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Philosophy of Physics 1

1 Introduction
Elementary particle physics is the study of the fundamental building blocks of
nature: the quarks and leptons that make up all (nondark) matter; the gauge
bosons that carry the electromagnetic, weak, and strong forces; and the Higgs
boson that generates the masses of these elementary particles via the Higgs
mechanism. Although they are the building blocks of the everyday objects
around us, we can only study the properties of many of these particles by cre-
ating extreme conditions quite unlike those in everyday life. While one can
gain valuable insight into the behavior of elementary particles from cosmology
and astrophysics, the most successful way to create such conditions has been
through high-energy collisions in particle accelerators like the Large Hadron
Collider (LHC) at CERN.
The mathematical framework used to model elementary particles and their

behavior is quantum field theory (QFT). This framework incorporates the
principles of quantummechanics and special relativity, both of which are indis-
pensable for describing the extreme conditions we create to study elementary
particles. Quantum field theory is an expansive and rich theoretical edifice that
is the workhorse of modern physics; it has valuable applications in many areas
outside of particle physics, particularly cosmology and condensed matter phys-
ics. (The history of its development, which extends from the 1920s through the
present day, is fascinating and often helpful for understanding its modern struc-
ture; for entry points, see Schweber (1994), Kaiser (2009), and Duncan (2012,
chapters 1–2).) The successful “theories” in elementary particle physics most
likely to be familiar to nonphysicists – quantum electrodynamics (QED), quan-
tum chromodynamics (QCD), the Standard Model of particle physics itself –
are each particular models of the general framework of QFT.
Yet it is an unfinished framework. The mathematical architecture of QFT is

not yet completely understood, to say nothing of the lack of consensus about
its conceptual foundations. The result is that there are a handful of distinct
but related mathematical frameworks, all of which have some claim to the
name “quantum field theory.” (See Swanson (2017) for a discussion of how to
exploit the variety of frameworks for QFT to investigate its conceptual impli-
cations.) Many of these frameworks were developed with the goal of placing
QFT on a mathematically secure footing, a challenge first tackled in earnest
in the 1950s and remarkably resistant to resolution. Much philosophical anal-
ysis of QFT has taken place within one or another of these mathematically
rigorous frameworks. The virtue of these frameworks is that they often allow
for mathematically precise formulations of conceptually interesting questions
that sometimes even admit mathematically rigorous resolution, promising a
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2 Philosophy of Particle Physics

readily available precision and conceptual clarity to which many philosophers
are attracted. A number of advances have beenmade in suchwork, and for more
extensive discussion I encourage the reader to explore Swanson (forthcoming)
as a companion to this Element.
The vice of these frameworks is that, at least presently, they lack the tools

required to apply QFT to the actual world. To find models of QFT that can
be applied in particle physics and elsewhere, one must turn to the framework
for QFT found in most quantum field theory textbooks, taught in university
physics departments, and employed by workaday physicists in their research.
The mathematical foundations of this framework are shaky, but its predic-
tive successes are unprecedented. In recent years, philosophers have begun
to complement the earlier work on foundational questions in QFT conducted
in mathematically rigorous frameworks with philosophical investigations car-
ried out using the QFT more familiar to practicing physicists. This framework
for QFT offers novel avenues of approach to questions familiar from earlier
philosophical investigation of QFT and raises new, foundationally pressing
questions of its own. As one might expect in a volume devoted to foundational
aspects of particle physics, I will work within this framework for QFT.
My focus on QFT as it is employed in particle physics has two consequences.

The first consequence stems from the essentially tautological statement that
particle physics is done by particle physicists. They are human actors with
particular scientific goals and familiar human cognitive limitations, and these
combine to produce epistemological challenges. In particular, challenges asso-
ciated with the search for new physics receive attention at several points,
particularly theoretical heuristics that shape expectations about where to direct
experimental searches for new physics. (For an entry point into the large liter-
ature on epistemological challenges presented by experimental physics more
generally, see Boyd (2021).) The second consequence is that the models of
QFT applied in particle physics provide accurate descriptions of nature over a
restricted set of length scales, but offer physicallymisleading ormathematically
inconsistent descriptions of nature when pushed beyond those scales. Models
like this are called effective field theories (EFT), and this Element is organized
around providing an introduction to the mathematical structure, characteristic
patterns of inference, and conceptual implications of EFT.
The Element is structured as follows. In Section 2, I provide a selective intro-

duction to the structure of QFT. A central activity in particle physics is the
calculation of probability distributions for the outcomes of scattering experi-
ments, information that is encoded in the S-matrix. After introducing necessary
preliminaries about QFT, discussion in Section 2 focuses on the essentials
of scattering theory. In Section 3, I turn to a complex issue: the concept of
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Philosophy of Physics 3

“particle” in QFT. I focus on two aspects: (1) the connection between sym-
metries of a spacetime and possible properties of particles in that spacetime,
famously identified by Wigner in 1939, and (2) the inability to define states of
a quantum field that correspond to a particle strictly localized in any bounded
region of spacetime. In Section 4, I focus on renormalization methods. Initially
introduced by Schwinger, Tomonaga, Feynman, and Dyson in the immediate
wake of World War II, renormalization is a necessary step in most calcula-
tions performed in QFT but was initially a source of considerable consternation
among physicists. However, spurred by mathematical innovations by Wilson,
Fisher, Kadanoff, and others, the understanding of the physical meaning of
renormalization methods underwent an important transformation in the 1970s.
In Section 5, I present the EFT framework. My primary focus is on the reason-
ing underlying various uses of EFT methods in particle physics and the unique
patterns of inference licensed by the EFT framework. I also critically evalu-
ate two popular heuristics that guide expectations in particle physics about the
scale(s) at which new physics will be discovered. I conclude by summariz-
ing philosophical work about whether the successes of EFT methods support a
scientific realist attitude toward those successful models.
Throughout the Element, I emphasize basic structural features of QFT and

the patterns of reasoning that connect them. I occasionally point out as-yet-
unexplored avenues of philosophical inquiry that strike me as promising.
Because of its introductory nature and short length, I do not delve into technical
niceties and am cavalier about issues like normalization and prefactors when
no conceptual matter is at stake. There are many, many good QFT textbooks
available in which those details are waiting for the interested reader.
Finally, a word about notation: particle physicists typically use “natural

units” in which ℏ = c = 1. This lets us write all dimensionful quantities,
like length, mass, or time, as powers of energy. To give some perspective
on the scales involved in particle physics, the conversion of the SI units for
length, mass, and time into natural units are given next. The unit of energy is
electronvolts (eV), with 1 GeV = 109 eV.

1 GeV−1 = 1.97327 × 10−16 meters
1 GeV−1 = 6.58212 × 10−25 seconds
1 GeV= 1.78266 × 10−24 grams

2 Quantum Field Theory
Quantum field theory is the mathematical framework that describes the quan-
tummechanical behavior of fields. A field is a map that assigns a mathematical
object to every point on a spacetime manifoldM. The use of fields to describe
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4 Philosophy of Particle Physics

physical systems is indispensible in classical and quantum physics, from the
classical mechanics of continua to the description of physics on the worldsheet
in string theory. Unsurprisingly, the type of mathematical object assigned to
each spacetime point depends on the properties of the physical system being
described. For example, suppose one wanted to assign a temperature to every
point in a spacetime region O – my office, for example, or the surface of the
Pacific Ocean. Temperature can be fully specified by a single real number, its
magnitude, and so one would assign to every point in O a real number. This is
an example of a real-valued scalar field, a map that assigns to every point inO
a real number: the value of the temperature at that point. A more complicated
physical system, like an electric field, has more physical degrees of freedom
than temperature and we require a mathematical description that reflects that.
The electric field at a spacetime point has both a magnitude and a direction and
so is described by a vector-valued field, a map that assigns a vector to every
spacetime point. Yet more complicated systems with more physical degrees of
freedom, like the spacetime metric in general relativity, require yet more infor-
mation to be fully described; in this case, a tensor-valued field that assigns a
tensor to every point in spacetime. One could multiply examples ad infinitum;
the point is that there are many useful types of field, and the use of any par-
ticular field is dictated by the physical properties of the system one aims to
describe.
These examples are of field-theoretic descriptions that encode the informa-

tion necessary for doing classical physics. To describe the quantum behavior of
those fields, one requires QFT. A quantum field is a map that assigns an opera-
tor to every point on a spacetime manifoldM. (More precisely, mathematical
consistency requires that quantum field operators be “smeared” over infinites-
imal regions of spacetime Streater and Wightman (1964, chapter 3).) Like the
classical fields mentioned above, mathematical properties of these operators
depend on the physical properties of the system being modeled. A quantum
analogue of a temperature field, for example, can be described by assigning a
quantized scalar field φ(x, t) to every point in spacetime. The additional phys-
ical degrees of freedom possessed by the electromagnetic field mean that it is
described by a quantized vector field Aµ(x, t), while the physical properties of
electrons and positrons are reflected in the fact that they are described by a
quantized spinor field Ψ(x, t). What exactly it means to say that an operator-
valued field is a “vector field” or a “scalar field” will get cleared up in our
discussion of representations of the Poincaré group in Section 3. For now,
what matters is that to describe the quantum mechanical behavior of fields,
one assigns operators to points in spacetime.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/9

78
10

09
20

53
82

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/9781009205382


Philosophy of Physics 5

Describing the quantum mechanical behavior of fields requires the mathe-
matical structure of quantummechanics, of course. Furthermore, althoughQFT
has valuable applications in a number of settings, our interest is in elementary
particles in Minkowski spacetime. This means that we will also require the
mathematical structure of special relativity. (One can model quantum fields in
many other spacetime settings, from Galilean spacetime to de Sitter or anti-de
Sitter spacetimes, but wewill restrict ourselves toMinkowski spacetime.) I pre-
sume that readers have at least some familiarity with both quantum mechanics
and special relativity, but a brief reminder of some relevant features provides
a useful avenue of approach to QFT.
The mathematical structure of special relativity, for our purposes, is captured

by the symmetry group of Minkowski spacetime, the Poincaré group. In the
next section we will explore a deep connection between representations of this
group and the concept of a particle in QFT, but for now we remind ourselves
of some of its basic structure. The Poincaré group consists of the isometries of
Minkowski spacetime: transformations that do not change the spacetime inter-
val between two points, as determined by the Minkowski metric ηµν . In fact,
one typically considers a restricted version of the Poincaré group that excludes
isometries that change the sign of any of the spacetime coordinates (i.e., parity
or time-reversal transformations). This group is called the restricted Poincaré
group and it consists of orthochronous Lorentz transformations – transforma-
tions composed of spatial rotations and Lorentz boosts – and translations in
spacetime.
In particle physics, the empirical predictions of models of QFT are required

to be invariant under Poincaré transformations. These are quantum theories,
so these predictions take the form of probability distributions over the possi-
ble outcomes of experimental measurements. As long as these predictions are
Poincaré invariant, any two observers whose frames of reference are related by
a Poincaré transformation will agree on the probability that any particular event
will occur at a given point in spacetime – that a muon will register in a particle
detector, for example. Enforcing the requirement of Poincaré invariance at the
level of empirical predictions generates a number of deeper constraints on the
theoretical structure of QFT. We will encounter one of the most important of
these in the next section.
The basic mathematical structure of quantum mechanics appears in QFT

much like it appears in the nonrelativistic quantum theories familiar to philoso-
phers. The space of possible states of a quantum field is a Hilbert spaceH; each
physical system is associated with an algebra A of linear operators acting on
H, with observable properties of the field represented byHermitian elements of
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6 Philosophy of Particle Physics

that algebra; and the dynamical evolution of the states of the field is determined
by a privileged Hermitian operator, the Hamiltonian H. This structural con-
tinuity between nonrelativistic quantum theories and QFT is often explained
most clearly in mathematically rigorous presentations, such as Haag (1996) or
Strocchi (2013), and is rarely foregrounded in textbook presentations of QFT.
Nevertheless, it is there. In the brief introduction to QFT in this section, we will
emphasize this common mathematical structure.

2.1 States
For now, we will restrict ourselves to the simplest example of a quantum field:
the free real scalar field φ(x, t). The label “free” means that excitations of this
field – its associated particle – do not interact with one another. States of this
field can be understood to describe multiple, noninteracting particles. We will
introduce some simple machinery to construct the states of this free scalar field:
creation and annihilation operators. Our goal is to see how the formalism of
creation and annihilation operators can be used to construct the entire Hilbert
space of states associated with this free field φ(x, t), to see that these creation
and annihilation operators provide a useful representation of the quantum field
itself, and to use them to clarify the relationship between the field operators
φ(x, t) and other elements of the algebra A of operators.
Suppose the field φ(x, t) is in its ground state, that is, its lowest-energy state: a

state with no particles. This state is called the vacuum andwewill label it |0〉. To
construct the additional states inH, we can introduce creation and annihilation
operators a† and a that add or remove a particle from a state and apply them to
the vacuum state. A real scalar field has no “internal” degrees of freedom (i.e.,
no degrees of freedom other than momentum and position), so the creation
and annihilation operators can be labeled a†p and ap: they create and annihilate
particles with 4-momentum pµ =

(
Ep,p

)
. In general, creation and annihila-

tion operators add or remove particles with properties, or “quantum numbers,”
determined by the associated quantum field; for example, for a fermionic field
these operators would be labeled bymomentum and spin. (We label particles by
their spatial momenta, with the understanding that they satisfy the relativistic
mass–energy relation E2p = p2 +m2, where m is the rest mass of the particle. In
the rest frame of the particle, where 3-momentum p = 0, this becomes E = m,
which is E = mc2 in natural units.)
Beginning with the vacuum state |0〉, one can construct states of the field

describing multiple noninteracting particles as follows:

a†p |0〉 = |p〉 , a†p′a
†
p |0〉 = |p,p′〉 , a†p′′a

†
p′a

†
p |0〉 = |p,p′,p′′〉 , . . .
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Philosophy of Physics 7

The first is a state of the field containing a single particle with momentum p;
the second is a state of the field containing two noninteracting particles, one
with momentum p and the other with momentum p′; and so on. Similarly, the
action of the annihilation operator is defined as follows:

. . . , ap′′ |p,p′,p′′〉 = |p,p′〉 , ap′ap |p,p′〉 = |0〉 , ap |0〉 = 0.

A defining property of the vacuum state |0〉 is that it is the unique state in H
that returns zero when acted on by any annihilation operator ap.
As one might suspect, anymultiparticle state of the quantum field φ(x, t) can

be constructed by appropriate applications of creation operators to the vacuum
state:

|pn11 ,p
n2
2 , . . . ,p

nr
r 〉 ∝ (a†p)n1 (a†p2 )

n2 . . . (a†pr )
nr |0〉 ,

where nj labels the number of particles with momentum pj. (This representation
of the state is called the occupation number representation: nj labels the number
of particles occupying a particular momentum mode pj.)
Every state of the free real scalar field φ(x, t) can be constructed via this pro-

cedure: one can construct the entire Hilbert space for a free quantum field by
acting on its vacuum state with (linear combinations of) creation and annihi-
lation operators. This Hilbert space consisting of states that describe multiple,
noninteracting particles is called a Fock space. It plays a central role in the
formulation of scattering theory, a central aspect of QFT that we will describe
shortly.
The commutation relations that hold between creation and annihilation

operators encode information about the physical system with which they are
associated. For bosons, they obey the following commutation relations:

[apσ,ap′σ′] = 0 = [a†pσ,a†p′σ′], [apσ,a†p′σ′] = δ(p − p′)δσσ′,

where the index σ stands for any additional quantum numbers that the bosonic
field might possess. The creation and annihilation operators for fermions obey
anti-commutation relations:

{apσ,ap′σ′} = 0 = {a†pσ,a†p′σ′}, {apσ,a†p′σ′} = δ(p − p′)δσσ′ .

The commutation relations for bosonic creation and annihilation operators
reflect the fact that multiple particles associated with a bosonic field can occupy
the same state. For the real scalar field φ(x, t), this means multiple particles can
occupy the samemomentummode p; for bosons with more degrees of freedom,
it means that multiple bosons can occupy states with identical quantum num-
bers. Things are different for fermions: the anti-commutation relations entail
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8 Philosophy of Particle Physics

that no two particles associated with a fermionic field can occupy the same
state, as required by the Pauli exclusion principle.
The Hilbert space H associated with the free scalar field φ(x, t) is the Fock

space we just described. How do we represent operators acting on this Hilbert
space?

2.2 Operators
The formalism of creation and annihilation operators proves extremely useful
here as well. One can prove that any operator O acting on H can be written
as a sum of products of creation and annihilation operators (Weinberg, 1995,
section 4.2):

O =
∞∑
N=0

∞∑
M=0

∫
dp′1 . . . dp

′
N dp1 . . . dpM CNM(p′1 . . . p′N p1 . . . pM)

× a†p′1 . . . a
†
p′N
apM . . . ap1,

where the CNM are complex-valued coefficients. This means that the action of
any operator on states in H can be described by acting with an appropriate
sequence of creation and annihilation operators. (Note that all of the creation
operators are to the left of the annihilation operators; this is called normal order-
ing. We will always assume our operators are normal ordered.) It is instructive
to see a couple of operators expressed in this form; eventually, we will see how
to express the field operators φ(x, t) themselves this way.
Suppose one wanted an operator that counted the number of particles present

in any state of the field. One can construct such an operator using the creation
and annihilation operators as follows. First, we were cavalier about normal-
ization when introducing the action of the creation and annihilation operators
Section 2.1. If we are more careful, the action of the creation and annihilation
operators is

apj |p
n1
1 , . . . ,p

nj
j , . . . ,p

nr
r 〉 =

√nj |pn11 , . . . ,p
nj−1
j , . . . ,pnrr 〉

a†pj |p
n1
1 , . . . ,p

nj
j , . . . ,p

nr
r 〉 =

√
nj + 1 |pn11 , . . . ,p

nj+1
j , . . . ,pnrr 〉 .

The product a†pjapj counts the number of particles occupying the momentum
mode pj:

a†pjapj |p
n1
1 , . . . ,p

nj
j , . . . ,p

nr
r 〉 =

√nja†pj |p
n1
1 , . . . ,p

nj−1
j , . . . ,pnrr 〉

=
√nj

√
nj − 1 + 1 |pn11 , . . . ,p

nj
j , . . . ,p

nr
r 〉

= nj |pn11 , . . . ,p
nj
j , . . . ,p

nr
r 〉 ,
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Philosophy of Physics 9

We want our operator to count the number of particles occupying any momen-
tum mode, so to construct our operator we integrate over all momentum
modes:

N =
∫

d3p a†pap.

The result is the number operator, an operator that counts the total number of
particles in any state of the field.
A particularly important example is the Hamiltonian of the free scalar field
φ(x, t). Although more frequently expressed using field operators φ(x, t), in a
form we will see shortly, it is often convenient to write it using creation and
annihilation operators:

H =
∫

d3pEpa†pap.

This Hamiltonian “counts” the total energy in a state of the free scalar field
φ(x, t). It does this by counting the total number of particles in each momentum
mode, with each term weighted by the energy Ep associated with a particle in
that mode. It is easy to verify that the Fock space states

|pn11 ,p
n2
2 , . . . ,p

nr
r 〉

are eigenstates of this Hamiltonian, with eigenvalues of the form

E = Ep1n1 + . . . + Eprnr.

For a QFT describing free fields, the number operator and the Hamiltonian
commute: total particle number is conserved during time evolution. This is only
true for free fields; in QFT, interactions can create and annihilate particles. For
interacting fields, total energy is still conserved but particle number is not.
We can now turn to quantum fields. Recall that the free real scalar field, being

a quantum field, is an assignment of an operator to every point on a spacetime
manifold M. The operators φ(x, t) assigned to each spacetime point are oper-
ators and so, by the theorem cited above, can be expressed using creation and
annihilation operators:

φ(x, t) =
∫

d̃p apeipx + a†pe−ipx,

where d̃p ≡ d3p
(2π)3 2Ep

is a Lorentz invariant integration measure. (The integral
over 3-momentum does not look Lorentz invariant, but it is Srednicki (2007,
chapter 3).)
Naively, the physical significance of the field operator φ(x, t) is that it can

create and annihilate particles of any momentum at the spacetime point (x, t).
We will see shortly that this is too naive. Nevertheless, it is true, in a sense, that
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10 Philosophy of Particle Physics

free field operators act on states to create and annihilate particles and even the
too-naive reading can be useful in certain respects. Consider acting on the vac-
uum with the field operator φ(x, t) and projecting out any particular momentum
mode k as follows:

〈k|φ(x, t)|0〉 ∝ 〈0|ak
∫

d̃p apeipx + a†pe−ipx |0〉

=

∫
d̃p

[
eipx 〈0|akap |0〉 + e−ipx 〈0|aka†p |0〉

]
= e−ikx.

