conjecture is still open.

Examples of non-separable C^{*}-algebras that are arbitrary close but non-isomorphic were found in [1]. However, for general separable C*-algebras, Kadison-Kastler conjecture is still open. In [9], the conjecture was solved positively for separable nuclear C^{*}-algebras. Earlier special cases of [9] were studied in [7,16,19,20]. The author and Watatani showed that for an inclusion of simple C^{*}-algebras with finite index, sufficiently close intermediate C^{*}-subalgebras are unitarily equivalent in [11]. Although our constants depend on inclusions, Dickson obtained universal constants independent of inclusions in [10].

In this paper, we study uniform perturbations of von Neumann subalgebras of a von Neumann algebra with finite index. Let M and N be von Neumann subalgebras of a von Neumann algebra L with conditional expectations $E_{M}: L \rightarrow M$ and $E_{N}: L \rightarrow N$ of finite probabilistic index in the sense of Pimsner-Popa [21]. If M is sufficiently close to N, then M and N are unitarily equivalent. Moreover, the implementing unitary can be chosen as being close to the identity. In general, there exist examples of arbitrarily

[^0]close unitarily conjugate C^{*}-algebras where the implementing unitaries could not be chosen to be close to the identity in [13]. Compared with the author and Watatani's C^{*}-algebraic case [11], we do not assume that M and N have a common subalgebra with finite index.

2 Distance and the Relative Dixmier Property

In this paper, all von Neumann algebras are countably decomposable; that is, they have faithful normal states.

We recall the distance defined by Kadison and Kastler in [15] and near inclusions defined by Christensen in [7]. For a von Neumann algebra N, we denote by N_{1} and N^{u} the unit ball of N and the unitaries in N, respectively.

Definition 2.1 Let M and N be von Neumann algebras in $\mathbb{B}(H)$. Then the distance between M and N is defined by

$$
d(M, N):=\max \left\{\sup _{n \in N_{1}} \inf _{m \in M_{1}}\|n-m\|, \sup _{m \in M_{1}} \inf _{n \in N_{1}}\|m-n\|\right\}
$$

Let $\gamma>0$. We say that N is γ contained in M and write $N \subseteq_{\gamma} M$ if for any $n \in N_{1}$, there exists $m \in M$ such that $\|n-m\| \leq \gamma$.

If $d(M, N)<\gamma$, then for any x in either M_{1} or N_{1}, there exists y in the other unit ball such that $\|x-y\| \leq \gamma$.

The following well-known fact is needed to show that maps are onto in Proposition 3.1.

Lemma 2.2 Let M and N be von Neumann algebras in $\mathbb{B}(H)$. If $N \subset M$ and $d(M, N)<1$, then $M=N$.

The next lemma records some standard estimates.
Lemma 2.3 Let A be a unital C*-algebra.
(i) Let $x \in A$ satisfy that $\|x-I\|<1$ and let $u \in A$ be the unitary factor in the polar decomposition $x=u|x|$. Then

$$
\|u-I\| \leq \sqrt{2}\|x-I\|
$$

(ii) Let p and q be projections in A with $\|p-q\|<1$. Then there exists a unitary $w \in A$ such that

$$
w p w^{*}=q \quad \text { and } \quad\|w-I\| \leq \sqrt{2}\|p-q\| .
$$

Jones introduced an index for inclusions of type II_{1} factors in [14]. For arbitrary factors, Kosaki extended Jones' notion of the index in [17]. The following definition was introduced by Pimsner and Popa in [21].

Definition 2.4 Let $N \subset M$ be an inclusion of von Neumann algebras and let $E: M \rightarrow$ N be a conditional expectation. Then we call E is of finite probabilistic index if there exists $c \geq 0$ such that $E\left(x^{*} x\right) \geq c x^{*} x$ for all $x \in M$. When E is of finite probabilistic
index, we define the probabilistic index of E by $\left(\sup \left\{c \geq 0: E\left(x^{*} x\right) \geq c x^{*} x\right.\right.$ for $x \in$ $M\})^{-1}$.

