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Abstract. Spatial and time correlations of the force acting on a star are derived for finite gravitational 
systems. It is shown that their behavior is qualitatively different than that for infinite mediums. 

The dissolution time for a binary system is considered. We explain why Chandrasekhar's dissolution 
time differs from that given by Ambartsumian and Oort in that it does not depend on the velocities of 
the field stars. We show that the difference lies in the definition of what constitutes 'relative change in 
velocity' of the two stars in the binary. Indeed, using the general approach of Chandrasekhar and von 
Neumann (appropriately modified) we derive a velocity dependent dissolution time. 

1. Introduction 

The total force on a star may be expressed as the sum of two forces which have different 
behavior. One force, due to the smoothed out distribution of the system as a whole, 
changes very slowly and can be expressed as the gradient of the smoothed out poten
tial. The random part of the force is due to the rapid change of the positions of the 
nearby stars and its description must be stochastic. Chandrasekhar and Von Neu
mann (Chandrasekhar, 1941, 1944a, b, c; Chandrasekhar and Von Neumann, 1942, 
1943) have developed a statistical theory of the random force under certain simplifying 
assumptions. They assumed that the field stars are not correlated with themselves 
or the test star, and that the field stars in the neighborhood of the test star are uni
formly distributed. Furthermore, the number of field stars were taken to be infinite 
(i.e., an infinite medium) in such a manner as to keep the density constant. 

Numerical experiments performed to test various aspects of the theory (Ahmad and 
Cohen, 1972,1973,1974) have shown excellent agreement with theory for the distribu
tion of random force (Holtsmark distribution), the time rate of change of the random 
force and dynamical friction. The experiments to verify the two time autocorrelation 
function showed that the experimental curve decreased faster for large times than that 
predicted by theory. 

Chandrasekhar's result for the time autocorrelation for force is that the decrease 
with time, for large times, is extremely slow, namely as 1/r. Similarly, for large separa
tion distance, the force correlation acting at two different points at the same time was 
shown to decrease only as its inverse. 

We shall calculate below space and time autocorrelation functions for force for 
bounded gravitational systems and show that its behavior is qualitatively different 
from that for infinite systems. Also, we shall calculate the correlations of the forces 
acting at two different points at two different times and discuss its application to the 
problem of the stability of binaries. 
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34 L. COHEN 

2. Force Correlations 

We consider a finite spherical system of radius A, density n, and assume that the field 
stars move in linear orbits. To keep the density constant, we shall introduce stars into 
the system at the same rate they are leaving it. To accomplish this, we distribute stars 
over all space with a density n, and with a velocity probability distribution, T(V), as 
the stars in the real system. It is clear that as long as the velocity distribution is not a 
function of position, the density within X will be constant. A field star will be 'counted' 
in any averaging only if at that time it is inside the sphere A. If two times are involved, 
then it must be within the sphere at both times. That is, at time t a field star whose 
original position and velocity is r, v, must satisfy 

fc + Vl<*. (1) 
Also, we shall impose a lower limit, ei9 restricting the distance with which a field star 
can approach the test star which is at position rl5 say; 

ai<|ri + vir —rj . (2) 

The lower limit eh is a function of the relative velocity of the field and test star and is to 
be obtained by requiring the relative energy to be positive. Otherwise it would be a 
binary. 

In the following we shall take all the masses to be equal and consider the case where 
the test stars are stationary. Further we shall not take the e,'s as function of the relative 
velocities but take them to be constants and estimate them by 

2Gm 
8i = £^V-2^' (3) 

The force correlation function at two points rl5 r2, at two different times, tl912 is then 

<F(M,)'F(r2li2)) = G V I ( , r ^ V f 1 " r ' - r C V f 2 " r | 3 ) + 
ij Mi-. + V i - r i l |ij + V2- '2 l / 

tXl r . + v ^ - r J 3 \ri + yit2-r2\3/' W 

\ri + \it1\<A 
|r,. + v,.t2|<A 

6<|r i + v,-t1-r1| 
£<|r; + v,-t2-r2 |. 