This suggests that acting on the vacuum with the field operator φ(x, t) creates a
particle localized at the spatial point x. One can already see one sense in which
this is too naive: the particle created “at x” is in an eigenstate of momentum k.
What could it mean to create a particle in an eigenstate of momentum that is
also localized at a spatial point? In Section 3, we will return to this and other
subtleties concerning our (in)ability in QFT to localize particles in any bounded
region of spacetime.
Field operators also obey commutation relations. Bosonic fields like φ(x, t)

obey an analogue of the canonical commutation relations that hold between
position and momentum in nonrelativistic quantum mechanics:

[φ(x, t), φ( y, t)] = 0 = [π(x, t), π( y, t)], [φ(x, t), π( y, t)] = iδ3(x − y),

where π(x, t) = ∂
∂tφ(x, t) is the canonical momentum associated with the field.

For fermionic fields, the field and its associated canonical momentum satisfy
analogous anti-commutation relations. In both cases, the commutation relations
for the field operators hold if and only if the corresponding commutation rela-
tions for the creation and annihilation operators are satisfied. (Note that the
canonical momentum is not the same thing as the observable corresponding to
momentum.)
We wrote the Hamiltonian for the free real scalar field φ(x, t) using creation

and annihilation operators:

H =
∫

d3pEpa†pap.

Now that we have constructed the field operators, we can write it in a more
common form:

H =
1
2

∫
d3x π(x)2 + (∇φ(x))2 + m2φ(x)2,

wherem is the mass of the particle associated with the field φ(x, t). It is a useful
exercise to show that the two formulations are equivalent (Srednicki, 2007,
chapter 3).
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Philosophy of Physics 11

We also require that not only the fields themselves, but also any two operators
whatsoever commute when they are localized in spacelike separated regions.
That is, suppose that two spacetime points xµ and yµ cannot be connected by
a light signal. We require that any two operators O(xµ) and O( yµ) commute;
this ensures that actions performed at xµ cannot influence the statistical dis-
tribution of outcomes of measurements of O( yµ). More generally, if no light
signal can connect any two points in bounded regions of spacetimeO1 andO2,
any two operators localized in those regions will commute. This is called the
microcausality condition.
The field operators are, in a sense, simply operators like any other. Never-

theless, they play a privileged role in QFT. Quantum fields are not necessarily
observables themselves; the real scalar field φ(x, t) happens to be Hermitian,
but others – complex scalar fields, spinor fields, and so on – are not. However,
observables can be constructed out of sums of products of field operators. Fur-
thermore, the field itself is the fundamental dynamical object in the theory, in
the sense that the equations of motion (i.e., the Euler-Lagrange equations) of
any QFT model describe the dynamical evolution of the fields in that model.
Our goal in the remainder of this section is to work up to one of the central uses
of QFT in particle physics: the calculation of probability distributions for the
outcomes of scattering processes.

2.3 Dynamics
Just as in nonrelativistic quantum mechanics, dynamical evolution in QFT is
generated by a Hamiltonian H and is represented by a unitary operator

U(τ) = e−iHτ,

where τ is the duration of time that the system is subjected to the condi-
tions described by H. (In practice, one encounters Lagrangians much more
frequently than Hamiltonians in QFT. We’ll see the virtue of formulating QFT
using Lagrangians when we encounter path integrals.) However, while use of
the Schrödinger picture of time evolution is common in nonrelativistic quan-
tum mechanics, it is rare in QFT. It is much more common to use either the
Heisenberg picture or the interaction picture.
In the Heisenberg picture, states of the system are stationary and the opera-

tors evolve in time. In the interaction picture, the total Hamiltonian H is split
into a “free” term H0 and an “interaction” term Hint and the time-dependence
of the system is distributed across the states and the operators: operators evolve
in accord with H0, while the evolution of states is governed by Hint. In our dis-
cussion of scattering theory, we will make use of the interaction picture. This is
worth noting because Haag’s theorem demonstrates that the interaction picture
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12 Philosophy of Particle Physics

is mathematically ill-defined in QFT, a fact that has generated interesting dis-
cussion about how to justify use of the interaction picture; see Earman and
Fraser (2006), Duncan (2012, chapter 10.5), and Miller (2018).
In particle physics, very frequently the dynamical setting of interest is scat-

tering theory. (For a clear and careful presentation of assumptions employed by
several different formulations of scattering theory, see Duncan (2012, chapter
9). For a historical perspective on how scattering theory became central to QFT,
see Blum (2017).) In scattering theory, one aims to model the following situa-
tion: a set of widely separated, noninteracting particles in some initial state |α〉
approach each other, interact and undergo extremely complicated motion for
some finite period of time, and then once again become widely separated and
noninteracting in some final state |β〉. The initial state |α〉 and the final state
|β〉 are both states in the Fock space H composed of states of the free field;
this means they are eigenstates of the free Hamiltonian H0. The justification
for this is the assumption that the particles in these initial and final states are
sufficiently widely separated as to be noninteracting.
It is worth pausing to be clear about the meaning of “widely separated.”

Mathematically, one requires only that the particles be strictly noninteract-
ing when their spatial separation becomes infinite. Philosophers are sometimes
alarmed by such infinite idealizations. “The tunnels of particle accelerators are
only a few meters wide!” they object. “How could particles possibly become
sufficiently separated to justify the assumption that they are non-interacting?”
Although there are a number of interesting philosophical issues surrounding
the use of idealizations in physics, this particular idealization has a straight-
forward unpacking: one requires only that the spatial separation between the
particles be large compared to the range of the forces by which they interact.
Often this can be a surprisingly short distance: in the 1930s, Hideki Yukawa
showed that a force mediated by a massive particle decays exponentially with
the distance between the bodies. This means that bodies have to be very close
together to experience meaningful interactions due to such a force; a meter is
so much larger than the range of such a force that it might as well be infinite.
(Justifying this assumption for particles that interact via forces mediated by
massless particles, like electromagnetism, requires a more subtle mathematical
story, since those forces decay only polynomially with distance. See Strocchi
(2013, chapter 6.3) or Duncan (2012, chapter 19.1) for discussion.)
A very important fact about scattering theory is that one does not keep track

of the detailed dynamical evolution of the particles. One is interested only in the
initial and final states long before and long after the scattering event; the scat-
tering itself is treated as a black box. Aside from specifying the interaction in
the Hamiltonian, scattering theory says essentially nothing about the extremely
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Philosophy of Physics 13

complicated behavior that the particles exhibit while interacting. Instead, one
is interested in the following question: Given a quantum field in an initial state
|α〉 and a HamiltonianH, what is the probability distribution over possible final
states |β〉 in which one might find the field after the scattering event?
This information is encoded in an object called the S-matrix. The S-matrix

consists of matrix elements of the scattering operator S taken between states
in the Fock space H, that is, initial and final states |α〉 and |β〉. The scattering
operator S acts on the initial state |α〉 to turn it into a “post-scattering” state
S |α〉, and the matrix element

〈β |S|α〉 ≡ Sβα

is the probability amplitude for finding the system in the final state |β〉. (The
terms “scattering amplitude” and “S-matrix element” are used interchangea-
bly.) The probability of finding the system in the final state |β〉, given that it
began in initial state |α〉 and its dynamical evolution was governed by S, is
calculated using the Born rule:

|〈β |S|α〉|2.

The S-matrix is an object of central importance in particle physics, and in QFT
more generally. (At least, in asymptotically flat spacetimes like Minkowski. In
cosmologically relevant spacetimes like those that are asymptotically de Sitter,
for instance, one cannot define an S-matrix at all (Witten, 2001; Bousso, 2005).)
Much of the remainder of this Element is focused on philosophical challenges
posed by the strategies that physicists have developed for calculating S-matrix
elements.
The reader may be wondering about the nature of the scattering operator S.

Its action on the initial state |α〉 evidently represents dynamical evolution, so
how does it relate to the HamiltonianH? The short answer is that the scattering
operator is constructed by taking early-time and late-time limits of operators
that are themselves constructed out of the HamiltonianH, so that the scattering
operator takes a state in the asymptotic past τ → −∞ and dynamically evolves
it to a state in the asymptotic future τ → +∞.
A slightly more detailed answer begins by returning to our assumption that

the initial and final states of the scattering process describe particles so widely
separated that they do not interact (for a genuinely detailed answer, see Duncan
(2012, chapter 4.3)). This amounts to the assumption that there is a state of the
field |Ψ〉 in the Hilbert space associated with the interacting theory such that at
very early times τ � 0 its dynamical evolution – determined by the interacting
Hamiltonian – coincides with the dynamical evolution of some state |α〉 in the
Fock space associated with the free theory, governed by the free Hamiltonian
H0:

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/9

78
10

09
20

53
82

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/9781009205382


14 Philosophy of Particle Physics

lim
τ�0

e−iHτ |Ψα〉 = e−iH0τ |α〉 .

The analogue must be true for very late times

lim
τ�0

e−iHτ |Ψβ〉 = e−iH0τ |β〉 .

From here, we can define the unitary operator

U(τ) = eiHτ e−iH0τ .

This unitary operator is just a time-evolution operator in the interaction picture
that evolves a state from an early time τ to a later T = 0:

U(T, τ) = eiH0T e−iH(T−τ) e−iH0τ T=0−−−→ U(0, τ) = eiHτ e−iH0τ .

The scattering operator S is obtained by taking early-time and late-time limits
of this time-evolution operator in the interaction picture. By taking those limits,
one can define the two operators (typically called Møller operators)

U±(τ) = lim
τ→±∞

U(τ).

Scattering theory calculates transition amplitudes between states that evolve
like eigenstates of the free Hamiltonian H0 at early times and states that evolve
like eigenstates of H0 at late times. One can then use the fact that the dynam-
ical evolution of states in the full, interacting theory will “coincide” with the
evolution of states in the free, noninteracting theory at early and late times as
follows:〈
Ψβ

��Ψα

〉
=
〈
β
��U+(τ)† U−(τ)

��α〉 = 〈β |U(+∞,−∞) | α〉.

This gives the result that the scattering operator S is a unitary operator that
dynamically evolves a state of noninteracting particles |α〉 from the asymptotic
past into a state of noninteracting particles U(+∞,−∞) |α〉 in the asymptotic
future.
The fact that the initial and final states come from the Fock space associated

with a free theory means that we already know them. They are states of the
form��(p,σ)n11 ; (p,σ)n22 ; . . . ; (p,σ)nrr

〉
,

whereσ represents any additional quantum numbers the systemmay have. That
means that a generic S-matrix element has the following form:〈

(p′,σ′)n
′
1
1 ; (p′,σ′)n

′
2
2 ; . . . ; (p′,σ′)n

′
q
q

��� S ��� (p,σ)n21 ; (p,σ)n22 ; . . . ; (p,σ)nrr
〉
.

The replacement of nr with n′q in the final state reflects the fact that while total
energy is conserved during a scattering event in QFT, particle number is not.
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Philosophy of Physics 15

The take-home points from this section are the following. A quantum field
is an assignment of operators to spacetime points. The possible states of a
quantum field form a Hilbert space H. Just like in nonrelativistic quantum
mechanics, each physical system is associated with an algebra of operators that
act on this Hilbert space. Each of these operators can be expressed as a sum of
products of creation and annihilation operators. The field operators are no dif-
ferent: they act on states inH to create or annihilate particles. One of the most
important operators in QFT, the scattering operator S, allows one to calculate
the probability amplitude that a state |α〉 of noninteracting particles prepared
in the asymptotic past will evolve into a state |β〉 of noninteracting particles
in the asymptotic future. These scattering amplitudes are directly related to the
quantities one measures in particle physics experiments, like scattering cross
sections and branching ratios.
We now must think more carefully about the notion of “particle” that we

have been so far employing rather naively. In the first part of Section 3, we
do this by way of addressing another very important topic in more detail: the
constraints that Poincaré invariance place on the structure of QFT. We then
conclude Section 3 by discussing several well-known oddities of “particles” in
QFT.

3 Particles
So far we have spoken about particles in QFT as if the notion is unambigu-
ous: they are excitations of quantum fields whose creation or annihilation in a
particular state of a quantum field is represented by the action of the operators
a†p and ap. In fact, even a little bit of scrutiny reveals the conceptualization of
particles to be subtle. In this section, we will look at two important aspects of
the concept of a particle in QFT.
The first is Eugene Wigner’s pioneering use of the Poincaré group to ana-

lyze possible properties of particles in QFT, which has led to an oft-repeated
but rather cryptic slogan that a particle just is an “irreducible representation
of the Poincaré group.” Discussing this allows us to revisit an important topic
that received short shrift in the previous section: the consequences of requir-
ing Poincaré invariance for the structure of QFT. Wigner’s analysis reflects a
beautiful connection between the structure of spacetime and the properties of
the particles that can exist in that spacetime. (We restrict to Minkowski space-
time, but this connection between spacetime structure and allowed particles
persists in more general settings. That can produce startling results; the irreduc-
ible representations of the isometry group of de Sitter spacetime, for example,
reveal that de Sitter spacetime can accommodate particles whose properties are
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16 Philosophy of Particle Physics

not allowed by Minkowski spacetime (see, for example, Baumann et al. (2018,
section 2.1–2.2)).)
The second is the fact that particles in QFT cannot be restricted to any

bounded region of spacetime: they are nonlocalizable. This conflicts rather dra-
matically with our intuitions about properties a “particle” ought to have and has
generated a lot of interest from philosophers.

3.1 Representations of the Poincaré Group
Recall that the primary empirical constraint imposed by Poincaré invariance is
that any two observers related by any combination of spatial rotations, Lorentz
boosts, and spacetime translations must agree about probability distributions
for the outcomes of scattering experiments. This translates into the mathemat-
ical requirement that the S-matrix be invariant under (orthochronous) Lorentz
transformations and spacetime translations.
Formally, this requires that S-matrix elements satisfy

Sβα = 〈β | S | α〉 = 〈Λβ | S |Λα〉 = SΛβ,Λα,

where |Λβ〉 and |Λα〉 are initial and final states obtained by acting on the states
|β〉 and |α〉with a Poincaré transformationΛ. Poincaré transformationsmust be
represented as unitary operators acting linearly on the Fock spaceH – a fact that
will be of central importance momentarily – so we can write this requirement
as

〈β | S | α〉 =
〈
β
��U†(Λ) SU(Λ)

��α〉,
fromwhich it follows immediately that S = U†(Λ) SU(Λ): the scattering opera-
tor S is invariant under Poincaré transformations. This is equivalent to requiring
that the action of the scattering operator S on any state |Ψ〉 of a quantum field
commutes with the action of an arbitrary Poincaré transformation U(Λ).
We said that Poincaré transformations must be represented by unitary oper-

ators acting on H. This follows from two facts: (i) we want the probability
distributions our QFT predicts for the outcomes of scattering experiments to be
invariant under Poincaré transformations, and (ii) a theorem of Wigner stating
that the action of any symmetry group in a quantum theory must be represented
by a set of unitary or anti-unitary operators acting linearly on H (Weinberg,
1995, chapter 2, appendix A). (The anti-unitary operators change the sign of
the time coordinate and so these representations are ruled out by the restriction
to orthochronous Lorentz transformations.) The fact that Poincaré transforma-
tions act unitarily on H entails that they preserve the inner product between
states inH:〈
ΨβU†(Λ)

��U(Λ)Ψα

〉
=
〈
Ψβ

��U†(Λ)U(Λ)
��Ψα

〉
=
〈
Ψβ

��Ψα

〉
.
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This means that the isometries of Minkowski spacetime are also isometries
of the Hilbert space H. We also consider only irreducible representations, for
reasons that will be explained shortly.
The structure of these irreducible unitary representations of the Poincaré

group will occupy us for the first portion of this section. (There are many good
textbook presentations of this material; in roughly increasing sophistication,
see Ryder (1996, chapter 2.7), Coleman (2019, chapter 18), or Weinberg (1995,
chapter 2).) Our interest in these representations stems from the fact that they
are used to classify the allowed particles in a Poincaré invariant QFT.
Wigner discovered that one can label all possible irreducible unitary repre-

sentations of the Poincaré group by the eigenvalues of two operators. The first
is the operator PµPµ = P2, where Pµ is the 4-momentum operator.When acting
on a single-particle state |p,σ〉, the eigenvalues of this operator areM2, where
M is the mass of the particle. The second is WµWµ = W2, where Wµ is the
Pauli-Lubanski operator. The eigenvalues of this operator are proportional to
J2, where J is the total spin of the particle.
As is familiar from quantum mechanics, the total spin J of a particle can

only take half-integer values: J = 0, 12 , 1,
3
2 , and so on. Thus every irreducible

unitary representation of the Poincare group can be labeled by a mass M and
a total spin J. In our discussion, we will always assume that M > 0, that is,
we are considering massive particles. (Extending Wigner’s analysis to mass-
less particles involves some important mathematical differences, but no major
conceptual surprises.) Note that this already rules out, for example, particles
with J = 1

3 because there is no irreducible representation of the Poincaré group
under which the states of such a particle could transform.
It is natural to associate irreducible unitary representations that are labeled

by these two eigenvalues with particles for the following reason. The two oper-
ators P2 and W2 are Casimir operators of the Poincaré group: they commute
with every element of the group. This means that the eigenvalues M2 and J2

of those operators are invariant under Poincaré transformations. This already
suggests that one might be able to use irreducible representations to classify
particles, since the mass and total spin of a particle are themselves invariant
under Poincaré transformations. There is no combination of spatial rotations,
Lorentz boosts, or spacetime translations that can turn an electron into a spin-1
particle or make its mass anything but 0.511 MeV.
However, it is also the case that specifying the state of a particle requires

more information than just its mass and total spin. At minimum, fully specify-
ing the state of the particle will require specifying its momentum. If the particle
has total spin J > 0, then the state description will also specify the state of its
spin along a chosen spatial axis, traditionally the z-axis. These properties are
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18 Philosophy of Particle Physics

not Poincaré invariant: they change under general Poincaré transformations.
Furthermore, particles usually possess more properties than mass and spin –
electric charge, for example. This fact will be important for how we should
understand the slogan that particles “are” irreducible representations of the
Poincaré group.
We have restricted to irreducible representations. The requirement that our

unitary representations of the Poincaré group be irreducible is important for
understanding Wigner’s classification of particles, so it is worth pausing to get
clear on irreducibility.
A (matrix) representation of a Lie group G consists of a set of n× nmatrices

that satisfy the algebraic relations that define the Lie algebra associated with the
Lie group. In quantum theories, we typically want to represent the action of a
group on states of a physical system, that is, on rays in a Hilbert spaceH. This
makes matrix representations especially useful, since the action of the group
elements on the physical system is reduced to matrix multiplication. Recall that
the action of a linear operator onH is determined by its action on the states in
any basis ofH. Let |Ψi〉 be an element of a basis forH. Then the action of the
group onH has the following form:

U(g) |Ψi〉 =
∑
j

U(g)ij |Ψj〉 ,

where U(g) is a unitary matrix that represents the the group element g. The
action of U(g) “mixes” the basis states among themselves – each basis state is
transformed into a linear combination of other basis states.
This allows us to define irreducibility. A representation of a group G acts

irreducibly on a Hilbert spaceH if there is no nontrivial subspace of states that
is left invariant by the action of the group. Intuitively, this means that if one
was allowed to move around in H using only Poincaré transformations, they
would never find themselves trapped in a subspace ofH.
A simple example illustrates the idea. Consider a Hilbert space H with the

following two subspaces: one subspace H1 in which all states take the value
Q = 1 for some variable Q, and a second subspace H2 in which all states take
the value Q = 2. If the action of an arbitrary U(g) only turns states in H1 into
linear combinations of states inH1 and states inH2 into linear combinations of
states inH2, thenU(g) acts reducibly on the full Hilbert spaceH = H1⊕H2. If
one starts inH1, then one is trapped inH1, and if one starts inH2, then one is
trapped inH2. Loosely speaking, a representation of a groupG acts irreducibly
on a Hilbert space H if, starting in an arbitrary state |Ψ〉 in H, one can reach
any other state inH by acting on |Ψ〉 with elements of G.
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Irreducibility matters for Wigner’s classification of particles for the follow-
ing reason. Suppose that mass and total spin were an exhaustive list of the
invariant properties of particles. Then we could label states of a particle by
momentum and the value of the spin along the z-axis Jz, which can take values
between −J and J. For a particle with J = 1/2, for example, a possible state is

|Ψ〉 = |p,Jz = 1/2〉 .