We recall the basic construction (see [22]). Let $N \subset M$ be an inclusion of von Neumann algebras with a faithful normal conditional expectation $E_{N}: M \rightarrow N$ and let ψ be a faithful normal state on N. Put $\phi:=\psi \circ E_{N}$. Then ϕ is a faithful normal state on M. Let (H, π, ξ) be the GNS triplet associated with ϕ. Then we get the Jones projection $e_{N} \in \mathbb{B}(H)$ satisfying

$$
\mathfrak{I}\left(e_{N}\right)=[N \xi] \quad \text { and } \quad e_{N}(x \xi)=E_{N}(x) \xi, \quad x \in M
$$

The basic construction $\left\langle M, e_{N}\right\rangle$ is the von Neumann algebra in $\mathbb{B}(H)$ generated by M and e_{N}. If E_{N} is of finite probabilistic index, then there exists a conditional expectation $E_{M}:\left\langle M, e_{N}\right\rangle \rightarrow M$ of finite probabilistic index by [22].

Let $N \subset M$ be an inclusion of von Neumann algebras. For any $x \in M$, we will denote by $C_{N}(x)$ the norm closure of the convex hull of

$$
\left\{u x u^{*}: u \text { is unitary element in } N\right\} .
$$

We recall the relative Dixmier property for inclusions of von Neumann algebras after Popa [23].

Definition 2.5 Let $N \subset M$ be an inclusion of von Neumann algebras. Then we say that $N \subset M$ has the relative Dixmier property if for any $x \in M, C_{N}(x) \cap N^{\prime} \cap M \neq \varnothing$.

In [23], Popa proved the following theorem.
Theorem 2.6 (Popa [23]) Let $N \subset M$ be an inclusion of von Neumann algebras with a conditional expectation $E: M \rightarrow N$ of finite probabilistic index. Then $N \subset M$ has the relative Dixmier property.

We shall establish relations between the relative Dixmier property and the distance.
Let $N \subset M$ be an inclusion of von Neumann algebras. For any $x \in M$, the map $\operatorname{ad}(x): N \rightarrow M$ is defined by $(\operatorname{ad}(x))(y)=y x-x y$.

The proof of the next proposition follows from [8, Proposition 2.5].
Proposition 2.7 Let M and N be von Neumann subalgebras of a von Neumann algebra L with $N \subseteq_{\gamma} M$. If $N \subset L$ has the relative Dixmier property, then

$$
M^{\prime} \cap L \subseteq_{2 \gamma} N^{\prime} \cap L
$$

Proof For any $x \in M^{\prime} \cap L_{1}$, there exists $y \in C_{N}(x) \cap N^{\prime} \cap L$. Since for any unitary $u \in N$,

$$
\left\|u x u^{*}-x\right\|=\|u x-x u\|=\|(\operatorname{ad}(x))(u)\| \leq\|\operatorname{ad}(x)\|,
$$

we have $\|y-x\| \leq\|\operatorname{ad}(x)\|$. On the other hand, for any $n \in N_{1}$, there exists $m \in M$ such that $\|n-m\| \leq \gamma$. Thus,

$$
\begin{aligned}
\|(\operatorname{ad}(x))(n)\| & =\|n x-x n\|=\|n x-m x+x m-x n\| \\
& \leq\|n-m\|+\|m-n\| \leq 2 \gamma .
\end{aligned}
$$

Namely, $\|x-y\| \leq\|\operatorname{ad}(x)\| \leq 2 \gamma$.

3 Perturbations

In the following proposition, we construct a surjective $*$-isomorphism between von Neumann subalgebras of a von Neumann algebra with finite probabilistic index. The argument is originated in early work of Christensen [5, 6].

Proposition $3.1 \quad$ Let M and N be von Neumann subalgebras of a von Neumann algebra L with conditional expectations $E_{M}: L \rightarrow M, E_{N}: L \rightarrow N$ offinite probabilistic index. Ifd $(M, N)<1 / 15$, then there exists a normal surjective \star-isomorphism $\Phi: N \rightarrow M$ such that $\left\|\Phi-\mathrm{id}_{N}\right\|<14 d(M, N)$.