Since the field stars are uncorrelated, the first part of (4) vanishes. 

<F(r1,r1)-F(r2,t2)> = G2m2X r« + V i - r i i\- + V 2 - r 2 
""i + V i - i ' i l 3 |rf + V 2 - r 2 l 
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r + \tl-r1 r + vt2-r2 = G2m2n 
Ir + vfj-rjl3 |r + v t 2 -r 2 | 

3i(v)drdv (5) 

(6) 

(7) 

Ir + v r ^ / l , |r + vr2|<>l 

s < |r + \t j - r! |, s < |r + \t2 — r2|. 

Performing the transformation 

Q^r + v^; dQ = dr 

<F(„, ,,)■ F(r2, ,2)>-GW. J JZL,. J ^ , t „ a, d. 

Iel<^, |Q + vt|<A, |Q —r!|>£, |Q + vr-r 2 |>£ 

where t = t2 — tv Hence, 

<F(r1,r1)-F(r2,r2)> = <F(r1,0)-F(r2,r2-t1)>. (8) 

Evaluation of (7) in its full generality is quite involved although one can find series 
expansions when a particular parameter (e.g., the separation |r2 — rj) is small. This 
will be done in the last section where it will be applied to the problem of the stability 
of binaries. In the next two sections, we consider special cases of (7), namely the 
correlations at two different points at the same time and the correlation at the same 
point at two different times. 

But in the case of infinite systems and e = 0, (7) can be evaluated explicitly. Taking 

r1 = - r 2 = s 
a = 2s (9) 

we have 

<F(-s,0)-F(s, t)> = G2m2n | J L J L . Q + n + s
 z(y\ d g d v = V ; V ' J |Q-s|3 |o + vt+s|3 W V 

r2 2 f Q Q + vt+a 
(10) 

The spatial integration is straightforward 

f Q Q + vt-ha 4TT 
J ^ • , ^ , ^ . 3 d g = ; 3 ^ (11) Q3 |<> + vr+a|3 |vr+a 

and accordingly 

<F(-s,0)-F(s,0>=47rG2m2M | ^ - d v . (12) 
J |vr+a 

If we specialize to the Gaussian distribution 

t 
T 3/2 

T ( v ) = ^ e x p ( - 7 V ) (13) 
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36 L. COH 

and note that the angular integration gives 

271 } (a2 + avt» + v2t2y<2 

vt<a 

vt>a 

(14) 

- 1 

we have after simplification 

, v , v 4nG2m2n (ja\ , v 
<F(0,0)-F(a,0>= ? ( T ) , (15) 

where cp(x) is the error function 
X 

2 
<p(x)-- exp( -x 2 )dx . (16) 

Asymptotically the behavior of (15) is 

, v , v SJnG2m2nj , x 
<F(0,0)F(a, t)}—^ t-^oo (17) 

4nG2m2n 
~ a-+oo. (18) 

a 
We thus see that for infinite systems the behavior of the correlation function is 

inversely proportional to both the separation distance and the time when one of them 
approaches infinity. 

2.1. CORRELATION AT TWO DIFFERENT TIMES AT THE SAME SPATIAL POINT 

We now consider the correlation of the force, for finite systems, at two different times 
but at the same point. A detailed discussion of the two time autocorrelation has been 
given by Cohen and Ahmad (1974). We shall derive here the same result, for the case of 
a Gaussian distribution, in a more direct way. 