A particle state with momentum p can be transformed into a state of any other
momentum p′ by Lorentz boosts, and a state with spin Jz = 1/2 can be trans-
formed into a state of any other spin, along any other axis, by a spatial rotation.
All Lorentz transformations can be written as a product of Lorentz boosts and
rotations, so for a single particle we should be able to transform any particular
state into any other state by Lorentz transformations. If there was a subspace of
states in the Hilbert space H associated with our particle into which we could
not get our particle by Lorentz transformations, those states must be labeled by
properties that (i) are invariant under Poincaré transformations and (ii) differ
from properties possessed by our particle. The only possibilities are that the
states in that subspace of H are labeled by different values of M or J than our
particle.
Following Wigner’s analysis, we know this means those states must trans-

form under a different irreducible representation of the Poincaré group than
the states of our particle. Since we consider states labeled by distinct masses,
or distinct total spins, to be states of distinct types of particles, we can conclude
that if two sets of states transform under distinct irreducible representations of
the Poincaré group then they must be states of distinct particles.
If mass and total spin exhausted the properties of elementary particles, there

would be a one-to-one correspondence between particle types and irreducible
representations of the Poincaré group: two particles would be distinct if and
only if they transformed under different irreducible representations. In the real
world, of course, particles are labeled by many more properties than just mass
and spin, and this complicates the correspondence between particle species and
irreducible representations of the Poincaré group. Consider two particles we
consider distinct: the electron and the positron. These two particles have the
same mass and total spin, so their states transform under the same representa-
tion of the Poincaré group. The property that distinguishes the two is the electric
charge Q: states of the electron have charge −1 and states of the positron have
charge +1. Electric charge is a quantity of obvious physical importance, but to
which the Poincaré group is blind: an irreducible representation of the Poincaré
group acts the same way on states with ±q as long as those states are labeled
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by the same mass and total spin. This means that, in the real world, different
species of elementary particle are not in one-to-one correspondence with dis-
tinct irreducible representations of the Poincaré group. (This is not to say that
considering irreducible representations of all of the symmetries of the theory is
insufficient to distinguish distinct particle species. For example, electrons and
positrons are associated with distinct irreducible representations of the group
U(1), whose irreducible representations are labeled by the value of q. Includ-
ing U(1) will, roughly speaking, “split” the irreducible representation of the
Poincaré group in a way that distinguishes electron states and positron states.)
This returns us, finally, to the question of how one ought to understand the

slogan that an elementary particle is an irreducible representation of the Poin-
caré group. I will make two points. The first is that we should resist the idea that
the slogan entails any kind of structural realism according to which an elemen-
tary particle can bemetaphysically identified with an irreducible representation
of the Poincaré group. (One might prefer structural realism on independent
grounds, but the point is that the connection between particles and irreduci-
ble representations does not force it on us.) One does encounter the idea that
it has this implication in the philosophical literature; see for example, Roberts
(2011, section 2) (who does not endorse it) for discussion. One ought to resist
this interpretation for at least two reasons. First, for the simple reason that
there is an acceptable, less metaphysically extravagant understanding: that the
states of elementary particles transform under irreducible representations of
the Poincaré group, while the particles themselves are material bodies. Sec-
ond, an irreducible representation of the Poincaré group does not fix enough
properties on its own to distinguish any two elementary particles. This seems
an insurmountable obstacle tometaphysically identifying particular elementary
particle types, like electrons or muons, with irreducible representations of the
Poincaré group.
The second point builds on this inability to map distinct particle species one-

to-one onto distinct irreducible representations of the Poincaré group. It is true
that the space of states H associated with any particular particle transforms
under some irreducible representation of the Poincaré group. In that sense, the
slogan does provide a definition of the general notion of a particle: a Hilbert
spaceH in QFT represents a single type of particle if and only if a representa-
tion of the Poincaré group acts irreducibly onH. However, as just mentioned,
the association is not strong enough to distinguish any two distinct particle
species based solely on the representation theory of the Poincaré group. It is
true that if two sets of states transform under different representations, then
they are associated with distinct particle species: the two sets of states must
be labled by different mass or total spin. However, the only if direction fails:
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one cannot infer solely from the fact that two particle species are distinct that
they transform in distinct representations. It may be that they are only distin-
guished by quantum numbers that the Poincaré group does not see, like electric
charge. The classification of particles afforded by irreducible representations
of the Poincaré group is simply not fine-grained enough to support any concep-
tual or metaphysical identity between particular particle types and particular
irreducible representations.
Quantum fields have been absent from our discussion of the Poincaré group

thus far. Many conclusions of Wigner’s analysis of particles applies equally
well to fields; in particular, the representation theory of the Poincaré group
imposes the same constraints on the allowed quantum fields in Minkowski
spacetime that it imposed on particle states. (This is unsurprising, given that
“particle state” just describes a state of the associated quantum field in which
particle(s) are present.) However, it is worth emphasizing a compelling way of
understanding the origin of the transformation rules for the field operators: they
are inherited from the transformation rules for the states. The logical structure
of this is as follows (see Weinberg (1995, chapter 5)).
We began by requiring that probability distributions for the outcomes of
scattering experiments, encoded in an S-matrix, be invariant under Poincaré
transformations. This required that Poincaré transformations act unitarily on
H. Consider the single particle state

|p,σ〉 = a†p, σ |0〉 ,

where σ represents all quantum numbers of the particle. Acting on this state
with a Poincaré transformation U(Λ) gives

U(Λ)|p,σ〉 = U(Λ) a†p, σ
(
U†(Λ)U(Λ)

)
|0〉 = U(Λ) a†p, σ U†(Λ) |0〉 ,

where U(Λ) |0〉 = |0〉 because the vacuum state |0〉 does not change under
Poincaré transformations. Taking the Hermitian conjugate of this expression
gives the transformation rule for the annihilation operator ap, σ .
The action of the Poincaré transformation on creation and annihilation oper-

ators is determined by the mass and total spin of the particle they create or
annihilate. Operators for scalar particles, with spin 0, transform differently
than operators for vector particles, with spin 1, and both transform differently
than spinors, representing particles with spin-1/2. The important point for our
purposes is that because quantum fields are constructed out of creation and
annihilation operators, the transformation rules for the fields are inherited from
the transformation rules for those operators. The simplest example of this is
the scalar field: the creation and annihilation operators are the only elements
of the field operator on which Poincaré transformations act nontrivially (see
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Coleman (2019, chapter 3) for pedagogical discussion of scalar fields and Poin-
caré transformations). The definition of the scalar field that accompanied us
through Section 2 makes this clear, as they are the only operator-valued objects
that appear in the definition of the field:

φ(x, t) =
∫

d̃p apeipx + a†pe−ipx.

The transformation rules for the quantum field is thus determined by the trans-
formation rules for the creation and annihilation operators, which are in turn
determined by the transformation rules for the states.
The point of this brief comment about the origin of the transformation rules

for fields has been to highlight a fairly direct inferential path that beginswith the
empirical requirement that probability distributions for the outcomes of scatter-
ing experiments be left invariant by Poincaré transformations, passes through
the transformation rules for single-particle states, and concludes with the trans-
formation rules for the quantum fields. There are other ways to justify those
transformation rules, but this understanding offers a striking demonstration of
the powerful constraints placed on the mathematical structure of QFT simply
by the empirical need to ensure that the predictions of a quantum theory respect
the structure of Minkowski spacetime.

3.2 Localizability
We set out to sharpen our understanding of the concept of a particle in QFT in
two ways. The first was to consider its relationship to irreducible representa-
tions of the Poincaré group; we have now done that. The second was to consider
a serious challenge to our naive use of the term “particle” to describe the content
of Fock-space states like��(p,σ)n21 ; (p,σ)n22 ; . . . ; (p,σ)nrr

〉
.

It turns out that these “particles” fail to exhibit many of the properties that we
would expect particles to exhibit. We will focus on the fact that these “par-
ticles” cannot be strictly localized in any bounded region of spacetime, but
this is just one of several obstacles to interpreting states of a quantum field as
describing particles (both Fraser (2021) and Baker (2016, section 3) include
more extensive surveys of these obstacles). We will briefly summarize these
other obstacles before turning to the issue of localizability.
The first of these obstacles comes from a remarkable phenomenon called

the Unruh effect. (See Mukhanov and Winitzki (2007, chapter 8) for a peda-
gogical derivation of a special case, Wald (1994, chapter 5) for a more general
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treatment, and Crispino et al. (2008) for extensive discussion. For philosoph-
ical discussion, see Clifton and Halvorson (2001), Arageorgis et al. (2003),
Earman (2011), and Ruetsche (2011, chapter 9).) Consider Alice and Bob, both
of whom are observing the same free quantum field. Alice is at rest and sees
the field in its vacuum state |0〉, that is, a state containing no particles. The
Unruh effect, roughly speaking, is the discovery that if Bob is accelerating uni-
formly, he will not see the field in a no-particle state. Instead, he will see the
field in a thermal state: a state describing a thermal bath of particles, with a
temperature proportional to Bob’s rate of acceleration. People have drawn a
number of conclusions about the nature of particles from the Unruh effect, but
an almost universal reaction has been that it demonstrates that QFT cannot be
fundamentally about particles. Wald gives a concise statement:

The Unruh effect may appear paradoxical to readers who are used to think-
ing that quantum field theory is, fundamentally, a theory of “particles,” and
that the notion of “particles” has objective significance. How can an accel-
erating observer assert that “particles” are present [. . .] when any inertial
observer would assert that, “in reality,” all ofMinkowski spacetime is devoid
of particles? . . . No paradox arises when one views quantum field theory as,
fundamentally, being a theory of local field observables, with the notion of
“particles” being introduced as a convenient way of labeling states in certain
situations. (Wald, 1994, p. 116)

The second of these obstacles comes from technical issues that arise in
defining quantum fields on more exotic spacetimes than Minkowski spacetime
(see Wald (1994, chapter 4) or Mukhanov and Winitzki (2007, chapter 6); see
Ruetsche (2011, chapters 10–11) for philosophical discussion). In Section 2,
the states of the free quantum field that we described as containing particles
were Fock states:��(p,σ)n21 ; (p,σ)n22 ; . . . ; (p,σ)nrr

〉
.

We did not discuss it, but the ability to represent states of a quantum field using
a Fock space requires the underlying spacetime to possess certain symmetries.
The symmetry structure of some curved spacetimes means they do not admit
a unique definition of this Fock space representation. This gives rise to multi-
ple, inequivalent representations of the space of states of a free quantum field
in those spacetimes, with each representation equipped with its own particle
structure. In other curved spacetimes, the symmetry structure means they do
not admit any Fock space representation at all. Many have taken the same con-
ceptual lesson from this as from the Unruh effect, which Wald again states
clearly:
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[T]his means that there is no natural definition of “particles” in a general,
curved spacetime. . . .While some readers familiar with standard presenta-
tions of quantum field theory in flat spacetime might be disturbed by the
lack of a notion of “particles” in curved spacetime, we have taken great care
to emphasize here that this should not be a cause of alarm, since the notion of
“particles” plays no essential role in the formulation of quantum field theory.
(Wald, 1994, pp. 59–60).

The third obstacle appears if one attempts to extend the particle interpre-
tation of Fock states of a free quantum field to states of interacting quantum
fields (Fraser, 2008). There are a number of reasons this extension fails. For
one, the vacuum state of the interacting quantum fields is not the same as the
vacuum state |0〉 of the free field that was understood to contain zero particles.
It is hard to understand how that could be the case if QFTs are fundamentally
about particles. Perhaps worse, the single particle state |p,σ〉 is not an eigen-
state of the Hamiltonian Hint of a QFT that includes interactions. According
to one standard approach to property attribution in quantum theories, the fact
that the state |p,σ〉 is not an eigenstate of Hint means it has no definite value of
energy at all. As Fraser argues, this third obstacle poses a serious problem for
anyone arguing that QFTs are fundamentally describing particles, or that states
of quantum fields always admit a particle description.
These three obstacles pose serious problems for anyone who wants to inter-

pret QFTs as being fundamentally about particles. Indeed, they make it all but
impossible to argue even that the states of a quantum field always admit a
particle interpretation, even if one abandons the idea that particles are the onto-
logically fundamental objects. One might wonder whether it is really necessary
to take up the issue of localizability as well. Doesn’t this coffin already have
enough nails?
The previous obstacles all involve, in one way or another, departures from

the maximally simple context on which we based our naive talk of particles
in Section 2: Minkowski spacetime, inertial observers, and a free scalar field
φ(x, t) whose states admit a unique Fock space representation. The nonlocal-
izability of particles presents an obstacle to interpreting states of a quantum
field as describing particles even in this context, which seems most friendly to
a particle interpretation.
First, the most obvious question: Can one define “particles” that are more

localized than momentum eigenstates |p〉, that is, that are localized at all? The
answer is yes. It is both physically and mathematically more responsible to
represent initial and final states in scattering theory using wavepackets peaked
around some momentum p and some spatial point x with respective spreads
∆p and ∆x; a Gaussian wavepacket provides a familiar example. One can do
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scattering theory with wavepackets perfectly well. However, at the typical
resolution with which scattering experiments are conducted, the probabilities
for the possible outcomes are not sensitive to the detailed spatial structure of the
wavepacket and the spread of momenta ∆p in the wavepacket is typically much
smaller than the momentum of the scattering experiment. This is what licenses
the use of momentum eigenstates to approximate the wavepackets. (See Peskin
and Schroeder (1995, chapters 4.5, 7.2) and Itzykson and Zuber (1980, chapter
5.1) for discussion; for a more rigorous treatment, see Duncan (2012, chap-
ters 6, 9.2–9.3).) We will continue to use approximations going forward, but
emphasize that it is not an essential feature of scattering theory.
Of course, even a Gaussian wavepacket in nonrelativistic quantum mechan-

ics is not strictly localizable in any bounded region of spacetime for more than
an instant: it has “tails” that extend out to spatial infinity. However, one might
consider it essential to a satisfactory notion of “particle” that it be strictly local-
izable within some bounded region of spacetime. There are a number of formal
results demonstrating that no such notion is allowed in relativistic quantum
theories.
The earliest prominent result in the philosophical literature was Malament

(1996). Malament asked whether it was possible for a relativistic quantum
theory to describe even a single strictly localizable particle. Under physically
reasonable assumptions, all of which are satisfied for the initial and final states
considered in scattering theory, he demonstrated that no such theory is possible.
In more detail, Malament demonstrated the following. Consider two disjoint
spatial regions O and O′ and a single instant t, and assume the following:

• Localizability: The probability of finding the particle in both regionsO and
O′ at t is 0. Formally, if PO and PO′ are projection operators that check
whether the particle is localized in O or O′ and return 1 for yes and 0 for
no, we require PO PO′ |Ψ〉 = 0 for all states |Ψ〉 of the single particle.

• Translation Covariance: There is a unitary representation of the translation
subgroup of the Poincaré group defined on the Hilbert spaceH.

• Energy Bounded Below: The Hamiltonian operator H has a lowest eigen-
value, that is, the particle has a ground state.

• Microcausality: The measurement of an operator in O cannot affect the
statistics of measurements performed in O′: for any two operators A and
A′ restricted to the regionsO andO′, we require [A, A′] = 0. In particular,
for two projection operators P and P′ we have [P, P′] = 0.

On the basis of those four assumptions, Malament proves that the probability
of detecting the single particle localized in any spatial region O is 0: given an
arbitrary state |Ψ〉 in H and any spatial region O, the projection operator P
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associated toO gives P |Ψ〉 = 0. Malament’s result was subsequently strength-
ened in several respects by Halvorson and Clifton (2002).
These results are widely described as no-go theorems for particles. How-

ever, what they actually demonstrate is that in a relativistic quantum theory, one
cannot define a position operator. An intuitive way to see this (glossing over
some important mathematical subtleties) is that any Hermitian operator – like a
position operator – can always be expressed as a weighted sum of appropriate
orthogonal projection operators, and these results show that for any bounded
regionO′, one cannot define an associated projection operator P′ whose value
reflects the location of a particle.
A natural question is whether there is a different strategy for defining local-

ized particles in QFT. Perhaps the most natural strategy would be to define
number operatorsN that count the number of particles in a spatial regionO at
any particular instant. After all, a global number operator N was the tool we
used in Section 2 to count the total number of particles in a state of a quantum
field. Could a local number operatorN be defined that would count the number
of particles in the state of a quantum field in a spatial region O?
The answer is no, but the strategy fails because of deep aspects of the struc-

ture of QFT. That one cannot even define a local number operatorN that counts
all and only the particles in the spacetime region O is a well-known conse-
quence of one of the most remarkable theorems of QFT, the Reeh–Schlieder
theorem. (See Witten (2018, section II) for a clear presentation of the theo-
rem and Redhead (1995) and Halvorson (2001) for the difficulty it poses for
the notion of a localized particle in QFT.) Substantive discussion of the Reeh–
Schlieder theorem is beyond the scope of this Element, but its implications for
local number operators are easy to state.
One of the properties we wanted for a total number operator is that, when

applied to the vacuum state |0〉 of a quantum field, we have N |0〉 = 0. After
all, the vacuum state is the state of the quantum field with no particles present.
We would like the same property to hold for a local number operator N . We
immediately encounter the problem: it is a consequence of the Reeh–Schlieder
theorem that any operator A′ restricted to a bounded region of spacetime
O′ satisfies A′ |0〉 = 0 if and only if A′ = 0, that is, the operator is the zero
operator.
In fact, Halvorson and Clifton (2002, section 6) show that the culprit is

a microcausality assumption: the requirement that [N , N ′]= 0 for disjoint
regions of spacetime O and O′. If two operators in disjoint spacetime regions
do not commute, then measurements in region O can superluminally affect
the long-run statistics of measurement outcomes in O′; this would allow for
superluminal signaling. Indeed, if one attempts to ignore the implication of
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the Reeh–Schlieder theorem and define local number operators anyway, one
quickly finds that two number operators restricted to disjoint spacetime regions
do not commute, precisely as Halvorson and Clifton claimed they could not
(Duncan, 2012, chapter 6.5).
I said above that a widespread reaction to the results discussed in this sec-

tion is that particles are not part of the fundamental ontology of QFT. This
raises a question that is, to my mind, more pressing: What is the status of par-
ticles in QFT? After all, experimental physicists design particle accelerators,
collect data using particle detectors, and so on. What are those accelerators
accelerating? What are the detectors detecting? What notion of “particle” is
employed by engineers and experimentalists in designing their detection appa-
ratus, and how can one locate that notion in QFT? We have seen that states of
a quantum field cannot always be interpreted as describing particles and even
in the restricted contexts in which they can, those “particles” do not behave
like one might expect. However, considerations like those just mentioned have
led to consensus that there must be some role for a notion of nonfundamen-
tal particles. (See Fraser (2021, section 21.3) and Baker (2016, section 3) for
interpretive options.) What that role is, exactly, strikes me as an interesting and
challenging question for those interested in ontological implications of QFT.
One natural response to the obstacles to a fundamental ontology of particles

is exemplified by the quotations from Wald: conclude that the ontologically
fundamental objects in QFT are quantum fields. Particles are emergent, or
approximate, entities in QFT: they are descriptions of certain behaviors of
quantum fields that can be usefully deployed in a restricted set of circum-
stances. This too faces significant obstacles. Baker has shown that the most
natural interpretation of QFT along these lines faces many of the same prob-
lems as particle interpretations (Baker, 2009) (though Sebens (2022) identifies
a potential loophole). Furthermore, the choice of a particular operator-valued
field φ is highly nonunique: a large class of fields φ, φ′, φ′′, . . ., each appar-
ently exhibiting quite different structure, can be shown to generate empiri-
cally equivalent models. A number of mathematically rigorous results capture
aspects of this underdetermination; perhaps the most famous example, proven
by Borchers, demonstrates that any two fields φ and φ′ that satisfy mild condi-
tions will generate identical S-matrices (Streater and Wightman, 1964, chapter
4.6). This suggests that the structure of a quantum field itself is in principle
underdetermined by the empirical evidence we can acquire about it. This is
a variety of underdetermination that has been notoriously challenging for any
would-be scientific realist. The ontological standing of quantum fields is, in
my opinion, perhaps the most pressing open question about the metaphysics of
QFT.
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4 Renormalization
Our discussion of QFT so far has been based almost exclusively on the structure
of noninteracting, or “free” QFT models. Of course, any model that aims to
describe physically interesting behavior, like scattering experiments, has to
describe particles that interact with each other. Our discussion so far might
strike the reader as useless: How much could we possibly expect to learn from
noninteracting models about the structure of more realistic models in which
particles interact? Perhaps surprisingly, the answer is “rather a lot,” at least in
many contexts relevant for modeling particle physics experiments.
In this section, we will extend our discussion to models of QFT in which

particles interact. The structure of a particular noninteracting QFT, like the
free scalar field φ(x, t), provides the basis for a model in which the particles
associated with the field φ(x, t) can interact: one obtains the interacting model
as a perturbation of the free model. The addition of interactions enables the
calculation of nontrivial S-matrix elements, one of the core concerns of worka-
day particle physicists. Calculations performedwith these perturbativemethods
have produced the most accurate predictions in the history of experimental sci-
ence: for example, the use of these methods in quantum electrodynamics to
calculate the magnetic moment of the electron produces a prediction that has
been verified by experiment to eleven decimal places.
However, this perturbative strategy of using the structure of a non-interacting

model as a jumping-off point for calculating the behavior of interacting par-
ticles is not without difficulties. Most infamously, one encounters divergent
integrals when performing calculations: the calculations seem to predict that
the probability of each outcome of a scattering process is infinite. Historically,
this led to the development of the renormalization methods that we focus on for
the bulk of this section. The mathematical formulation and conceptual justifi-
cation of renormalization methods underwent a significant evolution between
their introduction in the immediate wake of World War II and the late 1970s,
the point at which the Standard Model of particle physics had achieved wide-
spread acceptance. The methods that initially were dismissed as misguided or
ill-formed by luminaries like Heisenberg and Dirac have now come to be seen
as invaluable tools for extracting both empirical predictions and conceptual
consequences from QFT.