Proof Put $\gamma:=(1.01) d(M, N)$. Let $\left\langle L, e_{M}\right\rangle$ be the basic construction by using $E_{M}: L \rightarrow M$. Then there exists a conditional expectation $E_{L}:\left\langle L, e_{M}\right\rangle \rightarrow L$ of finite probabilistic index. Since $E_{N} \circ E_{L}:\left\langle L, e_{M}\right\rangle \rightarrow N$ is of finite probabilistic index, $N \subset\left\langle L, e_{M}\right\rangle$ has the relative Dixmier property by Theorem 2.6. Therefore,

$$
M^{\prime} \cap\left\langle L, e_{M}\right\rangle \subseteq_{2 \gamma} N^{\prime} \cap\left\langle L, e_{M}\right\rangle
$$

by Proposition 2.7. Thus, there exists $t \in N^{\prime} \cap\left\langle L, e_{M}\right\rangle$ such that $\left\|t-e_{M}\right\| \leq 2 \gamma<1 / 2$. Put $p:=\chi_{[1-2 \gamma, 1+2 \gamma]}\left(\left(t+t^{*}\right) / 2\right)$. Since we have $\left\|p-e_{M}\right\| \leq\|p-t\|+\left\|t-e_{M}\right\| \leq 4 \gamma<1$, there exists a unitary $w \in\left\langle L, e_{M}\right\rangle$ such that

$$
w e_{M} w^{*}=p \quad \text { and } \quad\|w-I\| \leq 4 \sqrt{2} \gamma
$$

by Lemma 2.3. For any $x \in N$, we define $\widetilde{\Phi}(x):=e_{M} w^{*} x w e_{M}=w^{*} p x p w$. Then $\widetilde{\Phi}: N \rightarrow e_{M}\left\langle L, e_{M}\right\rangle e_{M}$ is a normal *-homomorphism, because $p \in N^{\prime}$. Now, there exists a surjective $*$-isomorphism $l: e_{M}\left\langle L, e_{M}\right\rangle e_{M} \rightarrow M$. Hence, we can define a normal *-homomorphism $\Phi:=\iota \widetilde{\Phi}: N \rightarrow M$. For any $x \in N_{1}$,

$$
\begin{aligned}
\left\|\Phi(x)-E_{M}(x)\right\| & =\left\|e_{M}\left(\Phi(x)-E_{M}(x)\right) e_{M}\right\|=\left\|e_{M} w^{*} x w e_{M}-e_{M} x e_{M}\right\| \\
& \leq 2\|w-I\| \leq 8 \sqrt{2} \gamma .
\end{aligned}
$$

Therefore, by [11, Lemma 3.2],

$$
\left\|\Phi-\operatorname{id}_{N}\right\| \leq\left\|\Phi-\left.E_{M}\right|_{N}\right\|+\left\|\left.E_{M}\right|_{N}-\operatorname{id}_{N}\right\| \leq(8 \sqrt{2}+2) \gamma<14 d(N, M)<1 .
$$

This gives that Φ is a $*$-isomorphism.
Moreover, for any $x \in M_{1}$, there exists $y \in N_{1}$ such that $\|x-y\| \leq \gamma$. Then

$$
\|x-\Phi(y)\| \leq\|x-y\|+\|y-\Phi(y)\| \leq \gamma+(8 \sqrt{2}+2) \gamma<15 d(N, M)<1 .
$$

Since this gives that $d(M, \Phi(N))<1, \Phi(N)=M$ by Lemma 2.2.
The following is our main theorem in this paper. It is based on Christensen's work [5, Proposition 4.2] and [6, Proposition 3.2].

Theorem 3.2 Let M and N be von Neumann subalgebras of a von Neumann algebra L with conditional expectations $E_{M}: L \rightarrow M, E_{N}: L \rightarrow N$ of finite probabilistic index. If $d(M, N)<1 / 15$, then there exists a unitary $u \in L$ such that $u M u^{*}=N$ and $\|u-I\|<$ $\operatorname{20d}(M, N)$.

Proof By Proposition 3.1, there exists a normal surjective *-isomorphism $\Phi: N \rightarrow M$ such that $\left\|\Phi-\mathrm{id}_{N}\right\|<14 d(M, N)$. Put

$$
K:=\left\{\left(\begin{array}{cc}
x & 0 \\
0 & \Phi(x)
\end{array}\right): x \in N\right\} .
$$

Then we can define a conditional expectation $E_{K}: \mathbb{M}_{2}(L) \rightarrow K$ of finite probabilistic index by

$$
E_{K}\left(\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\right)=\left(\begin{array}{cc}
\frac{E_{N}(a)+\Phi^{-1}\left(E_{M}(d)\right)}{2} & 0 \\
0 & \frac{\Phi\left(E_{N}(a)\right)+E_{M}(d)}{2}
\end{array}\right),\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \mathbb{M}_{2}(L)
$$

