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1. Introduction. Let F denote the Galois field GF(pr) with pr elements, 
where p is an odd prime and r is a positive integer. Suppose further that m 
and n are arbitrary elements of F and that a.u pt (i = 1, . . . , s) are nonzero 
elements of F. The purpose of this paper is to evaluate the function Ns(m, n), 
defined, for an arbitrary positive integer s, to be the number of simultaneous 
solutions in F of the equations 

Explicit formulas for N,(m,n) are obtained in Theorem 1, and on the basis 
of this theorem, it is easy to establish the solvability criterion contained in 
Theorem 2. It follows from the latter criterion that the least value of 5 for which 
(1.1) is always solvable is the value s = 4. We mention that Theorem 1, 
in the special case r = 1 (that is, in the case of rational congruences (mod p)), 
reduces to a result of O'Connor and Pall (3; 4) proved by a different method. 

It is of interest to compare Dickson's formulas (2, §§64-07) for the number 
of solutions Ns(m) of the first equation in (1.1) alone, with the results for 
Ns(m, n) obtained in this paper. As it might be expected, the results for the 
simultaneous problem are somewhat more involved. A significant difference 
between the results for the two problems arises from the fact that Ns{m) > 0 
for all s > 2. 

In this paper we use a direct method based on the trigonometric expansion 
of iV.,(m, n). The most that will be required is a double application of the 
generalized Cauchy-Gauss sum, (1.7) and (1.11) below. 

Next we introduce some notation that will be needed in §2 and §3. Let 
t(a) denote the trace of an element a in F, 

t{a) = a + av + ... -4- a^ . 

Then we place 
(1.2) e(a) = e2irii(a)/1\ 

from which it follows that e(a + b) = e{a) e(b). The symbol ^x will be used to 
indicate a sum over the totality of elements of F, while X ^ o will denote a 
sum over the nonzero elements of F. One will note the property, 

™ ?(a) - ?e{ax) - lo/ : i o, 
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which may be restated in the form, 

tu) ^w-g-w-ii'-1- "^ 
The symbol ^(a) will be used to denote the Legendre symbol in F, that is, 

if/(a) — 1, — 1, or 0 according as a is a nonzero square, a non-square, or is 
zero in F. We denote the quadratic Gauss sums in F by 

(1.5) G (a) = 53 e(##2), 

(1.6) G*(a) = Z iK*) *(**). 

The less familiar Cauchy-Gauss sum is defined for F by 

(1.7) 5(o, 6) = E «(Û^2 + 2te). 

We mention the following well-known properties of G (a) and G*(a): 

(1.8) G(a) = ^(o)G( l ) , a ^ 0, 

(1-9) G2(D =*(-l)p\ 

( L 1 0 ) G ( a ) ~ \0, a = 0. 

The sum 5(a, £) has the reduction property (1, §6), 

le(-b2/a) G (a), a ^ 0, 
(1.11) S(a,b) = V , a = b = 0, 

(0, fl = 0 , o ^ 0. 

2. The evaluation of N8{m, n). We shall need the following additional 
notation, 

(2.1) a = ai . . . a8, 

(2.2) 0 = &- + . . . + £ • - , 

(2.3) T = ^2 - Pm. 

The results of this section can be stated most conveniently in terms of the 
five following cases arising from conditions satisfied by m, n, /3, and 7. 

Case 1: £ = 0, rc 3̂  0, 
Case II : /3 = n = 0, ra 5̂  0, 
Case I I I : # = m = n = 0, 
Case IV: 0 ^ 0, 7 ^ 0, 
Case V: 0 9* 0, 7 = 0. 
We now prove 

THEOREM 1. The number of solutions NH(m, n) of (1.1) is given by 
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I j f ( 4 / t — 2 ) I , r(2k—1) # / \ <- i L 

1 . r ( 4 * - l ) | ,r(2k-l) ,/ \ t L _ I _ I 

(2.4) iV. (m,n)= * +P +M *' ^ = 4* + 1, 
\ ^ + ^ * r ^ ( _ a ) f f * = 4* + 2, 

| ^ ( 4 . + i ) + ^ ^ ( _ a ) ^ 5 = 4 * + 3, 

î^ere 77 awa7 f are defined by y = 0, Ç = 0 in Case I; 77 = pr^{m), f = — 1 
in Case I I ; 77 = 0, f = />r - 1 iw Case I I I ; 77 = - ^(0), f = ^(7) m Case IV; 
V = (Pr ~ 1) ^(0), f = 0 m Case V. 

Remark. It is to be understood that Ns(m, n) is undefined for any cases 
that may be incompatible. 