4.1 Correlation Functions and Path Integrals
The clearest way to illustrate the significance of renormalization methods is to
sketch a calculation of an S-matrix element using our perturbative strategy. In
fact, there are several ways to carry out such a calculation; in this section, we
will introduce a particularly powerful approach that uses path integralmethods.
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Path integral methods have come to be preferred in QFT, not least because of
their ability to handle certain technical subtleties of gauge theories like quan-
tum electrodynamics or quantum chromodynamics. We will not need to avail
ourselves of the technical power of the framework, but path integral methods
also make the physical meaning of renormalization methods particularly clear.
(This is especially true for the renormalization group (RG)methods that wewill
discuss in Section 4.3.) It will therefore be useful to develop an understanding
of path integrals.
We will stick with the scalar field φ(x, t). Our first course of action is to

add interactions to the theory’s dynamics. We treat this interaction as a small
perturbation of the dynamics of the noninteracting theory. We add the term
λφ(x, t)4 describing the interaction, producing the following Hamiltonian:

H =
1
2

∫
d3x π(x)2 + (∇φ(x))2 + m2φ(x)2 + λ

4!
φ(x)4,

where λ is a real number that satisfies λ� 1. This is essential to our perturba-
tive strategy for studying QFTs with interactions: if λ≳ 1, our assumption that
adding interactions does not dramatically alter the structure of the noninteract-
ing theory is no longer justified.
To emphasize the distinction between the dynamics of the noninteracting

theory and the perturbing interaction, one typically splits the Hamiltonian into
two terms:

H0 =
1
2

∫
d3x π(x)2 + (∇φ(x))2 + m2φ(x)2

Hint =
λ

4!
φ(x)4,

with the total Hamiltonian for the interacting system being given by H = H0 +

Hint.
We have described the dynamics of our scalar field using aHamiltonian oper-

ator, but in practice it is much more common to use a Lagrangian operator. (The
main reason for this is that verifying Poincaré invariance is much simpler in a
Lagrangian formalism than a Hamiltonian formalism, since one has to choose
a foliation of spacetime to even write down the Hamiltonian.) The Lagrangian
density for our interacting scalar field is

L = 1
2
∂µφ(x, t)∂µφ(x, t) −

m2

2
φ(x, t)2 − λ

4!
φ(x, t)4

and the Lagrangian itself is obtained by integrating the Lagrangian density over
the entirety of space:

L =
∫

d3xL.
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The Lagrangian formalism will be central to our discussion of QFT. Also, for
notational simplicity we will start writing φ(x, t) ≡ φ on occasion.
Path integrals provide a powerful method for the calculation of S-matrix ele-

ments, but they do so in a slightly roundabout way. What they enable one to
calculate directly is a time-ordered correlation function, a very important math-
ematical object in QFT. Roughly speaking, the correlation function encodes the
probability amplitude that if a quantum field is excited out of its vacuum state
by the creation of particles localized around spatial points x1, x2, . . . ,xn at time
t, the field will be found at a later time t′ in a state containing particles local-
ized around spatial points y1, y2, . . . ,ym. The Lehmann–Symanzik–Zimmerman
(LSZ) reduction formula tells us how to systematically relate these correlation
functions to scattering amplitudes. Details of the LSZ reduction formula lie
outside the scope of this Element (see Coleman (2019, chapter 14) for a lucid
exposition), but the important conceptual point is that it reduces calculating S-
matrix elements to calculating time-ordered correlation functions. This justifies
our focus on the latter.
In fact, we can restrict our attention even further: a very useful result called

Wick’s theorem demonstrates that any time-ordered correlation function involv-
ing n particles – a so-called n-point function – can always be written as a sum
of products of time-ordered correlation functions involving only two particles
– so-called two-point functions or propagators. We will therefore focus on the
structure of two-point functions for the moment.
There are important differences between the structure of a propagator for a

free QFT and an interacting QFT.We will start with free QFT: when we discuss
renormalization, we will see that as long as λ � 1 – the essential assumption
of our perturbative strategy – the free propagator serves as a “starting point”
of sorts for the propagator in the QFT with interactions. For a free scalar field
φ(x, t), the two-point function is

〈0 | Tφ(x, t) φ(y, t′) | 0〉,

where |0〉 is the ground state of the noninteracting Hamiltonian H0, that is, |0〉
is the state of the free field φ(x, t) in which no particles are present. The function
T is the time-ordering function: it cares only about the temporal coordinates t
and t′ and is defined to be:

Tφ(x, t)φ(y, t′) =
φ(x, t)φ(y, t

′) t > t′

φ(y, t′)φ(x, t) t′ > t
.

T acts on a product of field operators to arrange the fields localized at the earlier
spacetime points on the right.
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Why is this mathematical object called a “propagator”? Recall that the free
field φ(x, t) has the form

φ(x, t) =
∫

d̃p apeipx + a†pe−ipx,

and that its action on the vacuum state φ(x, t) |0〉 produces a state containing a
single particle with some momentum p, and localized around the spatial point
x at time t. (This isn’t strictly true: it describes a wavepacket and technically
φ creates a momentum eigenstate. However, we discussed earlier how the two
are related in scattering theory.) Similarly, the state 〈0| φ(y, t′) describes a sin-
gle particle with some momentum q and localized around the spatial point y at
time t′. When we sandwich those two states together, we get a transition ampli-
tude encoding the probability that if, at time t, the quantum field was in a state
describing a particle of momentum p localized around x, it will be found at a
later time t′ in a state describing a particle of momentum q localized around y
(or vice versa for t′ earlier than t). (Conservation of energy requires that p = q
for the free propagator, since no interactions will change the particle’s momen-
tum between (x, t) and (y, t′).) Speaking loosely, the propagator encodes the
probability that a particle initially at spacetime point (x, t) will “propagate” to
(y, t′).
A simple calculation shows that the propagator for a free scalar field takes

the form

〈0 | Tφ(x, t) φ(y, t′) | 0〉 =
∫

d4p
(2π)4

e−ip(x−y)
1

p2 − m2 + iε
.

One is typically interested in more complicated time-ordered correlation func-
tions that encode the probability that if, at t, a quantum field is in a state
describing multiple particles localized around spatial points x1, x2, . . . , xn, it
will be found at a later t′ in a state containing particles localized around spatial
points y1, y2, . . . ,ym. (In a free QFT, m = n since there are no interactions to
create or annihilate particles.) Wick’s theorem lets us decompose these n-point
functions into sums of products of two-point functions, that is, propagators, so
it is sufficient to focus on those.
We now turn to the path integral methods that one typically uses to calculate

time-ordered correlation functions. Path integrals were initially introduced into
quantum mechanics by Feynman (Feynman, 1948), following up on an earlier
idea proposed in an obscure paper by Dirac (Dirac, 1933/2005). Our strategy
will be to first develop an understanding of the core ideas of the path integral
approach in non-relativistic quantummechanics by way of a great example due
to Feynman himself.
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32 Philosophy of Particle Physics

Suppose you have the following problem: a source emits a particle that
propagates some distance through space and slams into a detection screen. In
between the source and the screen is a wall with two slits, labeled A1 and A2.
You want to calculate the probability that a particle emitted from the source
will be detected at a particular point x on the detection screen. This is easy
enough: the particle must pass through either A1 or A2 to reach the screen, so
the total probability amplitude for the particle being detected at x is the sum of
two terms: the amplitude for the particle passing through A1 and being detected
at x, and the amplitude for the particle passing through A2 and being detected
at x. If we represent the probability amplitude for a particle passing through slit
Aj and being detected at x asM(Aj → x), we can write the total amplitude for
detecting the particle at x as

M(x) =M(A1 → x) +M(A2 → x),

where the probability of the particle being detected at x is given by |M(x)|2.
Suppose one adds an additional slit A3 to the wall. The probability amplitude

for detecting the particle at x then becomes

M(x) =M(A1 → x) +M(A2 → x) +M(A3 → x).

Now suppose that between the first wall and the detector, one adds a sec-
ond wall with two slits B1 and B2. Reasoning as we just did, the probability
amplitude for detecting the particle at x now becomes

M(x) =M(A1 → B1 → x) +M(A2 → B1 → x) +M(A3 → B1 → x)
+M(A1 → B2 → x) +M(A2 → B2 → x) +M(A3 → B2 → x).

If one adds more walls and more slits in each wall, this increases the number of
“paths” Ai → Bj → Ck → . . . → Zn → x that the particle could take between
the source and the point x on the detection screen:

M(x) =
∑
i

∑
j

∑
k
. . .

∑
n
M(Ai → Bj → Ck → . . .→ Zn → x).

As one approaches infinitely many walls, each with infinitely many slits, one is
eventually left with empty space between the source and the detection screen!
At this point, there will be infinitely many “paths” between the source and
the point x on the detection screen, and we will have to add up all of them
to calculate the probability amplitudeM(x). The number of paths has become
continuously infinite, so this sum becomes an integral over all paths the particle
could take between the source and the detection screen: a path integral.
It is worth sketching this more formally. (See Peskin and Schroeder (1995,

chapter 9.1).) Suppose one wants to calculate the probability amplitude for
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detecting a particle at a spatial point qD on the detection screen, given that
it was emitted from the source at the spatial point qS at an initial time t = 0 and
its time evolution during that interval was described by U(T) = e−iHT for some
Hamiltonian H. This probability amplitude is

M(qS → qD) =
〈
qD

�� e−iHT �� qS〉.
We can divide the time interval T into N segments of length T/N = dt. That

lets us split the time evolution operatorU(T) into a product of N time evolution
operators as follows:

U(T) = e−iHT = e−iHdt e−iHdt . . . e−iHdt︸                      ︷︷                      ︸
N copies

.

Between each of these new time evolution operators, we can insert copies of
the identity operator

∫
dqj |qj〉 〈qj |. (We will use the identity operator expressed

in the basis provided by the eigenstates |qi〉 of the position operator, but in
general one can use any appropriate basis.) Each copy of the identity operator
corresponds to inserting a new wall in the example we already discussed, and
the fact that each copy of the identity contains continuously many eigenstates
of position corresponds to the fact that each “wall” has infinitely many slits.
After making these insertions, we get

M(qS → qD) =
∫

dqa
∫

dqb . . .
∫

dqN〈
qD

�� e−iHdt �� qq〉 〈qa �� e−iHdt �� qb〉 〈qb �� e−iHdt �� qc〉 . . . 〈qN �� e−iHdt �� qS〉.
The final step in this process is to take the limit N → ∞, which makes the time
intervals dt arbitrarily short. In the example above, this corresponds to inserting
infinitely many walls between the source and the detection screen (captured by
the presence ofN → ∞ copies of the identity operator in the above expression),
therebymaking the time that the particle spends between walls arbitrarily short.
The final result for our probability amplitudeM(qS → qD), expressed as a path
integral, is

M(qS → qD) = lim
N→∞

∫
dqa

∫
dqb . . .

∫
dqN〈

qD
�� e−iHdt �� qq〉 〈qa �� e−iHdt �� qb〉 〈qb �� e−iHdt �� qc〉 . . . 〈qN �� e−iHdt �� qS〉

or, in more elegant form,

M(qS → qD) =
〈
qD

�� e−iHT �� qS〉 = ∫
Dq(t) exp

[
i
∫ T

0
dt L[Ûq(t), q(t)]

]
,

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/9

78
10

09
20

53
82

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/9781009205382


34 Philosophy of Particle Physics

where we have defined

Dq(t) = lim
N→∞

∫
dqa

∫
dqb . . .

∫
dqN

and L[Ûq(t), q(t)] is the Lagrangian, a mathematical object introduced at the
beginning of this section. (For more detail on the apparently remarkable emer-
gence of the Lagrangian in the derivation of the path integral, see Peskin and
Schroeder (1995, chapter 9.1).)
The integral of the Lagrangian over time is a quantity called the action. It

can be written for generic initial and final times tS and tD as

S =
∫ tD

tS
dt L[Ûq(t), q(t)].

The action S takes a different value for each path from the source qS to the point
qD on the detection screen, and integrating over all possible paths ensures they
all contribute appropriately to the amplitude M(qS → qD). If we impose the
boundary conditions q(tS = 0) = qS and q(tD = T) = qD, this expression lets us
compute the probability amplitude M(qS → qD) by integrating over all paths
that begin at the spacetime point (qS, tS = 0) and end at the spacetime point
(qD, tD = T).
We can use path integrals to compute more than transition amplitudes like

〈qD, tD = T | qS, tS = 0〉. We can also compute matrix elements for products of
operators taken between two states: quantities like

〈qD, tD = T | Tq(t2) q(t1) | qS, tS = 0〉,

where Tq(t2) q(t1) is the time-ordered product of position operators. (The time-
dependence of the operators indicates the use of the Heisenberg picture here.)
Written as a path integral, this gives us

〈qD, tD = T | Tq(t2) q(t1) | qS, tS = 0〉

=

∫
Dq(t) q(t2) q(t1) exp

[
i
∫ T

0
dt L[Ûq(t), q(t)]

]
.

In particular, for any state |Ψ〉 we can write the time-ordered expectation value
of any product of operators 〈Ψ | TO(tn) . . .O(t1) | Ψ〉 as a path integral by gen-
eralizing the above expression in the obvious way. Of course, if the state in
question is the vacuum state |0〉 and the operators are field operators φ(xj, tj),
the resulting expectation value is just themathematical object that we have been
calling a time-ordered correlation function. Indeed, time-ordered correlation
functions are often called vacuum expectation values in QFT.
It is worth flagging a philosophically interesting feature of path integrals at

this point. One often hears the path integral, presented as I just have, described
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as an integration over “all possible paths” between two spacetime points. The
notion of “possibility” here is subtle. The “paths” that appear in the integral, and
contribute to the probability amplitudeM(qS → qD), are (in the mathematical
sense) continuous but, except for a negligible set of paths, nowhere differen-
tiable. This raises a puzzle: the equations of motion that dynamically evolve
physical systems through spacetime are differential equations, so “paths” that
are nowhere differentiable are apparently nomologically impossible. Why is it
necessary to include them in the path integral to calculate the amplitude for
the nomologically allowed transition M(qS → qD) correctly? If these appar-
ently nomologically impossible paths are necessarily part of the explanans in
any attempt to explain measurement outcomes, does that endanger the explan-
atory power that the path integral formalism is often said to possess? (Several
authors have recently considered issues surrounding “counterpossible expla-
nations” in physics in general (Tan, 2019; Wilson, 2021) and (Forgione, 2020)
has focused on the path integral formalism in particular.) We do not have space
to further explore these questions here, let alone settle them, but they seem to
me to warrant further consideration.
We can now extend the path integral formalism to QFT. Happily, essentially

all of the conceptual machinery developed in the setting of nonrelativistic quan-
tum mechanics generalizes straightforwardly. (There are serious mathematical
obstacles to rigorously defining path integrals in QFT that do not plague path
integrals in nonrelativistic quantum mechanics, however.) Recall why we are
interested in path integrals in QFT: they provide a very useful way to calculate
time-ordered correlation functions, and the LSZ reduction formula tells us that
the calculation of an S-matrix element reduces to the calculation of the appro-
priate time-ordered correlation function. In fact, we are able to express the free
propagator as a path integral:

〈0 | Tφ(x, t) φ(y, t′) | 0〉 =
∫

Dφ φ(x, t) φ(y, t′) exp[iS[ Ûφ, φ]],

where the action S is

S[ Ûφ, φ] =
∫ t′

t
dt L[ Ûφ(x, t), φ(x, t)].

One is integrating over different sequences of states of the quantum field –
“paths” through the Hilbert spaceH – that would connect the state of the field
φ(x, t) |0〉 to the state of the field 〈0| φ(y, t′). (This was also true of the nonrel-
ativistic path integral; our example just happened to be naturally formulated
using position states, which made talk about paths through spacetime intu-
itive.) In scattering calculations we are interested in the asymptotic past and
asymptotic future, so the dt integration runs from −∞ to +∞.
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The reader might hope that the hard work of the last few pages is nearing a
happy ending: an ability to calculate any correlation function in QFT simply
by doing the path integral, plugging the result into the LSZ reduction for-
mula to calculate the associated scattering amplitude, and heading off to tell
the experimentalists what to look for. Unfortunately, we confront a much more
challenging epistemic situation: the path integral can only be computed exactly
in noninteracting QFTs and a few very special interacting models. To calculate
time-ordered correlation functions in almost any interacting model – including
all models useful in particle physics – we resort to approximation methods.
The most common approximation method is perturbation theory. Our reli-

ance on perturbation theory introduces important limitations on what kind
of real-world physics we can describe. The biggest limitation is that we can
only use perturbation theory to calculate scattering amplitudes for processes in
which all particles interact weakly. (“Weakly interacting” here has nothing to
do with the weak force.) Recall the Lagrangian density for an interacting scalar
field φ(x, t) that we encountered at the beginning of this section:

L = 1
2
∂µφ∂

µφ − m2

2
φ2 − λ

4!
φ4.