Therefore, $K \subset \mathbb{M}_{2}(L)$ has the relative Dixmier property by Theorem 2.6. Applying the relative Dixmier property for $\left(\begin{array}{ll}0 & I \\ 0 & 0\end{array}\right) \in \mathbb{M}_{2}(L)$, we obtain x in $C_{K}\left(\left(\begin{array}{cc}0 & I \\ 0 & 0\end{array}\right)\right) \cap K^{\prime} \cap$ $\mathbb{M}_{2}(L)$. Then there exists $y \in L$ such that $x=\left(\begin{array}{cc}0 & y \\ 0 & 0\end{array}\right)$, because for any unitary $u \in N$,

$$
\left(\begin{array}{cc}
u & 0 \\
0 & \Phi(u)
\end{array}\right)\left(\begin{array}{cc}
0 & I \\
0 & 0
\end{array}\right)\left(\begin{array}{cc}
u^{*} & 0 \\
0 & \Phi\left(u^{*}\right)
\end{array}\right)=\left(\begin{array}{cc}
0 & u \Phi\left(u^{*}\right) \\
0 & 0
\end{array}\right) .
$$

Furthermore,

$$
\|y-I\| \leq \sup _{u \in N^{u}}\left\|u \Phi\left(u^{*}\right)-I\right\|=\sup _{u \in N^{u}}\left\|\Phi\left(u^{*}\right)-u^{*}\right\| \leq\left\|\Phi-\operatorname{id}_{N}\right\|<1 .
$$

By Lemma 2.3, the unitary $u \in L$ in the polar decomposition $y=u|y|$ satisfies

$$
\|u-I\| \leq \sqrt{2}\left\|\Phi-\mathrm{id}_{N}\right\|<20 d(N, M)
$$

Since $x=\left(\begin{array}{ll}0 & y \\ 0 & 0\end{array}\right) \in K^{\prime}$, for any $n \in N$,

$$
\left(\begin{array}{cc}
0 & y \Phi(n) \\
0 & 0
\end{array}\right)=\left(\begin{array}{ll}
0 & y \\
0 & 0
\end{array}\right)\left(\begin{array}{cc}
n & 0 \\
0 & \Phi(n)
\end{array}\right)=\left(\begin{array}{cc}
n & 0 \\
0 & \Phi(n)
\end{array}\right)\left(\begin{array}{ll}
0 & y \\
0 & 0
\end{array}\right)=\left(\begin{array}{cc}
0 & n y \\
0 & 0
\end{array}\right)
$$

By taking adjoints, we have $\Phi(n) y^{*}=y^{*} n$ for any $n \in N$. Therefore,

$$
y^{*} y \Phi(n)=y^{*} n y=\Phi(n) y^{*} y, \quad n \in N
$$

This gives $|y| \Phi(n)=\Phi(n)|y|$. Therefore,

$$
u \Phi(n)=y|y|^{-1} \Phi(n)=y \Phi(n)|y|^{-1}=n y|y|^{-1}=n u, \quad n \in N .
$$

Hence, $u M u^{*}=u \Phi(N) u^{*}=N$.
Acknowledgment The author would like to thank his supervisor Professor Yasuo Watatani for his encouragement and advice.