Proof. The function Ns(m, n) has the double Fourier expansion (5), 

(2.5) Ns(m,n) = P~2r^2 1L,A(U}V) e( — mu) e( — 2nv), 
U V 

A (u, 0) = J^ e(u{ai%i + . . . + asxs
2) ) e(2v(/31x1 + . . . + Psxs)) • 

XI, X# V / \ ' 

We break up this expansion into two parts according as it = 0 or u 9^ 0, 
to get 
(2.6) Ns(m,n) = £ 1 + E2, 

where 

(2.7) Z x = A"~2rZ e(-2nv)Yl MM, 
v i—1 

(2.8) £ 2 = />"* '£ E « ( - « « ) e(~2nv)Yl S(atu, fa). 
u^O v i=l 

By (1.3) we have immediately 

(2.9) E i = Pri*~2)-

Now by (1.8) and (1.11) one obtains for u ^ 0, 

S(atu, fa) = 4 : Z ^ - - ) *(«*«) G(l) , 

so that (2.8) becomes, using the definition of 13, 

(2.10) £ 2 = Gs(l) p-2r Ha) Z * '(«) e(-tnu) 5 ( - / 3 / « , - » ) . 

If w 5̂  0, we have, again by (1.8) and (1.11), 

U(ri>u/l3)t(-pu)G(\), 0 5*0, 
(2.11) S(-p/u, -n) = \pr, 13 = n = 0, 

!o, 0 = 0 , ^ ^ 0 . 

We now evaluate £ 2 in the separate cases arising from (2.11). It follows 
immediately from (2.10) that 

(2.12) £ 2 = 0, (3 = 0 ,» 5* 0. 

https://doi.org/10.4153/CJM-1957-011-2 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1957-011-2


EQUATIONS IN A GALOIS FIELD 77 

In case P = n = 0, we obtain from (2.10) and (2.11), 

|GS(1) p~T f(a) c(-m), P = n = 0, 5 even, 
(2.13) Es = ï 

^ lG8(l) *Tf *(«) G * ( - « ) , j8 = n = 0, 5 odd. 

Applying (1.4), (1.9), and (1.10) to (2.13), it follows, in case s is even, that 

( - ^ ( ( - l ) i s a ) £ir(s~2>, p = « = 0,m * 0,5 even, 
(2-14) £ . - , V / 

(_*((-1)**«) pir(s~2)(pr - 1), 0 = m = n = 0, 5 even, 

and in case 5 is odd, 

U((-l)iW)am) p*T(-l\ p = n = 0, m ^ 0, 5 odd, 
(2.15) E* = 1 

0, P = m = n = 0, s odd. 

In case 0 ^ 0, it follows from (2.10) and (2.11) that 

|GS+1(1) p~-r *(-a/8) G*(y/0), 0 * 0, s even, 

(2.16) £ 2 = ^ s + l ( i ) ^_2r ^ ( _ ^ ^ ^ 0*0, s odd. 

Applying (1.4), (1.9), and (1.10) to (2.16), we obtain, in case s is even, 

| ^ ( ( -1 ) ' ( S + V><) piT's~2\ P * 0, 7 * 0, 5 even, 

|0, P^0, y = 0,5 even, 

and in case 5 is odd, 

( - ^ ( ( - 1 ) * ( S + 8 V ) ^ '< s-9 ) , / Î ^ O , 7 ^ 0 , 5 odd, 
(2.18) Z 2 = \ , V 

| * ( ( - l ) * ( s + V ) ^èr(s"3) (Pr ~ 1), |8 ^ 0, 7 = 0, 5 odd. 

Combining (2.6), (2.9), (2.12), (2.14), (2.15), (2.17), and (2.18) the theorem 
follows. 

3. Solvability criterion. We now apply Theorem 1 to the cases 5 < 4 
to obtain the following explicit results. 

,„ x AT / -, )1> Case V, 
(3.1) J M * , « ) - | 0 i Case IV; 

1, Cases I, V, 
0, Case II, 
p\ Case III, 
1 + +(-ay), Case IV; 

AT / \ 0 , C a S e II» 

(3 '2 ) N^m<n) = p>, Case III, 
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\ p T , Cases I, III, 

(3.3) Ni{m,n)= ]Z + P J { - ^ ^ a s e " , 
\P — Y( — <*&)> Case IV, 
[Pr + (PT ~ l ) * ( - a 0 ) , Case V; 

[p2r, Cases I, V, 

(3 4) NAm n) = ^ ~ ^ W ' C a s e H ' 
(6A) 4( ' j \p'2r + PT{pr ~ 1) H«), Case III, 

U 2 r + prrP(ay), Case IV. 

It is noted that Cases I, II, and III do not arise if s = 1 or if s = 2 and 

* ( - « ) = - l. 
On the basis of (3.1), (3.2), (3.3), and (3.4) we obtain immediately the 

following solvability criterion. 

THEOREM 2. Subject to the restrictions stated in the Introduction, (1.1) is 
always solvable (Ns(m, n) > 0) provided s > 4. The only cases in which (1.1) 
is insolvable, that is when N,{m, n) = 0, are the following: 

(!) 5 = 1 , 7 ^ 0 , 

(2) s = 2, 0 ^ 0 , 7 ^ 0 , <A(-<*7) = - 1, 
(3) s = 2, 0 = w = 0, m 9* 0, 
(4) 5 = 3, 0 = n = 0, m ^ 0, \P(-am) = - 1, 

where a, fi, and y are defined as in §2. 
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