The term λφ4 describes interactions between the particles associated with the
field φ(x, t), and the coupling parameter λ encodes the strength of those interac-
tions. Our reliance on perturbation theory requires that λ � 1: only this justifies
treating the addition of a term

Lint =
λ

4!
φ4

to the free Lagrangian

L0 =
1
2
∂µφ∂

µφ − m2

2
φ2

as a small modification of the structure of the noninteracting QFT described by
L0.
Nature has proven remarkably accommodating of our reliance on perturba-

tion theory: all three forces in the StandardModel of particle physics are weakly
coupled. (At least, over a large range of length scales; when we discuss RG
methods we will see that the strength of an interaction in QFT need not be the
same at all length scales.) Nevertheless, it is a significant restriction.
Reliance on perturbation theory alone also puts limits on what we can learn

about the structure of any particular model. Even if a model describes quan-
tum fields whose associated particles interact weakly, there will be interesting
structural features of that model that cannot be revealed through analyzing it
using perturbation theory. These include topological objects, like instantons

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/9

78
10

09
20

53
82

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/9781009205382


Philosophy of Physics 37

and solitons (Shifman, 2012, part I), the presence of “confinement” and other
exotic behavior in strongly coupled QFTs (Duncan, 2012, chapter 19.3), and
more. (We are restricting ourselves to perturbation theory, but it is important
not to project that degree of reliance on perturbation theory onto the particle
physics community itself: particle physicists have developed a number of very
useful nonperturbative strategies for extracting information, as for example,
Shifman (2012, Part I) illustrates. The applicability of these strategies is diffi-
cult and their successes only partial, however, and perturbation theory remains
the primary strategy for calculating things like scattering amplitudes.) The epi-
stemic limits associated with the use of perturbation theory can constrain our
ability to characterize the metaphysical implications of any particular model. If
we acquire good evidence that a particular model of QFT, like quantum elec-
trodynamics, is likely to give a true description of certain phenomena in our
world, we cannot give a full characterization of the structure of that model
based on a perturbative analysis alone. Philosophers who want to impute meta-
physical structure to the world on the basis of perturbative analysis of models
of QFT should remember that any such characterization of their metaphysical
consequences will be incomplete.

4.2 Renormalization
In opening this section, I noted that one can learn rather a lot about the structure
of an interacting QFT by using the corresponding noninteracting QFT as a start-
ing point for the analysis; that is, by adopting the perturbative strategy just
described. I have now noted some epistemic challenges imposed on us by that
strategy. However, those are not the most notorious challenges presented by
the use of perturbation theory. Those are associated with the appearance of
divergent integrals when using perturbation theory to calculate time-ordered
correlation functions. Since the LSZ reduction formula tells us how to com-
pute a scattering amplitude from a time-ordered correlation function, taking
these divergent integrals at face value would mean that the probability of each
possible outcome of a scattering process is infinite. It goes without saying that
is an unacceptable result.
It is a decent rule of thumb in physics that if you calculated the value of

an observable quantity and got “infinity,” either the theory is wrong or you
used it incorrectly. The appearance of divergences in perturbation theory is
a case of the latter: we imported too much structure from the noninteracting
QFT into the interacting QFT. Renormalization methods are a corrective: they
provide a recipe for modifying the parameters that appear in the noninteract-
ing theory to incorporate the effect of adding interactions. A valuable side
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effect of this procedure is that it eliminates the divergences that appear when
doing perturbation theory, but renormalization itself has nothing essential to
do with the removal of divergences (Weinberg, 1995, sections 10.3–10.4). This
is widely recognized about the RG methods we discuss in the next section, but
it is equally true (and less widely recognized) of the “early” renormalization
methods that we discuss here and which are still useful in practice.
Recall some basic features of our definition of a noninteracting QFT. We

took as our starting point the vacuum state |0〉, the lowest-energy eigenstate of
the noninteracting Hamiltonian

H0 =
1
2

∫
d3x π2 + (∇φ)2 + m2φ2.

We then defined creation and annihilaton operators a†p and ap by their action on
the noninteracting vacuum state |0〉: they create or annihilate single particles
of momentum p and mass m. We then constructed our field operator φ(x, t)
out of those creation and annihilation operators and found that the probability
amplitude for a field operator φ(x, t) to create a single particle of momentum p
and mass m by acting on the noninteracting vacuum state |0〉 is

〈p | φ(x, t) | 0〉 = e−ipx.

Adding interaction terms to H0 produces a different Hamiltonian, with differ-
ent energy eigenstates. This means that the Hamiltonian H = H0 + Hint has
a different vacuum state than the noninteracting theory. It is conventional to
label the vacuum state of the interacting theory |Ω〉 to distinguish it from the
vacuum state |0〉 of its noninteracting counterpart.
This presents a problem: we cannot assume that operators defined to act

on |0〉 will have the same action when applied to |Ω〉. For example, we can
no longer expect that φ(x, t) will create only a single particle when applied to
|Ω〉: a particle created around a point x will now excite the state of the field at
nearby points due to the presence of interactions, and we must account for the
possibility that this will put the field into a state containing multiple particles.
Furthermore, our fields are now interacting: we have no reason to expect any
particular relationship between the parameter m corresponding to the “mass”
of a fictitious, noninteracting particle associated with the noninteracting field
φ(x, t) and the experimentally measured masses of real-world, interacting par-
ticles associated with the interacting counterpart of φ(x, t). It seems that using
a noninteracting QFT as the basis for analysis of an interacting QFT falls apart
immediately.
Renormalization methods come to the rescue. In a renormalizable QFT,

renormalization methods show that by rescaling the field operator(s) and
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modifying a finite number of parameters, we can reproduce the effect of φ(x, t)
acting on the free vacuum state |0〉 to create a single particle of mass m, except
that now we have a renormalized field operator φR(x, t) acting on the interact-
ing vacuum state |Ω〉 to produce a particle with the renormalized mass mR and
whose interactions with the field are determined by the renormalized interac-
tion strength λR. A very important consequence of these replacements is that
divergent integrals that appear if we try to calculate time-ordered correlation
functions using φ, m, and λ are rendered convergent if we instead use φR, mR,
and λR.
It will be useful to introduce new names for familiar objects. The parameters

that are not directly related to experimental measurements, like the mass m of
a fictitious, noninteracting particle, are now labeled with subscripts

L0 =
1
2
∂µφ0∂

µφ0 −
m2
0
2
φ20 −

λ0

4!
φ40 .

These subscripts indicate that they are unrenormalized, or bare, fields and
parameters. These parameters describe the properties of a fictitious, non-
interacting system; they are unmeasurable free parameters and neither theory
nor experiment constrains their values. By contrast, the parameters that are
directly related to experimental measurements, like the mass mR of the real-
world particle associated with the interacting field φR, are called renormalized
parameters. Finally, we introduce counterterms δm and δλ. These relate the
experimentally measureable, renormalized parameters to the fictitious bare
parameters:

mR ≡ m + δm λR ≡ λ + δλ.

To see how these renormalizations eliminate divergent integrals in perturba-
tion theory, we must first see how perturbation theory works. Suppose we are
interested in calculating this time-ordered correlation function:

G(4) ≡ 〈Ω | φ(x1, t1) φ(x2, t2) φ(x3, t3) φ(x4, t4) |Ω〉.

We know that this can be related to a path integral. However, we also know
that we can almost never perform this path integral exactly: we can only
calculate this correlation function approximately, using perturbation theory.
Schematically, the perturbative approximation of G(4) has the form

G(4) ≈
∑
n=1
λ
n
0 In,

where λ0 is the bare interaction strength and the In are integrals over momenta
of the interacting particles. In general, integrals at leading order (i.e., terms
proportional to λ0) are convergent, while typical integrals at second order and

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/9

78
10

09
20

53
82

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/9781009205382


40 Philosophy of Particle Physics

higher diverge. For example, for a real scalar field with an interaction term
Hint =

λ0
4! φ

4, the leading order integral I1 = −iλ0.
The first divergence occurs in the integral(s) I2 that appear at second order:

I2 ∝
∫ ∞

0
d4p

i
p2 − m2

0 + iε
i

(s − p)2 − m2
0 + iε

,

where s is a function of the incoming and outgoing momenta of the four scat-
tered particles. (It is one of the “Mandelstam variables” s, t, and u. At second
order in the perturbative approximation, an integral of the form I2 actually
contributes three times: once for each Mandelstam variable.) At the high-
momentum end of the integral, where p approaches infinity, the other variables
become negligible and we have

I2 ≈
∫ ∞

d4p
1
p4
= ln(p).

The function ln(p) diverges as p → ∞ so this integral is divergent. (If our QFT
described a massless particle, like a photon, this integral would also diverge
as p → 0. This is called an infrared divergence Weinberg (1995, chapter 13).
These raise important foundational considerations that have received less atten-
tion from philosophers than they deserve. Regrettably, space constraints force
me to follow suit and set them aside.)
We resolve this problem in two steps. (See Duncan (2012, chapter 17) for a

thorough presentation of the machinery of perturbative renormalization.) The
first step is regularization. As it stands, the integral I2 is nonsense; we cannot
do anything mathematically sensible with it, let alone interpret it physically.
Regularization renders the integral I2 mathematically well-defined so that we
can perform meaningful mathematical manipulations.
There are many regularization procedures, and the regularization procedure

one chooses is determined by the details of the calculation. Nevertheless, they
all instantiate the same general strategy. A regularization procedure introduces
a new parameterΛ – a regulator – that makes a divergent integral Ik convergent.
The integral becomes a function of the regulator Ik(Λ). For example, the least
sophisticated way to regulate the integral I2 is to cut off the range of integration
over the momentum p at some large, but finite, value Λ. As p approaches Λ,
we then have

I2 ≈
∫ Λ

d4p
1
p4
= ln(p).

This integral is convergent, but the result will be a logarithmic function of Λ.
If one removes the regulator prior to renormalization by taking Λ → ∞, the
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logarithmic divergence of the original integral I2 is reproduced; this is typical
of a good regulator.
Every regularization procedure involves some distortion of the mathemati-

cal structure of the QFT; one sacrifices some structural features of the model
in the course of a calculation with the hope that they can be resurrected once
the calculation is complete. For example, Pauli–Villars regularization, a pro-
cedure with a proud historical legacy, introduces into a model new quantum
fields corresponding to unphysical “ghost” particles. These ghost particles are
automatically incorporated into the perturbative expansion and their contribu-
tions make previously divergent integrals Ik finite. However, the ghost particles
violate the spin-statistics theorem (fermionic ghost fields have to commute and
bosonic ghost fields have to anti-commute) and while its proud legacy stems
from its early use in Abelian gauge theories, like quantum electrodynamics,
it cannot be extended to non-Abelian gauge theories, like quantum chromo-
dynamics. An alternative, very popular method, dimensional regularization,
treats the spacetime dimension in the integral measure d4p as a continuous var-
iable and performs the integral in a noninteger number of spacetime dimensions
d = 4 − ε. This method makes it easy to identify the divergent contributions to
integrals Ik (which can be difficult as integrals get complicated) and maintains
gauge invariant and (except for the following subtlety with fermions) Poincaré
invariant expressions at each step of a calculation. However, it also has dif-
ficulty maintaining Poincaré invariance in theories with fermion fields. (The
difficulty stems from a technical obstruction to defining mathematical objects
in fermionic theories called γ matrices, particularly γ5, in d , 4 Collins (1984,
chapters 4.6, 13.2).) In general, the choice to use any particular regulariza-
tion will depend on what structure is crucial to preserve during the course of a
calculation and what can be temporarily sacrificed.
Resolving the problem of divergent integrals proceeds in two steps. The sec-

ond step is renormalization. (Like regularization procedures, there are many
renormalization schemes that are more or less suited to a particular calculation;
one can think of their status as roughly akin to different coordinate systems.)
This amounts to replacing the fictitious, bare quantities φ0, m0, λ0 with their
renormalized counterparts φR, mR, λR. This is the step that has sometimes been
labeled an ad hoc way to eliminate divergences; even Feynman, who won a
Nobel Prize for his contribution to inventing renormalization methods, called
them “a method for sweeping [infinities] under the rug.” Nevertheless, there is
a physical basis for the procedure that goes some way toward dispelling the air
of mystery around renormalization.
Consider first the renormalization of the mass m0 → mR. The bare mass m0

was associated with a fictitious particle that propagated freely: the presence of
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a nonzero field in a given region of spacetime did not affect its propagation
at all. Of course, in the real world the particle must interact with something
to be properly in the domain of physics at all, and these interactions affect
its propagation. This manifests as a shift in the mass of the particle from the
fictitious mass m0 to the renormalized, or physical mass mR. This is the mass
that we actually measure experimentally, since we can never isolate the particle
from its accompanying field.
An example illustrates the physical intuition (Coleman, 2019, chapter 10.1).

Consider a rigid sphere – a ping-pong ball, for example – of volume V. It is
propagating in a perfect fluid of density ρ and zero viscosity. Suppose the
“bare” mass of the ping-pong ball is

m0 =
1
10
ρV.

The bare mass of the ping-pong ball is one-tenth the volume it displaces. A
naive calculation usingm0 predicts that if one submerged and released the ping-
pong ball, it would accelerate upward at 9g. This would dramatically exceed
the maximum g-force experienced by drivers in Formula 1 races (∼6g), so
something has gone wrong.
The solution is to account for the effect of the interaction with the fluid by

renormalizing the mass: the effect of the complicated dynamics between the
ping-pong ball and the fluid is captured by shifting the mass m0 to the mass mR

that one would measure if the fluid permeated the universe and the ping-pong
ball could never be isolated. (A fish-physicist never measures the mass of an
isolated ping-pong ball, but a ping-pong ball that is interacting with the sur-
rounding fluid. The mass mR is the mass that a fish-physicist would measure.)
That produces a renormalized mass of

mR = m0 +
1
2
ρV.

If we make a reasonable assumption about the respective densities of the ping-
pong ball and the fluid, re-doing the calculation with mR produces a physically
sensible result: the ping-pong ball accelerates upward at 3/2g. The interaction
between the particle associated with the field φ and the field itself will likewise
shift the mass of the particle fromm0 → mR. This is the physical basis for mass
renormalization.
In general, the bare mass m0 and the “shift” δm will be functions of the reg-

ulator. If we simply cut off our integration at some momentum Λ, then we
have

mR = m0(Λ) + δm(Λ).

This turns out to be important.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/9

78
10

09
20

53
82

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/9781009205382


Philosophy of Physics 43

We also have to renormalize the field operator φ0. Recall that one conse-
quence of the definition of φ0 was that its action on the vacuum state |0〉 created
single particles of mass m0, and the probability amplitude for the propagation
of such a particle from (x, t) to ( y, t′) was

〈0 | Tφ(x, t) φ( y, t′) | 0〉 =
∫

d4p
(2π)4

e−ip(x−y)
1

p2 − m2 + iε
.

We would like to modify φ0 so that it is associated with real-world particles of
mass mR, rather than fictitious particles of mass m0. This means our modifica-
tion of φ0 should ensure that it acts on the vacuum state |Ω〉 to create single
particles of mass mR. In particular, we want the propagator to describe the
propagation of particles of mass mR:

〈Ω | TφR(x, t) φR(y, t′) |Ω〉 =
∫

d4p
(2π)4

e−ip(x−y)
1

p2 − m2
R + iε

.

Remarkably, all of this can be achieved by rescaling the field by a factor Z:

φR = Z−1/2φ0,

where Z is a function of the renormalized mass mR and the regulator Λ.
Before we renormalize the interaction strength λ0, it will be useful to return

to the perturbative approximation of the four-point function that set us down
this path. To the second order in the perturbative approximation, we have

G(4) ≈ λ0I1 + λ20I2 +O(λ30)

= −iλ0 + iλ20
[
ln
(
Λ2

s

)
+ ln

(
Λ2

t

)
+ ln

(
Λ2

u

)]
+O(λ30),

where we cut off the momentum integration at Λ, and s, t, and u are Mandel-
stam variables that are functions of the incoming and outgoing momenta of the
scattered particles. The form of this amplitude will be very useful for defining
the renormalized interaction strength λR.
To renormalize the interaction strength λ0, we have to determine the value of

the renormalized interaction strength λR. This is done by extracting the value of
the physical, or renormalized, interaction strength λR from a scattering experi-
ment. When conducting a scattering experiment, one chooses the momenta of
the incoming particles and these will determine the energy scale µ at which
the experiment is conducted. Suppose one chooses to measure λR at the energy
scale

s0 = t0 = u0 = µ2,

where s0, t0, and u0 are appropriate values of the Mandelstam variables. One
simply defines the renormalized interaction strength as a measurable quantity:
the value of the scattering amplitude for this scattering process is
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−λR = λ0I1 + λ20I2 +O(λ30)

= −iλ0 + iλ20
[
ln
(
Λ2

s0

)
+ ln

(
Λ2

t0

)
+ ln

(
Λ2

u0

)]
+O(λ30).

We can now give an explicit demonstration of how replacing a bare parame-
ter λ0 with a renormalized parameter λR removes the divergent contribution to
integrals appearing in a perturbative approximation. (We said earlier that λ � 1
was an assumption of perturbation theory. In fact, what matters is that λR � 1;
the bare coupling λ0 is a free parameter whose value is arbitrary.)
First, invert this identity to get an expression for λ0 as a function of λR:

−λ0 = −iλR − iλ20

[
ln
(
Λ2

s0

)
+ ln

(
Λ2

t0

)
+ ln

(
Λ2

u0

)]
+O(λ30).

We can then return to our expression for the amplitude

G(4) = −iλ0 + iλ20
[
ln
(
Λ2

s

)
+ ln

(
Λ2

t

)
+ ln

(
Λ2

u

)]
+O(λ30)

and iteratively substitute this expression for −λ0. The reader can readily verify
that the result is

G(4) = −iλR + iλ2R
[
ln
( s0
s

)
+ ln

( t0
t

)
+ ln

(u0
u

)]
+O(λ30).

The result of replacing λ0 with the renormalized coupling λR is that our result
forG(4) no longer depends on the regulatorΛ! This should come as a big relief:
our choice of any particular value forΛ is arbitrary, and a physical theory’s pre-
dictions about observable quantities should not depend on the arbitrary choices
of theorists. Furthermore, after renormalization we are now free to remove the
regulator by taking the limit Λ → ∞ without reintroducing any divergences
into the perturbative approximation.
Other integrals appear in the perturbative approximation that are rendered

convergent by shifting the bare mass m0 to mR. Remarkably, these renormal-
izations are sufficient: we can now calculate any scattering amplitude without
encountering any divergences. It is crucial to appreciate that one does not need
to define different renormalized fields and parameters φ′R,m

′
R,λ

′
R for each dif-

ferent scattering process: we only need to renormalize the fields and parameters
once. The result is that any divergent integral Ik, appearing at any order in
the perturbative approximation, for any scattering process whatsoever, will be
rendered convergent by the renormalized fields and parameters φR, mR, and λR.
A model like the real scalar field theory described by

L0 =
1
2
∂µφ0∂

µφ0 −
m2
0
2
φ20 −

λ0

4!
φ40

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/9

78
10

09
20

53
82

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/9781009205382


Philosophy of Physics 45

is perturbatively renormalizable. This means that all divergent integrals in the
perturbative approximation can be made convergent by a renormalization, or
“shift,” of finitely many parameters. In this case, those parameters are φ0, m0,

and λ0. If integrals with novel divergent structure appear at each order of the
perturbative approximation, then a finite number of renormalized parameters
will not do the job. Such a QFT is called perturbatively nonrenormalizable.
(For examples and useful discussion, see Schwartz (2014, chapter 22).) For
over two decades afterWorldWar II, nonrenormalizable QFTs were considered
to be useless at best, and probably meaningless. The belief that only models of
QFT that were perturbatively renormalizable made sense became an extremely
important methodological principle: a model was to be taken seriously if and
only if it was renormalizable.
Importantly, requiring perturbative renormalizability constrains the opera-

tors that can appear in a Lagrangian. Operators like φ2 and φ4 are allowed, but
φ6, φ8, φ10, and so on would make the model nonrenormalizable. Renormaliz-
ability functioned as a kind of theoretical selection mechanism: it dramatically
constrained the class of possible QFTs one needed to consider when doing
particle physics, making it methdologically very useful.
There was, however, little understanding of the origins of renormalizabil-

ity and it seemed incredibly lucky that we could describe so much in particle
physics using renormalizable QFTs: quantum electrodynamics, quantum chro-
modynamics, the Standard Model of particle physics, and many others are all
perturbatively renormalizable. However, the particle physics community has
undergone a sweeping change in outlook. Nonrenormalizable theories are now
thought to be perfectly sensible as long as their application is restricted to a
limited set of scales, and the fact that renormalizable QFT models have proven
useful for describing the (relatively) low-energy experiments we can perform
no longer seems mysterious. Indeed, nonrenormalizable models of QFT will
occupy much of our attention for the remainder of the volume. (For a window
into older attitudes toward renormalizability, see Weinberg (1977); for a mod-
ern (re-)evaluation of its importance, see Weinberg (1995, chapter 12.3).) This
change has primarily been driven by the advent of the RG methods that we
discuss in the next section.
Let us take stock. We began with a bare Lagrangian, expressed in terms of

fictitious bare fields and parameters. We had reason to suspect that those were
not the appropriate fields and parameters to represent a real-world interact-
ing theory, but attempted to calculate with it nonetheless. Divergent integrals
threatened to make our calculations nonsensical. However, we have seen that
using renormalized fields and parameters neutralizes this threat: we can calcu-
late anything we want, to any order of the perturbative approximation, without
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encountering divergent integrals. This leads us to replace the original bare
Lagrangian with a renormalized Lagrangian:

LR =
1
2
∂µφR∂

µφR −
m2
R
2
φ2R − λR

4!
φ4R.