References

[1] M. D. Choi and E. Christensen, Completely order isomorphic and close C^{*}-algebras need not be *-isomorphic. Bull. London Math. Soc. 15(1983), no. 6, 604-610. http://dx.doi.org/10.1112/b/ms/15.6.604
[2] J. Cameron, E. Christensen, A. M. Sinclair, R. R. Smith, S. White, and A. D. Wiggins, Kadison-Kastler stable factors. Duke Math. J. 163(2014), 2639-2686. http://dx.doi.org/10.1215/00127094-2819736
[3] W.-K. Chan, Perturbations of certain crossed product algebras by free groups. J. Funct. Anal. 267(2014), no. 10, 3994-4027. http://dx.doi.org/10.1016/j.jfa.2014.09.014
[4] E. Christensen, Perturbations of type I von Neumann algebras. J. London Math. Soc. 9(1974/75), 395-405.
[5] E. Christensen, Perturbation of operator algebras. Invent. Math. 43(1977), no. 1, 1-13. http://dx.doi.org/10.1007/BF01390201
\qquad , Perturbation of operator algebras. II. Indiana Univ. Math. J. 26(1977), no. 5, 891-904. http://dx.doi.org/10.1512/iumj.1977.26.26072
[7] , Near inclusions of C^{*}-algebras. Acta Math. 144(1980), no. 3-4, 249-265. http://dx.doi.org/10.1007/BF02392125
[8] E. Christensen, A. M. Sinclair, R. R. Smith, and S. A. White, Perturbations of C^{*}-algebraic invariants. Geom. Funct. Anal. 20(2010), no. 2, 368-397. http://dx.doi.org/10.1007/s00039-010-0070-y
[9] E. Christensen, A. M. Sinclair, R. R. Smith, S. A. White and W. Winter, Perturbations of nuclear C^{*}-algebras. Acta Math. 208(2012), 93-150. http://dx.doi.org/10.1007/s11511-012-0075-5
[10] L. Dickson, A Kadison Kastler row metric and intermediate subalgebras. Internat. J. Math. 25(2014), 140082, 16pp. http://dx.doi.org/10.1142/S0129167X14500827
[11] S. Ino and Y. Watatani, Perturbations of intermediate C^{*}-subalgebras for simple C^{*}-algebras. Bull. London Math. Soc. 46(2014), no. 3, 469-480. http://dx.doi.org/10.1112/blms/bdu001
[12] B. Johnson, Perturbations of Banach algebras. Proc. London Math. Soc. 34(1977), no. 3, 439-458. http://dx.doi.org/10.1112/plms/s3-34.3.439
[13] A counterexample in the perturbation theory of C^{*}-algebras. Canad. Math. Bull. 25(1982), 311-316. http://dx.doi.org/10.4153/CMB-1982-043-4
[14] V. F. R. Jones, Index for subfactors. Invent. Math. 72(1983), no. 1, 1-25. http://dx.doi.org/10.1007/BF01389127
[15] R. V. Kadison and D. Kastler, Perturbations of von Neumann algebras. I. Stability of type. Amer. J. Math. 94(1972), 38-54. http://dx.doi.org/10.2307/2373592
[16] M. Khoshkam, On the unitary equivalence of close C^{*}-algebras. Michigan Math. J. 31(1984), no. 3, 331-338. http://dx.doi.org/10.1307/mmj/1029003077
[17] H. Kosaki, Extension of Jones theory on index to arbitrary factors. J. Funct. Anal. 66(1986), no. 1, 123-140. http://dx.doi.org/10.1016/0022-1236(86)90085-6
[18] J. Phillips, Perturbations of type I von Neumann algebras. Pacific J. Math. 31(1979), 1012-1016. http://dx.doi.org/10.2140/pjm.1974.52.505
[19] J. Phillips and I. Raeburn, Perturbations of AF-algebras. Canad. J. Math. 31(1979), no. 5, 1012-1016. http://dx.doi.org/10.4153/CJM-1979-093-8
[20] J. Phillips and I. Raeburn, Perturbations of C* -algebras II. Proc. London Math. Soc. 43(1981), 46-72. http://dx.doi.org/10.1112/plms/s3-43.1.46
[21] M. Pimsner and S. Popa, Entropy and index for subfactors. Ann. Sci. Ecole Norm. Sup. 19(1986), 57-106.
[22] S. Popa, Classification of subfactors and their endomorphisms. CBMS Regional Conference Series in Mathematics, 86, American Mathematical Society, Providence, RI, 1995.
[23] _The relative Dixmier property for inclusions of von Neumann algebras of finite index. Ann. Sci. École Norm. Sup. 32(1999), no. 6, 743-767. http://dx.doi.org/10.1016/S0012-9593(00)87717-4
[24] I. Raeburn and J. L. Taylor, Hochschild cohomology and perturbations of Banach algebras. J. Funct. Anal. 25(1977), no. 3, 258-266. http://dx.doi.org/10.1016/0022-1236(77)90072-6

Department of Mathematical Sciences, Kyushu University, Motooka, Fukuoka, 819-0395, Japan e-mail: s-ino@math.kyushu-u.ac.jp

[^0]: Received by the editors September 12, 2015.
 Published electronically February 2, 2016.
 AMS subject classification: 46L10, 46L37.
 Keywords: von Neumann algebras, perturbations.