We can illuminate the relationship between the two by expressing the renor-
malized Lagrangian in terms of the bare fields and parameters along with a set
of “shifts,” or counterterms:

LR =
1
2
Z−1∂µφ0∂µφ0 −

(m2
0 + δm

2)
2

Z−1φ20 −
(λ0 + δλ)

4!
Z−2φ40 .

All that renormalization amounts to is a shift of the fictitious fields and
parameters appearing in the bare Lagrangian.
Before moving on, we should address an important question: why has renor-

malization produced consternation over the years? The main reason arises from
the way that the bare field(s) and parameters depend on the regulator. We were
explicit that the bare mass m0 and the “shift” term δm depend on the regu-
lator Λ; the same is true of λ0 and δλ and the factor Z that renormalizes the
bare field φ0. Once we introduce renormalized fields and parameters, we can
remove the regulator by taking Λ → ∞ and all observable quantities will
remain finite: scattering amplitudes, the physical mass mR and the physical
interaction strength λR, and so on. This is not true of the bare parameters and
“shift” terms. They diverge as Λ→ ∞, although the differences m0 + δm and
λ0 + δλ remain finite and equal to the renormalized parameters λR and mR.
Some have taken this to mean that renormalization theory claims that the

ontology of the world contains infinite quantities. The infinite “bare” mass, for
example, would represent the “intrinsic” mass of a particle: the mass it would
have if it could be somehow isolated from its associated field. How seriously
should one take this as imputing some kind of divergent structure to the phys-
ical world? Not at all. Indeed, while there were always confusions embedded
in this line of thought about perturbative renormalization, the modern under-
standing of renormalizability made possible by RG methods renders the entire
interpretive issue moot.

4.3 Renormalization Group Methods
There really is no such thing as the RG. This is why, for example, a good book
titled Renormalization Group begins by telling the reader that “the notion of
renormalization group is not well defined.” The authors believe it is more accu-
rate to think of a “renormalization group point of view [that] is a very useful
unifying conceptual scheme” (Benfatto and Gallavotti, 1995, chapter 1), and I
agree. Rather than the RG, there is a set of RG methods: a collection of related,
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but distinct, mathematical tools and calculational strategies that are grouped
together because they implement a single, underlying physical vision of how
physical phenomena at different length scales can be related.
The essential physical fact underlying the application of RG methods is that

many coarse-grained properties of physical systems are largely independent
of many of the fine-grained properties one sees when studying the system at
higher resolution. In a sense, this is what makes it possible for us to formulate
laws of physics at all without first knowing a complete theory of everything: we
can identify quantities like “temperature” and “pressure” and “viscosity” and
use them to characterize a fluid, formulate mathematical relationships between
them, and use thosemathematical relationships tomake accurate predictions for
measurements of observable quantities of the fluid, all without incorporating
any information whatsoever about its molecular constituents or the dynamics
governing their behavior. This essential independence of many coarse-grained
properties is sometimes called “the autonomy of scales” and its exploitation is
the essence of the RG methods we discuss in this section and the effective field
theory approach introduced in Section 5.
Renormalization group methods play an indispensable role in modern QFT.

(They are also indispensable in classical and quantum statistical physics, par-
ticularly the study of critical phenomena (Cardy, 1996; Sachdev, 2011).) They
are extremely useful – in some cases essential – for calculating S-matrix ele-
ments in perturbation theory. This far from exhausts the calculational value
of RG methods, which extends beyond the restricted context of perturbation
theory (Delamotte, 2012), but that calculational value is described in many
good textbooks and is not our primary interest. Renormalization groupmethods
have garnered attention from philosophers because they offer deep conceptual
insight into the structure of QFT. Additionally, they have been shown to offer
novel inroads to well-worn topics in the philosophy of science like interthe-
oretic reduction and emergence, multiple realizability, and scientific realism.
Accordingly, our focus will be on conceptual aspects of RG methods.
We still have to get a handle on some basic technical machinery of RGmeth-

ods before we can consider their philosophical implications. The essential idea
of RG methods is the following. In QFT, the coarse-grained properties referred
to above are observable quantities measured in scattering experiments at some
low energy E – that is, scattering experiments involving incoming particles
with momenta pi all much lower than some very high energy Λ. The very high
energy scale Λ is an ultraviolet cutoff : it plays a dual role in our discussion.
One role is that of suppressing contributions of high-energy variables to low-
energy observables, in a sense I will explain. The second role is that of the
regulator in perturbative renormalization that cuts off the range of momentum
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integration in otherwise divergent integrals. However, we now have no interest
in taking Λ→ ∞ at any point in our calculation. Instead, we insist that observ-
able quantities measured in scattering experiments conducted at E � Λ should
be independent of the exact value of Λ.
This lets us set up differential equations of the form

Λ
d
dΛ

O = 0,

where O is some observable quantity. In general, O will be a function of
multiple variables: the momenta of the incoming particles, the various masses
m1, . . . , mn and interaction strengths g1, . . . , gn in the Lagrangian, and the cut-
off Λ. We can solve this differential equation by recognizing that the masses,
interaction strengths, and so on which O depends on are themselves functions
ofΛ and will change asΛ does. The model’s predictions for observablesO can
remain fixed only if the parameters onwhich those observables depend can vary
with Λ. The change in those parameters traces out a trajectory through a space
in which each point (m1, . . . , mn, g1, . . . , gn,Λ′) corresponds to a set of values
for all parameters appearing in the Lagrangian at some particular value Λ′ of
the ultraviolet cutoff.
The sketch we have just given most closely reflects theWilsonianRG, devel-

oped by KennethWilson (Wilson and Kogut, 1974; Duncan, 2012, chapter 16).
In fact, there are at least two “renormalization groups” one encounters in QFT:
the Wilsonian RG and the continuum RG, and it is the latter that one almost
always employs when using perturbation theory to perform calculations. (For
textbook discussion, see Schwartz (2014, chapter 23), and for some philosoph-
ical analysis of the distinction, see Rivat (2019).) However, the two share many
of the same conceptual implications and the Wilsonian RG can illustrate those
implications with a certain technical simplicity so we will adopt it going for-
ward, although the distinction will briefly become important when introducing
effective field theories in Section 5.
Recall that we are interested in time-ordered correlation functions and that

these can be computed from a path integral:

〈Ω | Tφ(x1, t1) . . . φ(xn, tn) |Ω〉 =
∫

Dφ φ1 . . . φn exp[iS[ Ûφ, φ]].

Further recall that, roughly speaking, the path integral “adds up” the probabil-
ity amplitudes associated with each possible path through the space of possible
states of the quantum field connecting the initial state to the final state of
interest. We have already seen that if we include states of the field that vary
on arbitrarily short wavelengths, that is, describe particles of arbitrarily high
momenta, we will encounter divergent integrals in perturbative calculations.
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Bearing in mind the “autonomy of scales,” wemight reason that if we are trying
to calculate an observable O associated with a scattering process at energy
E � Λ, our calculation should be able to treat as indistinguishable states of the
quantum field that differ only on wavelengths Λ−1 without changing the pre-
dicted value for O. (Remember: in natural units, lengths have units of inverse
energy.)
We can represent “ignoring” very short-wavelength excitations of the quan-

tum field by redefining our quantum field as follows:

φ(x, t) → φΛ(x, t) =
∫
<Λ
φ(x, t) =

∫
<Λ

d̃p apeipx + a†pe−ipx.

where φΛ(x, t) can only excite particles ofmomenta p < Λ. However, if wewant
predictions for low-energy observables to remain the same, we incur a cost.
This is because although probability amplitudes associated with paths that pass
through states of the field containing very short wavelength excitations don’t
contribute significantly to low-energy observables, they do contribute a little
bit. Once we’ve excluded those short wavelength excitations by imposing an
ultraviolet cutoff, we need to incorporate the contribution somehow.We do this
by adding infinitely many additional operators to the original Lagrangian. This
produces a new Lagrangian, describing new fields φΛ(x, t), that makes the same
predictions for low-energy observablesO as the original Lagrangian. Formally,
we have

L0 =
1
2
∂µφ0∂

µφ0 −
m2
0
2
φ20 −

λ0

4!
φ40

↓

LΛ =
1
2
∂µφΛ∂

µφΛ −
m(Λ)2
2
φ2
Λ
− λ(Λ)

4!
φ4
Λ
+
∑
i
gi(Λ)Oi,

where the operators Oi are products of the field φΛ and its derivatives ∂µφΛ
that are consistent with the symmetries of the original theory.
We must pause for a bit of dimensional analysis. The action

S[ Ûφ, φ] =
∫

dt L[ Ûφ(x, t), φ(x, t)] =
∫

d4xL[ Ûφ(x, t), φ(x, t)]

has the same units as ℏ; natural units set ℏ= c= 1, so S [ Ûφ, φ] has to be
dimensionless. The integration measure d4x has dimensions of mass−4 so
this determines the dimensions of operators and parameters appearing in the
Lagrangian: the field φ, the derivative operator ∂µ, and the mass parameter m
each havemass dimension +1, while the interaction strength λ is dimensionless.
We noted above that requiring perturbative renormalizability constrains the

operators that can appear in a Lagrangian. We can now state the constraint
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in full generality: a model is perturbatively renormalizable if and only if no
operators of mass dimension ≥ 4 appear in the Lagrangian. If a Lagrangian
contains even one operator of mass dimension greater than 4, the model is
nonrenormalizable.
It is immediately clear that the additional operators Oi that appear in LΛ all

have mass dimension ≥ 5. This means the model is nonrenormalizable, but this
will turn out not to be a problem. It also seems to spoil the requirement that the
action SΛ be dimensionless. The solution to this is simple, but has important
implications: the parameters gi(Λ) associated with the operators Oi must have
mass dimension < 0 to ensure that the product gi(Λ)Oi in the action has the
appropriate mass dimensions. We can write LΛ more explicitly as

LΛ =
1
2
∂µφΛ∂

µφΛ −
m(Λ)2
2
φ2
Λ
− λ(Λ)

4!
φ4
Λ
+
∑
i

gi
Λdi−4

Oi

with the parameters defined at the ultraviolet cutoff scale Λ and di the mass
dimension of the operator Oi.
What happens if we change the scale at which we have defined the quantities

in our Lagrangian? After all, any ultraviolet cutoff Λ is as good as any other
Λ′ as long as both are much larger than the energy scale E characteristic of our
experiments. How does the model described by LΛ relate to L′

Λ
? Both models

make identical predictions for low-energy observablesO. Of course,L′
Λ
makes

use of the field φ′
Λ
. The different value of the ultraviolet cutoff means that L′

Λ

is ignoring a different set of short wavelength states in the path integral cal-
culation, so the parameters appearing in L′

Λ
incorporate different information

and take values different from those in LΛ.
However, RGmethods tell us more than that. Suppose thatΛ′ = Λ−dΛ; then

the change in each parameter with scale can be captured by a set of differential
equations. These are the beta functions for those parameters:

Λ
d
dΛ

g1(Λ) = β1(g1(Λ), g2(Λ), . . . , gn(Λ), . . .).

The beta functions determine how the parameters in the Lagrangian must
change as the ultraviolet cutoff is iteratively lowered Λ → Λ′ → Λ′′ → . . .

to ensure that the predictions for low-energy observables are unchanged. The
mathematical operation of lowering the ultraviolet cutoff Λ → Λ′ and pack-
aging the omitted information into the parameters in the Lagrangian is an RG
transformation. This means that a model with ultraviolet cutoffΛwill describe
particles as interacting more strongly (or more weakly) than a model with ultra-
violet cutoff Λ′, even though both make identical predictions for low-energy
observables.
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Let us take stock. We began with a QFT that aimed to describe states of
a quantum field down to arbitrarily short wavelengths, that is, with no ultra-
violet cutoff. We saw that we could impose an ultraviolet cutoff Λ without
changing the theory’s predictions for low-energy observables. However, our
original theory was simple: only two parameters m and λ had nonzero values.
Our theory with an ultraviolet cutoff is infinitely complicated by comparison:
now infinitelymany parametersm, λ, g1, . . . , gn, . . . have nonzero values. Fur-
thermore, it seems unremarkable that we can keep a model’s predictions for
low-energy observables fixed when instituting or changing a cutoff: if those
low-energy observables now depend on infinitely many parameters, it seems
we could predict for those observables not just the same value as the original
model, but any value whatosever, simply by an appropriate choice of the val-
ues of the infinite set of parameters. It seems we are worse off than where we
started.
The situation is much better than that. To see this, it helps to introduce a

new concept: theory space. Theory space, roughly speaking, is an infinite-
dimensional vector space where each axis of the space corresponds to one of
the parameters m, λ, g1, . . . and each point in the space – each assignment of
values to all the parameters – identifies a particular Lagrangian. The values
of the parameters in the Lagrangian with ultraviolet cutoff Λ specify an initial
point in theory space, and as one iterates an RG transformation, the cutoff is
iteratively lowered Λ → Λ′ → Λ′′ → . . . and the compensating changes in
the values of the parameters will trace out a continuous trajectory through the-
ory space, as determined by the beta functions. Each point along this trajectory
identifies a different Lagrangian, but all of them make identical predictions for
the values of low-energy observables.
There are certain special points in theory space: these represent models that

are scale-invariant. Scale invariance is of great importance in QFT in general
and renormalization theory in particular (Coleman, 1985, chapter 3), but what
matters for our purposes is that scale-invariant models are fixed points of an RG
transformation. If we begin at a point g∗ = (m∗, λ∗, g∗1, . . .), which is a fixed
point of an RG transformation, then that RG transformation will never move us
away from it; iterated RG transformations leave us at the point g∗ rather than
tracing out a trajectory through theory space. This means that the beta functions
for all of the parameters are zero at an RG fixed point:

Λ
d
dΛ

g∗j (Λ) = 0.
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We are already familiar with the simplest example of a scale-invariant model:
a free scalar field described by the Lagrangian

L = 1
2
∂µφ∂

µφ.

At this point in theory space, all the parameters m, λ, g1, . . . are zero and an
RG transformation never moves one away from this point. (Fixed points corre-
sponding to free QFTs are called Gaussian fixed points.) However, the physics
described by this theory is boring. To describe real-world physics, we consider
an arbitrary point in theory space near the noninteracting theory: an arbitrarily
chosen point where all of the couplings are nonzero but much smaller than 1.
(This reflects our continued reliance on perturbation theory, but the RG behav-
ior we describe is not limited to perturbation theory (Delamotte, 2012, section
2).) The behavior we find explains why we should not worry about the presence
of infinitely many parameters in a QFT with an ultraviolet cutoff.
Specifically, we find that all of the parameters g1, . . . , gn, . . . multiplying

operators Oi that we added to the Lagrangian flow back toward their values
at the noninteracting fixed point as we iteratively lower the ultraviolet cut-
off. Since their fixed point values are all zero, this means that these couplings
get smaller as we lower the cutoff of the theory. (This is true if one is suffi-
ciently near the Gaussian fixed point, as one must be for perturbation theory to
be valid, and can neglect terms beyond leading order when calculating beta
functions (Peskin and Schroeder, 1995, chapter 12.1). The nonperturbative
behavior of irrelevant parameters is more subtle. In a nonperturbative setting,
the low-energy value of an irrelevant coupling becomes a function of only the
low-energy values of the relevant and marginal parameters in the theory. How-
ever, that does not guarantee that irrelevant parameters will be small at low
energy; see Schwartz (2014, chapter 23.6) or, for a more general treatment,
Weinberg (1995, chapter 12.4).) The operatorsOi they multiply thus make neg-
ligible contributions to low-energy observables and are labeled irrelevant. (As
shorthand, one often uses “irrelevant” to refer to the parameters themselves.)
However, we also find that the parameters m and λ that appeared in the orig-

inal theory do not flow back toward their values at the fixed point. As the
cutoff of the theory is iteratively lowered, the parameter m gets larger and
the parameter λ stays (almost) unchanged. The operators φ2 and φ4 are thus
called relevant andmarginal, respectively. Just like in the original theory, these
operators are what determine the values of low-energy observables. (In fact, a
more sophisticated analysis typically reveals that a naively marginal operator
is either marginally relevant or marginally irrelevant: it flows away from, or
back toward, its fixed point value λ∗, but very slowly (i.e., logarithmically). The
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Figure 1 The focusing of RG trajectories. Grey lines are trajectories of
irrelevant parameters, dark lines are trajectories of relevant and marginal
parameters, and the central line is the trajectory of relevant and marginal

operators starting at the critical point

parameter associated with an exactly marginal operator would be unchanged,
so its beta function would be zero.)
The flow of the irrelevant parameters back into the fixed point has important

consequences. For example, it means that trajectories originating from any of
the points in theory space near the Gaussian fixed point will quickly focus onto
a single trajectory, alongwhich the relevant andmarginal parameters flow away
from their fixed point values: as the ultraviolet cutoff is iteratively lowered, the
differences between the initial points in theory space quickly cease to matter.
What this shows, to use a term familiar to philosophers, is that there is a

model

LU =
1
2
∂µφ∂

µ + m2φ2 + λφ4

whose structure is multiply realizable: as the ultraviolet cutoff Λ is lowered,
many models that exhibit distinct structure at Λ quickly flow toward the struc-
ture exhibited by LU as the cutoff is lowered, up to differences suppressed by
powers of the ultraviolet cutoff. Physicists have a different name for this mul-
tiple realizability: universality (Batterman, 2000) (hence the subscript on LU).
In other words, RG methods show that not only low-energy observables but
also the low-energy structure of QFTs is remarkably insensitive to whatever
structure the theory might exhibit at higher energies. This has, understanda-
bly, spawned a large literature examining the consequences of universality for
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questions of intertheoretic reduction and emergence. (See Batterman (2001,
2018, 2019) and Butterfield (2011, 2014) for extensive disussion of two oppos-
ing views on how universality bears on reduction and emergence.) Much of this
literature has focused on the use of RG methods to analyze critical phenom-
ena in statistical physics, but RG methods and universality raise essentially
identical issues in QFT.
This also gives new insight into perturbative renormalizability. Recall that a

QFT is perturbatively renormalizable if and only if it includes only relevant and
marginal operators, such as φ2 and φ4, in its Lagrangian. This analysis explains
why restricting to those operators was successful: they are the only opera-
tors that make nonnegligible contributions to low-energy observables. Practical
limitationsmean particle physicists have so far been restricted to experiments at
comparatively low energies, so it makes sense that only relevant and marginal
operators have been necessary to account for all experimental data. In light of
the aboveRG analysis, then, it no longer seems like incredible luck that somany
useful QFT models are renormalizable: it is precisely the relevant and mar-
ginal operators that contribute non-negligibly to low-energy observables. (See
Polchinski (1984) for the original presentation of this beautiful explanation of
renormalizability and Duncan (2012, chapter 17.4) for a textbook discussion.)
Second, it clarifies the significance of taking the limit Λ → ∞ when doing

perturbative renormalization. Consider a Lagrangian of the form

L = 1
2
∂µφ∂

µ + m2φ2 + λφ4 +
∑
i

gi
Λdi−4

Oi.

As the cutoff is lowered, the irrelevant parameters gi flow back toward the
Gaussian fixed point and the model’s predictions approach those of LU. The
parameters in L trace out a trajectory in theory space that approaches the tra-
jectory on which LU lies (the central trajectory in Figure 1). The universal
structure ofLU is captured by the relevant andmarginal operators, butL retains
information about the particular theory space trajectory on which it lies: it is
encoded in the parameters multiplying the suppressed irrelevant operators. That
is, it retains information that distinguishes it from LU. By taking Λ → ∞, we
throw away information about the details of this model at the scale of the initial
high-energy cutoff, that is, the initial point in theory space from which its RG
flow began. Taking Λ → ∞ “collapses” all of the RG trajectories in Figure 1
onto the central, attractor trajectory, thereby throwing away any information
about the starting points of those trajectories at the scale of the initial cutoff.
This is one sense in which the limitΛ→ ∞ amounts to throwing away informa-
tion about the high-energy structure of a QFT. (See Delamotte (2012, section
2.6) for additional discussion.)
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Renormalization and RGmethods are essential to calculating in, and analyz-
ing the structure of, QFT. However, we have not touched on perhaps their most
conceptually revolutionary consequence: the reconceptualization of the QFTs
used in particle physics as effective field theories.

5 Effective Field Theory
In the previous section, we described a phenomenon we called the autonomy
of scales: in general, the values of coarse-grained, or low-energy, observa-
ble properties of a physical system depend only very weakly (if at all) on
the values of many of its fine-grained properties. We can accurately charac-
terize the fine or hyperfine structure of a hydrogen atom without including
anything about the properties or state of the constituent quarks of the proton,
much like we can characterize the propagation of waves across a stretch of
the Pacific Ocean without including anything about the properties or state of
the Pacfic’s molecular constituents. Effective field theory is a way of formulat-
ing QFT that exploits this autonomy of scales. (For textbook introductions, see
Burgess (2021), Davidson et al. (2020), and Petrov and Blechman (2016); for
surveys of select philosophical issues, see Bain (2013) or Rivat and Grinbaum
(2020).) Once we identify some phenomena of interest, EFTmethods guide the
identification of the appropriate variables for characterizing that phenomena,
justify writing down dynamical laws in which only those variables appear, and
provide a set of techniques for calculating low-energy observables.
The ability of the EFT formalism to identify and calculate with the appropri-

ate variables for characterizing a physical system relies on RGmethods. Indeed,
Steven Weinberg describes this as their primary virtue:

[Y]ou are arranging the theory in such a way that only the right degrees
of freedom, the ones that are really relevant to you, are appearing in your
equations. I think that this in the end is what the renormalization group is all
about. It’s a way of satisfying the Third Law of Progress in Theoretical Phys-
ics, which is that you may use any degrees of freedom you like to describe a
physical system, but if you use the wrong ones, you’ll be sorry. (Weinberg,
1983, p. 16)

This reflects the overlooked fact that explanations of physical phenomena
in the EFT framework, by construction, aim to satisfy a desideratum of
explanation that has received considerable attention from philosophers: pro-
portionality. (It was originally introduced in Yablo (1992) and has received lots
of discussion; see, for example, Franklin-Hall (2016), Blanchard (2020), and
Woodward (2021a, chapter 8, 2021b) for debate over its formulation and appro-
priate role in evaluating explanations.) Proportionality constrains the variables
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one uses to formulate an explanation: roughly speaking, it says one should
prefer explanations in which the explanans is formulated using variables spec-
ified with a degree of detail, or “grain,” appropriate for the explanandum. A bit
more precisely, each explanans variable V should be neither so coarsely spec-
ified that it omits difference-making information nor so finely specified that it
includes irrelevant, or nondifference-making, information.
To take a standard example, suppose a bird always pecks when shown any

shade of blue and never pecks when shown any shade of red. Consider two
candidate color variables: C1 = {teal,magenta} and C2 = {blue, red}. If I show
the bird a teal patch and it pecks, which of the following explanations is better:
(1) Being presented with a teal patch caused the bird to peck (the explana-
tion formulated using C1), or (2) being presented with a blue patch caused
the bird to peck (the explanation formulated using C2)? Proportionality con-
siderations recommend (2). That EFT explanations are constructed to satisfy
proportionality constraints – in the sense that they are formulated using vari-
ables whose “grain” matches the observables whose values they aim to explain
– has not been discussed by philosophers. However, further exploration of the
role of proportionality in EFTs promises further insight into their explanatory
power. It also brings a novel set of considerations from physical practice to
bear on the important (and controversial) question of the appropriate role for
proportionality considerations in the analysis of scientific explanation.
We now introduce some basic formal structure of the EFT framework. A

caveat: as with our discussion of RG methods, the approach to EFT presented
here is the Wilsonian one. In practice one typically encounters continuum
EFTs; their formal machinery is somewhat different and they are considera-
bly more efficient for perturbative calculations than the Wilsonian perspective
(Georgi, 1993; Manohar, 2020, section 5). Nevertheless, the two perspec-
tives on EFT agree on the essential conceptual matters (though they arguably
differ on more peripheral conceptual issues.) We adopt the Wilsonian perspec-
tive because it allows for a simpler presentation of these essential conceptual
matters.
Happily, we have already done much of the work in our discussion of RG

methods. Recall that we showed that to define a QFT with an ultraviolet cut-
off Λ, one has to include an infinite number of operators in the Lagrangian:
every product of the field φΛ and its derivatives ∂µφΛ that is consistent with
the symmetries of the original theory. The result is a model of the following
form:

LΛ =
1
2
∂µφΛ∂

µφΛ −
m(Λ)2
2
φ2
Λ
− λ(Λ)

4!
φ4
Λ
+
∑
i

gi
Λdi−4

Oi.
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The predictions of this model for low-energy observables O can be held fixed
as the value of the ultraviolet cutoffΛ is iteratively lowered bymaking compen-
sating changes in the parameters m, λ, g1, . . .. The change that each parameter
undergoes is determined by its beta function

d
dΛ

gj(Λ) = βj(g1(Λ), . . . , gn(Λ)).

We did not really address the physical significance the ultraviolet cutoff. We
expect that any QFT model gives an accurate description of nature over only
a restricted range of scales. The history of particle physics suggests that as
we examine nature at increasingly fine-grained resolution, we should expect to
discover novel phenomena that lie beyond the descriptive capacities of the QFT
model we used to describe the coarse-grained physics. The original QFT must
be supplemented by additional fields (as happened to quantum electrodynamics
with the discovery of additional charged leptons, for example), or replaced by
a QFT with an entirely novel set of fields and dynamical structure (as happened
when quantum chromodynamics was introduced to describe the substructure of
baryons andmesons). In either case, the original QFT provided only an effective
description of physical behavior down to some distance scale Λ−1.
In fact, the entire framework of QFT itself is widely expected to become

inapplicable near the Planck scale, the very high-energy scale Λplanck where
gravitational interactions between elementary particles become strong. Beyond
this scale, the appropriate framework for describing physics is unknown; per-
haps it is string theory, perhaps something else. Regardless, we have good
reason to believe the framework for describing physics at the Planck scale
is not QFT. The ultraviolet cutoff, then, represents a scale beyond which our
model cannot be trusted; it reflects our ignorance, or agnosticism, about the
appropriate description of nature beyond that scale.
This raises a technical point about the distinction between continuum and

Wilsonian EFTs. InWilsonian EFTs, the ultraviolet cutoffΛ plays a dual role: it
regulates divergent integrals in perturbative calculations and sets the scale that
suppresses the contributions of irrelevant operators to low-energy observables.
This is a quirk of Wilsonian EFT: in general, regulating divergent integrals in
perturbative calculations is entirely independent of setting the scale that sup-
presses contributions of high-energy variables to low-energy observables. In
continuum EFT, for example, one typically handles divergences in perturba-
tive calculations using dimensional regularization, briefly mentioned above.
The scale that suppresses irrelevant operators is chosen independently; themass
M of the lightest particle whose associated field is omitted from the EFT, for
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example. It is important not to conflate these two distinct roles in the EFT
framework.
The type of EFT one constructs when the appropriate variables are known

for describing a set of low-energy physical phenomena, but the description of
physics above some energy scaleΛ is not, is called a bottom-upEFT. These play
an important methodological role in contemporary particle physics and have
many interesting conceptual features. We will return to them after introducing
a second type of EFT: a top-down EFT.
Top-down EFTs are used whenwe have amodel that includes multiple fields,

but are interested in phenomena that depend nonnegligibly on only a subset of
those fields. A paradigmatic example is a model describing two scalar fields: a
“light” field φ and a “heavy” field χ. The massm of the particle associated with
φ is much smaller than the massM of the particle associated with χ. Consider
the Lagrangian

L = ∂µφ∂µφ − m2φ2 − λφ4 + ∂µ χ∂µ χ − m2 χ2 − λχ4 − gφ2 χ2.

Consider a scattering process involving only φ-particles at E � M: an energy
much too low to excite the χ field out of its ground state by creating a
χ-particle. We might hope to describe this scattering of φ-particles without
including the χ field in our calculation at all.
We are in luck: we can integrate out the χ field, removing it from the Lagran-

gian, without affecting scattering amplitudes for energies E � M. (See for
example, Penco (2020, section 2.1) for more details; in continuum EFT, this is
accomplished by a procedure called matching.) A simple but important object
in this model is a particular path integral, the generating functional:

〈0 | 0〉Jφ , Jχ =
∫

DφDχ eiS[φ, Jφ ; χ, Jχ ]

where Jφ and Jχ are sources. The generating functional is important because
it systematically generates all correlation functions in the theory. To integrate
out χ, we split this integration into two parts: an integral over the “heavy” field
χ and an integration over the “light” field φ. Schematically, doing the integral
over χ produces

〈0 | 0〉Jφ =
∫

Dφ eiSeff[φ],

where Seff[φ] is the effective action. It includes only φ and is suitable for cal-
culating scattering amplitudes for any processes involving only φ particles at
energies E � M.
The effective Lagrangian that defines Seff has a now-familiar structure: (i) an

ultraviolet cutoff at Λ ∼ M, (ii) an infinite set of irrelevant operators built out
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of products of φΛ∼M and its derivatives, and (iii) the values of the parameters
in the original Lagrangian have been modified and infinitely many new param-
eters have been introduced, one accompanying each irrelevant operator. (The
parameters in an EFT are generically calledWilson coefficients.) This EFT pro-
duced by integrating out χ cannot be trusted to describe scattering processes
at energies Λ ∼ M; scattering at those energies can create χ-particles and the
EFT does not have the resources to describe that, by construction. Furthermore,
although the canonical use case for integrating out is removing heavy fields
from a Lagrangian entirely, integrating out high-energy modes of a field can
be useful in a model with only a single field (Duncan, 2012, chapter 16.3).
The irrelevant operators and modified parameters incorporate the small, but

nonzero, contributions to φ scattering at E � M made by “paths” through
the state space of the full theory which pass through states where χ is not
in its ground state. That is, the irrelevant operators and modified parameters
encode the effects on low-energy observables of high-energy variables (i.e.,
heavy fields) omitted from our model. This physical significance of irrelevant
operators will be important for understanding how bottom-up EFTs are used in
particle physics.
We know that these added irrelevant operators appear in the effective

Lagrangian suppressed by powers of Λ:
gn
Λdn−4

On,

where dn is the mass dimension of the operator On. These irrelevant operators
encode contributions of omitted heavy fields; their suppression by powers of
the cutoff makes precise the sense in which those omitted heavy fields con-
tribute negligibly to low-energy observables, like scattering amplitudes for φ
scattering at E � Λ. Dimensional analysis demonstrates that operators On

with mass dimension n ≥ 5 make only heavily suppressed contributions to
low-energy scattering amplitudes:

On ∼ gn
(
E
Λ

)n−4
.

Top-down EFTs isolate the variables that make the dominant contributions
to the physical processes one wants to explain; in short, EFTs isolate difference-
making variables. Furthermore, the explanations they provide in terms of those
variables typically satisfy proportionality conditions, as discussed above. They
also have the practical benefit of simplifying calculations, which often makes
the physical meaning of those calculations more transparent. This makes top-
down EFTs extremely valuable tools for providing explanations and improving
understanding in particle physics.
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Bottom-up EFTs have the same formal structure as top-down EFTs but play
an expanded role in particle physics. (For introductions to the Standard Model
as a bottom-up EFT, see Contino et al. (2016), Henning et al. (2016), and
Brivio and Trott (2019).) Bottom-up EFTs are useful when we know the appro-
priate variables to describe physics at low energies, but – unlike a top-down
EFT – we do not know the right variables for describing physics at higher
energies. A bottom-up EFT is thus formulated using the difference-making
variables for observables at energy scales to which we have experimental
access, and so exhibits the same explanatory and calculational virtues as a top-
down EFT. However, bottom-up EFTs also play an important methodological
role in guiding experimental searches for the heavy particles they omit from
their description; they function as “engines of discovery“ in particle physics.
This involves a number of conceptually subtle heuristics (we will discuss sev-
eral shortly) used to identify scales at which one ought to expect to discover
new physics.
We know that the effects of any heavy fields χ omitted from an effective

Lagrangian can be captured in the low-energy EFT by adding irrelevant oper-
ators, constructed out of products of the light fields and their derivatives, and
the values of the parameters. The basic idea of a bottom-up EFT is to imagine
that some unspecified heavy fields have been omitted, or integrated out, from
our description of low-energy physics. Write down an EFT with the structure
that would have resulted from actually performing such an integration. That
structure is identical to a top-down EFT:

LΛ =
1
2
∂µφΛ∂

µφΛ −
m(Λ)2
2
φ2
Λ
− λ(Λ)

4!
φ4
Λ
+
∑
i

gi
Λdi−4

Oi.

However, there are some important differences. First, in a top-down EFT we
know the scale of the ultraviolet cutoff. For a bottom-up EFT, that scale is
unknown: we expect there to be some scale Λ beyond which our theory cannot
be trusted, but that is little guidance. The main functions of the heuristics in the
next section is to estimate the scale of the ultraviolet cutoff.
The second difference concerns how bottom-up EFTs are used. One of their

most important uses is to probe the unknown heavy fields that have been
omitted from our theoretical description, thereby aiding in the search for new
physics. Recognizing that irrelevant operators encode effects of omitted heavy
fields is essential for understanding how this works. There has been some con-
fusion about this in the philosophical literature, where it has been said that the
function of irrelevant operators in EFTs is to preserve the empirical adequacy of
an EFT and forestall the need to extend or replace it by adding new fields (e.g.,
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Ruetsche (2018)). This is incorrect: their methodological function is precisely
to aid efforts to extend or replace a bottom-up EFT, not forestall them. Any
contribution to an observable from an irrelevant operator in an EFT is “really”
a contribution from heavy fields omitted from that EFT.
For instance, consider the SMEFT: the Standard Model as a bottom-up EFT.

Consider an extremely simplified situation: there are only two candidate mod-
els of beyond the Standard Model physics (BSM). Integrating out the BSM
fields in each model at the scale Λ will generate two EFTs with different val-
ues of the irrelevant parameters gi(Λ). Suppose that g6 = 0 in one EFT and
g6 , 0 in the other; then any measured contribution to a low-energy observable
made by the operator O6 immediately rules out the BSM model that produced
g6 = 0. (See Henning et al. (2016, section 4) for a more realistic description of
this process.) Furthermore, experimentally or theoretically bounding the value
of irrelevant parameters can constrain the space of candidate BSM models.
However, recall that we have already seen that many models that give dif-

ferent descriptions of high-energy physics can all exhibit the same low-energy
“universal” structure. This makes it hard to constrain the space of candidate
BSM models: many different models make very similar predictions for low-
energy observables, which makes it challenging to distinguish between these
distinct models of the world at short distances if one only has low-energy exper-
imental data. Inconveniently, this is precisely the plight of experimental particle
physicists.
Hard, but not impossible. The contributions of BSM models to low-energy

observables are typically very small, but not undetectable. One strategy is to
perform high-precision measurements of low-energy observables, bounding
low-energy observables and thereby constraining the set of candidate BSM
models. (See Ellis et al. (2018) for an analysis of current experimental con-
straints on parameters in the SMEFT and some theoretical implications.) This
strategy is indispensable, but also a laborious (and expensive) method for
constraining the set of BSM extensions of the Standard Model.
An alternative strategy is to employ various theoretical heuristics to analyze,

and constrain, properties of the bottom-up EFTs like the SMEFT. These involve
assuming that the model that extends the bottom-up EFT, whatever it may be,
satisfies certain generic conditions like unitarity or various causality conditions.
One then extracts general constraints that any model satisfying those condi-
tions imposes on the bottom-up EFT. This theoretical strategy is a somewhat
hot topic in contemporary high-energy physics and is the subject of the next
section.
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5.1 Discovery Heuristics
It is sometimes said that EFTs “predict their own demise,” that is, identify their
own limited domain of applicability (e.g., Zee (2010, chapter III.2)). This is
true, in a sense. Recall the EFT for a scalar field:

LΛ =
1
2
∂µφΛ∂

µφΛ −
m(Λ)2
2
φ2
Λ
− λ(Λ)

4!
φ4
Λ
+
∑
i

gi
Λdi−4

Oi,

Each operator On contributes to amplitudes for scattering at energy E as

On ∼ gn
(
E
Λ

)n−4
.

Two consequences of this are worth emphasizing. First, we can estimate the
importance of operators for an observable just from its mass dimension: dimen-
sion 6 operators contribute more significantly to observables than dimension 8
operators, and so on. This “irrelevance” of irrelevant operators is a core struc-
tural feature of EFT and guides the way EFTs are used; for example, analyses
of the SMEFT usually focus only on irrelevant operators of mass dimension
≤ 6 because their contributions to low-energy observables are the least sup-
pressed. However, organizing operators this way rests on an assumption about
the parameters in the Lagrangian: they are all of approximatelyO(1). For exam-
ple, if the irrelevant parameters gn can be O(Λ2) or O(Λ4), we can no longer
estimate the contribution of an operator from its mass dimension alone. This
is one form of a naturalness assumption, an extremely influential heuristic in
high energy physics to which we return momentarily.
Second, for scattering processes at E � Λ, all irrelevant operators make

negligible contributions to observables. However, this becomes false as we
scatter particles at higher energies; as E → Λ every one of the infinitely many
operators On in the EFT starts to contribute significantly to observables. Our
theory becomes unwieldy to the point of uselessness for describing scattering at
energies approaching Λ. Eventually, once E ∼ Λ, the theory begins to predict
nonsense: the probabilities for the possible outcomes of a scattering process
no longer sum to 1. This would entail that the dynamics of the scattering is
not governed by a unitary operator, violating the structure of scattering theory
presented in Section 2.
This second point means that an EFT does predict its own demise in the

sense that its structure tells us it cannot describe nature at energies near Λ.
But what scale is Λ? The structure of the EFT itself tells us nothing on this
score. However, the question is very important when using bottom-up EFTs
to inform experimental searches for new physics; on its own, the fact that an
EFT becomes inapplicable near some finite but otherwise unspecified scale Λ
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is of limited use. Do we have theoretical reasons to expect new particles if we
conduct experiments at 10 TeV? 100 TeV?What about 500 TeV? These are not
idle questions: the answers can lead to decades of labor and billions of dollars
spent designing and constructing particle accelerators like the LHC.
We’ll begin with naturalness. Since its introduction in the 1970s, naturalness

has played an influential role in shaping expectations about the properties of
new physics beyond the Standard Model, including the energy scale at which
it should be detected. Despite its widespread influence, naturalness involves
a number of technical and conceptual subtleties and the justification for them
has long been controversial. (For detailed pedagogical presentations, see Cohen
(2020, section 3.D) or Penco (2020, section 2.6).) Particle physics research has
generated an enormous number of physics papers analyzing and employing
naturalness arguments, but questions about its physical interpretation and con-
ceptual status in EFT have recently received increased attention from physicists
and philosophers (Giudice, 2013, 2017; Wells, 2015; Williams, 2015, 2019;
Borrelli and Castellani, 2019; Rosaler and Harlander, 2019). Those questions
have become more pressing with the LHC’s ongoing failure to detect any of
the new physics predicted by naturalness arguments. Anything from enthusi-
astic endorsement to extreme skepticism is well-represented in the enormous
literature about naturalness; we will sketch only some basics.
Consider a QFT containing a scalar field φ that interacts with a fermion

field Ψ:

L = 1
2
∂µφ∂

µφ − M2

2
φ2 − λ

4!
φ4 + Ψ̄iγµ∂µΨ − mΨ̄Ψ + gφΨ̄γ5Ψ.

Suppose m � M, that is, the fermionic particle is much heavier than the scalar
particle. If we scatter φ particles at E � m, we can describe that scattering
using an EFT containing only φ. We integrate out the heavy fermion field and
incorporate its contribution to low-energy observables into the parameters and
irrelevant operators of the effective Lagrangian. This produces an effective
Lagrangian with a cutoff Λ ∼ m. In the EFT, the mass of the scalar particle
is shifted to

M2
R ∼ M2

0 + Λ
2 + m2

[
ln
(
Λ2

m2

)]
.

The scalar mass receives additive contributions proportional to m2 and the cut-
off scale Λ2. (The Λ2 contribution is an artifact of our regularization method
and disappears if we use, for example, dimensional regularization. Them2 con-
tribution cannot be eliminated this way.) This seems to generate a contradiction:
the mass naively attributed to the φ particle in the EFT is larger than the scale
Λ ∼ m at which the EFT becomes inapplicable. That suggests that the “light”
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φ particle is somehow too heavy to appear in the EFT that we constructed
precisely to describe φ particle scattering!
Recall that the observable, renormalized massMR is the sum of a bare mass

M0 and a shift term δM. To resolve the apparent contradiction, the value of the
bare massM0 of the scalar particle must be finely tuned to precisely cancel the
“shift” produced by integrating out the heavy fermion. If this tuning is done
correctly, then M0 and δM sum to the physical mass of the φ particle. This
captures one sense in which a light scalar particle is “unnatural”: without fine-
tuning, the mass of a scalar particle in an EFT is “naturally” on the order of the
scale of the ultraviolet cutoff of that EFT.
Renormalization group methods offer additional insight into why many

physicists have found this fine-tuning objectionable. Recall that, in theory
space, each point identifies an EFT defined at a specific cutoff scale Λ with
parameter valuesm1, m2, . . . , λ1, λ2, . . . , g1, g2, . . .. As the cutoff scale is iter-
atively lowered, the values of the parameters change. This traces out a trajectory
through theory space.
Consider an EFT containing multiple particles, with physical masses

m1, m2, m3, all heavier than the physical massM of a scalar particle. (See Bar-
bieri (2013) for a similar discussion.) Define the EFT with an initial cutoff
Λ � m1, m2, m3. Every time the ultraviolet cutoff is lowered across one of the
mass thresholds Λ′ ∼ mi and the corresponding field is removed from the EFT,
the scalar massM2

R receives a large, quadratic contribution m
2
i . This causes the

trajectory through theory space to “jump” across each of these mass thresholds,
as the scalar mass is shifted by ∼ m2

i .
This means that for the scalar massM2

R to flow to its measured value at exper-
imentally accessible energies E � Λ, the initial point in theory space at the
initial cutoff scaleΛmust be chosen very precisely: the corrections sustained by
scalar mass mean that two initially nearby points in theory space at Λ can flow
to points enormously far apart atΛ′ � Λ. The initial point in theory space atΛ
must somehow “know” about them2

i corrections that arise at lower energies and
cancel against them in a way that produces the correct measured value of the
scalar mass. In many areas of physics, QFT included, one expects parameters
in coarse-grained models to be determined by the fine-grained variables being
omitted; for example, the values of the parameters in the Navier–Stokes equa-
tions used to model the continuum-scale behavior of a fluid are determined by
the structure of that fluid at the molecular scale. Many physicists see violations
of naturalness as inverting this explanatory order: the value of a low-energy
observable, the physical mass of a scalar particle, “determines” structural fea-
tures of the QFT at higher energies. This perceived inversion of explanatory
order is, of course, a common symptom of cases of fine-tuning. Many have
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also found the extremely sensitive dependence of low-energy observables on
the precise values of EFT parameters at much higher energies to violate the
expectation of the autonomy of scales.
In particle physics, the most prominent naturalness problem concerns the

mass of the Higgs boson, the only elementary scalar particle in nature, and the
methodological role of naturalness has been to constrain candidate models of
BSM physics. A natural extension of the Standard Model is a BSMmodel that
does not require fine-tuning of parameters to generate accurate predictions for
measurements of low-energy observables, particularly the mass of the Higgs
boson. Each natural BSMmodel contains some mechanism for eliminating the
need for fine-tuning. For example, in BSM models exhibiting supersymmetry
(SUSY), a set of heavy particles are postulated whose contributions to the mass
of the Higgs boson “naturally” cancel the contributions from the particles in the
Standard Model.
This returns us to the use of naturalness to predict the scale Λ bounding the

domain of applicability of the Standard Model. SUSY extensions of the Stand-
ard Model eliminate any need to fine-tune parameters in the BSM model, but
only if the new particles aren’t too heavy. These particles are not included in the
Standard Model, so the mass of the lightest SUSY particle sets the scale Λ for
the SMEFT. Other, non-SUSY BSMmodels propose different mechanisms for
eliminating the need for fine-tuning, and these models predict different values
for Λ for the SMEFT.
The use of naturalness to constrain BSMmodels has been extremely influen-

tial in particle physics. Accordingly, the LHC’s failure to detect any phenomena
not completely accounted for by the Standard Model has sent shockwaves
through the particle physics community: the most compelling natural exten-
sions of the Standard Model predict new BSM particles with masses in a range
that the LHC should have detected. This has led to a methodological crisis in
corners of particle physics, with physicists (and philosophers) now considering
whether naturalness should be abandoned and what the consequences of doing
so would be for how we understand EFT. (One particularly popular line of
thinking has emerged according to which naturalness problems are best solved
in a multiverse setting, of the type produced by models of eternal inflation or
the landscape of string theory. For critical discussion, see Giudice (2017) or
Williams (2019).)
Naturalness is not the only discovery heuristic in town, thankfully. There is

a long (and less contentious) history of exploiting the requirement that the scat-
tering operator S be unitary to estimate the scale Λ at which an EFT becomes
inapplicable. These strategies all rely on the fact that in an appropriately cho-
sen region of the complex plane, scattering amplitudes are analytic functions of
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the scattered particles’ momenta. A thorough technical discussion lies beyond
the scope of this Element, but we will present the structure of the reasoning in
these strategies. (See Schwartz (2014, chapter 24) or Zee (2010, chapter III.8)
for pedagogical presentations.)
The heart of these strategies is the optical theorem, which follows from the

unitarity of the scattering operator. The optical theorem relates the imaginary
part of the amplitude for forward scattering – scattering where the final state
is the same as the initial state – to the total scattering cross section for all final
states. Formally, it states

ImM(i → i) ∝
∑
f
σ(i → f),

where the scattering cross section σ(i → f) is a function of the scattering prob-
ability |M(i → f)|2. Using the optical theorem, one can derive various bounds
on how scattering amplitudes grow as a function of the energy of the scattering
process. As an illustration of how such bounds can be used, we will consider
the partial wave unitarity bound. Employing a useful technique in scattering
theory – decomposing a scattering amplitudeM into partial waves indexed by
angular momentum j – the amplitude becomes

M = 16π
∞∑
j=0

aj(2j + 1)Pj(cosθ),

where Pj(cos θ) are Legendre polynomials and the aj are functions of the scat-
tering energy. Employing the optical theorem, we can eventually derive that
the coefficients aj must satisfy

|aj | < 1, 0 ≤ Im(aj) ≤ 1, | Re(aj)| ≤
1
2
.

This bounds how the coefficients aj – and thus the scattering amplitude M –
can growwith the scattering energyE. Beyond a certain energy scaleE ∼ Λ, the
coefficients violate the partial wave unitary bound and perturbative calculations
of scattering amplitudes in the EFT predict nonsense.
The most important historical application of the partial wave unitarity bound

set an upper bound on the Higgs boson mass just as the Standard Model
was achieving widespread acceptance in the particle physics community (Lee
et al., 1977a, 1977b). They considered the electroweak sector of the Stand-
ard Model and examined the scattering of W and Z bosons without including
a Higgs boson. They found that the scattering amplitudes violated the partial
wave unitarity bound at E ∼ 1 TeV: the electroweak model without a Higgs
boson becomes inapplicable at that scale. Furthermore, they showed that the
partial wave unitary bound would be satisfied if a Higgs boson with mass
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mH ≲ 1 TeV contributed to the scattering amplitude. This offered important
insight into the structure of the Standard Model, but perhaps more importantly
it served as a discovery heuristic: it gave experimentalists searching for the
Higgs boson a bound on the range of energies at which the Higgs boson might
be discovered.
Although partial wave unitarity bounds have been useful for estimating the

scale at which to search for new physics, they come with caveats. The first is
that a violation of a partial unitary bound at some energy Λ actually means one
of two things: either some new physics must appear at energies lower thanΛ to
ensure that scattering amplitudes satisfy the partial wave unitarity bound, or the
interactions between the fields in the EFT become strong around Λ (i.e., some
of the interaction strengths gi become ≳ 1). In the latter case, the violation of
the partial unitarity bound does not indicate that the scattering operator violates
unitarity above Λ, but only that the perturbative approximation – premised on
the assumption that interactions between particles are weak – becomes unrelia-
ble for calculating scattering amplitudes at energies E ∼ Λ. The second caveat
is perhaps more serious: there are examples where the scale of new physics –
arising either from new physics or strong coupling between fields in the EFT –
is not accurately predicted by the scale at which partial wave unitary bounds are
violated (Aydemir et al., 2012). This suggests that using the violation of partial
wave unitarity bounds in perturbation theory to predict the scale of new phys-
ics is at worst unjustified, and at best relies on stronger assumptions about how
much information is captured by perturbative approximations than is typically
recognized.
The present lack of experimental guidance about the scale(s) at which to

expect new physics has led particle physicists to develop theoretical strate-
gies and heuristics for identifying those scales, and we have touched only
two especially prominent ones. Another set of theoretical strategies, popular
in contemporary particle physics, proceed by making mild assumptions about
the general structure of physics beyond the Standard Model – for example,
that whatever the correct BSM model is, it will satisfy certain unitarity, local-
ity, or causality conditions – and then show that any EFT generated from a
model satisfying those conditions will exhibit certain generic properties. For
example, one can show that certain parameters, or combinations of parame-
ters, in the EFT must be greater than zero; these results are called “positivity
bounds.” These strategies pursue an epistemic middle ground between bottom-
up approaches, where one makes extremely limited assumptions about nature
at distances shorter than some cutoff Λ−1, and top-down approach, where one
focuses on a specific description of nature at high energies and generates a spe-
cific EFT by integrating out heavy fields. (See de Rham et al. (2022) for a recent
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overview of these strategies with extensive references, Remmen and Rodd
(2019) for applications to the SMEFT, and Contino et al. (2016) for clarifying
discussion of the “middle-ground” nature of these strategies.) These strategies
rely on exploiting conceptually subtle relationships between formal properties,
like unitarity or analyticity of scattering amplitudes, and a variety of locality
and causality conditions. The analysis of such conditions has long borne fruit
for philosophers and careful consideration of these relationships is a promis-
ing project for philosophers aiming to engage productively with contemporary
particle physics.

5.2 Scientific Realism
A significant amount of philosophical attention has also been devoted to onto-
logical issues in EFTs. Much of that attention has gone to the question of
whether EFTs are amenable to scientific realism, that is, whether familiar sci-
entific realist arguments that the best explanation for the predictive success of
a theory is that theory’s truth can be applied to EFTs. The question is pressing
because, on the one hand, all predictively successful models of particle physics
are EFTs and the core motivation for scientific realism is that it purports to be
the best explanation of such predictive successes. On the other hand, EFTs are
candidates for neither exact truth nor fundamentality; their predictive accuracy
is limited to perturbative approximations of observables measured at energies
much lower than some cutoff scaleΛ, and they do not even purport to represent
nature at distances shorter than Λ−1. These two features mean that an early and
enduring understanding of scientific realism – that for a scientific realist, to
accept a theory is to accept that it is true (van Fraassen, 1980, chapter 1.1) – is
inapplicable to EFTs. They also undermine a widespread norm of theory inter-
pretation: that to give a realist interpretation of a scientific theory is to answer
the question, “what must the world be like for this theory to be literally true?”
(See Williams (2017, section 2) for related discussion.)
Many have taken this to mean that EFTs are unfit for realist interpretation

(Fraser, 2009, 2011; Kuhlmann, 2010; Butterfield and Bouatta, 2015). There
is an additional reason one might hold this belief. Effective field theory mod-
els accurately represent nature within a restricted domain: an EFT is expected
to require modification or replacement to model physics at distances shorter
than its cutoff. This suggests that a realist attitude toward EFTs is made a non-
starter by the pessimistic induction: an argument that the history of science
suggests that our current successful scientific theories are likely to be modified
or replaced in the future, traditionally taken to undermine the realist infer-
ence from predictive success to even approximate truth (Laudan, 1981). We
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can be certain that any EFT model, and perhaps even the entire framework of
QFT, will need to be heavily modified or replaced at the Planck length. What
justification could we have for being realists about those theories now?
However, recently others have argued that EFT can support more sophis-

ticated, “selective” forms of scientific realism (Williams, 2017; Fraser, 2018,
2020). Selective approaches to scientific realism come in several forms (Wor-
rall, 1989; Kitcher, 1993; Psillos, 1999; Chakravartty, 2007), but their unifying
commitment is an attempt to identify realist commitments by answering a more
realistic question: “what must the world be like to explain this theory’s pre-
dictive success?” Different selective realist strategies then propose different
strategies for identifying the subset of entities or structural features of the the-
ory that warrant ontological commitment. One common strategy is to identify
the entities or structures that play an essential role in generating the predictive
successes of the theory (e.g., which are indispensable to performing calcula-
tions in the theory) and claim that a selective realist ought to be committed
only to those.
A long-standing problem for these approaches is that “approximate truth” is

notoriously difficult to make precise, raising the worry that a central concept
of selective realist approaches must remain unsatisfyingly unclear. In Williams
(2017) and Fraser (2018, 2020), it was argued that EFTs provide resources for
making approximate truth more precise in that context: the cutoff Λ explicitly
delineates the physical domain where the theory can serve as a basis for trust-
worthy inferences about ontology, and RG methods can be used to identify
structural features of an EFT that are universal, that is, that are stable or robust
across a broad range of candidate models for describing nature at distances
shorter than Λ−1. (In Williams (2017), it was argued that this was a special
case of a general connection between robustness and ontological commitment
advocated throughout Wimsatt (2007).) This would yield the optimistic result
that inferences about the structure of nature at distances longer thanΛ−1 that are
justified by an EFT’s predictive success won’t be invalidated when that EFT
is eventually embedded in a correct model for describing nature at distances
shorter than Λ−1. The enormous predictive success of the Standard Model,
for example, can be analyzed to identify the structural features that are essen-
tial for those predictions, while RG methods can then be used to determine
whether those essential structures are also sufficiently robust that they won’t be
modified or replaced when we inevitably embed the Standard Model in some
as-yet-unknown BSM model. This proposal has come to be called “effective
realism.”
This strategy faces a number of obstacles. For one, it has been noted that even

if the strategy does justify selective realism about certain properties of matter
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in QFT, it is less clear that the strategy extends to spatiotemporal structure
(Ruetsche, 2018, 2020; Chen, 2022; Saatsi, 2022). Additionally, even restrict-
ing to properties of matter there is information about quantum fields that cannot
be analyzed using the perturbative strategy typically employed when using
EFTs in particle physics. This information includes, for example, topological
properties of quantum fields like instantons (Weinberg, 1995, chapter 23) and
the behavior of strongly interacting fields, such as the quark and gluon fields
in QCD at low energies. Even within the domain of applicability of the EFT,
perturbation theory offers the realist only partial information, at best, about the
nature and structure of reality.
There is a more fundamental obstacle facing the effective realist, however.

Even if we grant that suitable norms for realist interpretation can be found for
EFTs, and even if we ignore the challenge presented by spatiotemporal struc-
ture, the fundamental obstacle is that it is simply unclear that there are any
satisfactory candidates for ontological commitment.
In Section 3, we saw that the most natural candidates for ontological com-

mitment in QFT – particles and fields – are, in several respects, unsatisfactory.
This situation is unchanged in EFTs. In Fraser (2018), it was proposed that
the most natural candidates for ontological commitment are time-ordered cor-
relation functions describing patterns in excitations of a quantum field with
wavelengths much longer than Λ−1. (For an intriguingly similar proposal in a
distinct physical setting concerning the ontological status of correlation func-
tions, see Batterman (2021).) Renormalization group methods show that these
correlation functions are stable across a broad range of candidate models of
physics at short distances, making them candidates for ontological commit-
ment. It was argued in Ruetsche (2020) that this would collapse “effective
realism” into empiricism, since time-ordered correlation functions can be sys-
tematically turned into observable quantities – S-matrix elements – via the
LSZ reduction formula. This is uncompelling: time-ordered correlation func-
tions contain considerably more information than is used by the LSZ reduction
formula. Roughly speaking, the LSZ reduction formula only cares about the
structure of the time-ordered correlation function at the points p2i = m2

i in
momentum space for incoming and outgoing particles. This captures the fact
that the S-matrix describes physical states, or “on-shell” states, of the quan-
tum field describing excitations that satisfy the relativisticmass–energy relation
E2p = p2+m2. However, the time-ordered correlation functions themselves con-
tain additional information about “off-shell” states of the quantum field and this
information is necessary for a variety of physical applications beyond scattering
theory. It is also the kind of information exploited by foundational mathemati-
cal results like the Wightman reconstruction theorem, which allows one to start
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with a full set of correlation functions and reconstruct the underlying quantum
field theory that generated them (Streater and Wightman, 1964, chapter 3.4).
Indeed, correlation functions are of fundamental interest especially in contexts
where no S-matrix exists, like QFTs in cosmological spacetimes or QFTs with
conformal symmetry.
One might alternatively worry that even if, like the structural realists, we

accept certain mathematical structures as worthy of ontological commitment,
time-ordered correlation functions are not the right sort. Specifically, ontic
structural realists have identified modal structure as the sort warranting onto-
logical commitment (Ladyman et al., 2007; Esfeld, 2009), and it is far from
clear that correlation functions enjoy a comparable modal status to equations
of motion, symmetry groups, and other structural commitments that ontic struc-
tural realists have advocated. I find it extremely difficult to make sense of
unmoored correlation functions, that is, correlation functions that are not under-
stood to describe correlations that obtain between properties of some physical
substrate. Any attempt to put this more physical interpretation of themeaning of
time-ordered correlation functions on firmer ontological ground immediately
returns us to the obstacles we have already encountered in the way of taking
the most natural objects – particles or fields – to define the ontology of QFT.
Indeed, it is fitting to conclude with this basic difficulty that has plagued us

throughout our attempts to characterize the logical structure, methodological
applications, and metaphysical implications of the most predictively successful
scientific theories ever constructed: we simply do not have even a satisfac-
tory candidate ontology for QFT. We have seen that contemporary particle
physics presents us with a diverse set of philosophical puzzles concerning
the epistemology and methodological strategies of experimental practice, and
for philosophers of physics aiming to make useful contributions to the prac-
tice of particle physics these offer a number of promising avenues of inquiry.
However, none of these issues cry out for philosophical attention so loudly as
the simple question of what QFT is about. The fact that we have no entirely
satisfactory candidates for the ontology of the most predictively successful sci-
entific theories in history should, by itself, be sufficient to make contemporary
particle physics a primary locus of philosophical attention for years to come.
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