Taking rl = r2 = 0, (7) becomes 

<F(OyF(t)> = G2m2nt^-^^T(v)dQdy e < ^ \ ( 1 9 ) 
J ^ iQH-vrl3 w * e<le + n |< /L v } 

One could perform the Q integration first and thus keep the velocity distribution 
arbitrary (Cohen and Ahamd, 1974). This procedure is quite cumbersome and 
algebraically tedious. Specializing immediately to a Gaussian distribution and 
performing the transformation 

X = Q + H, dx = di|, ti = vf (20) 
we have 

G2m2nco3 f Q-x 2( . s<x<A 
7l 3 / 2 J 7 ? " " < F ( 0 ) - F ( r ) > = — - 5 5 - | ^ e x p [ - a > * ( e - x ) * ] d x £ < Q < ; {2{) 

Q)=j/t 
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Using the direction of x as the z axis and performing the angular integration of both x 
and Q, we obtain 

<F(0) • F(t)) = SJn G2m 

A A 

"Hi exp [ - to2 (x - e)2] dfidxdg (22) 
£ £ — 1 

A A 

= S^/nG2m2n 1 1 
v2co2x£ (2co2xe)2 

£ £ 

A A 

xexp[ — a;2(x — #)2] dx dg + 

x exp [ - co2 (x + g)2~\ dx dg 

1 1 
- + 2o)2xg (2CO2XQ) 

(23) 

To proceed further, we shall integrate by parts the second term in each of the integrals 
of (23). We note that 

A 

exp[-co 2 (x±e) 2 ] 1 1 
dg = - exp [ — a>2 (x ± a)2] — exp [ — co2 (x + X)2] — 

e A 

A 

- 2co2 ^ - exp [ - co2 (Q ± x)2] dg (24) 

and repeated use of (24) yields 

exp[-cu2(x + e)2] 1 
X2Q2 

dx de = 3 exp [ - co2 (2s)2] + -j exp [ - co2 (2/1)2] -
A 

- - e x p [ - c o 2 ( A + £ ) 2 ] -

Jn((p((D(A + e))- <p(2m)) + 
£ 

H—— >Jn(q> (2coX) -(p(co(A + e)) -
A 

-2m2 r exp [ - co 2 (x + g)2] 

xg 
dxdg (25) 

exp[-w 2(x-<?) 2] 1 1 2 
2„2 dxdg = ~ + i^—rexp[-co2(A-e)2]-

^ £ A GA X-Q 
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2co 
n (J)((D{X — e)) + 

+ —y/n(p(a>(l-£)) + 

+ 2co2 f exp[- W\Q-Xf\ 
XQ 

d<? dx. (26) 

Substituting (25) and (26) into (23) 

<F(0yF(t)y = l6^iG2m2
njU 

where we have defined 

-S(t1/t) + -S(tJt) 

1 1 

+ 

+ ~-[t2S{t2/t)-t3S(t3/t)]-±t 
Ut 1*4 

71+72 

r1 = 2e/; t2 = (X-e)j; t3 = (X + e)j; t4 = 2Xj 
exp( —x2) 

S(x) = yJn (p(x) + -
A 

Asymptotic expansions can be obtained 

<F(0)-F(r)>=47cG2m2n 
1 1 
£ X 

(27) 

(28) 

1 1 

2 / 1 1 t 

2 + X2 

2f (X2-e2)2 

t<tl 

f ! ^ f < t 4 

t4<t. 

(29) 

(30) 

(31) 
3 ^ ' ' 

If X is taken to be infinite, we recover the \jt dependence obtained by Chandra-
sekhar (1944b) and Lee (1968). But as long as X is kept finite, the dependence for large 
times is 1/t5. 

The two time autocorrelation function affords a straightforward method of 
calculating the mean square velocity change. Under the assumption that the auto
correlation function is an even function of the difference in the two times, then the 
mean square change in the velocity within a time T can be obtained from 

<(Jv)2> 

i 

= 2J>-t)<F(0)-F(t)>dt. (32) 

As these conditions are met in our case, we can substitute (27) into (32) and obtain. 
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after some algebra 

((Ay)2y = l6^G2m2nj<tlH(t1/T) + t4H(tJT) + 

+ A [ t 3 „ ( t a / 7 0 _ r 3 H ( t 3 / 7 0 ] - ^ ( ^ + i ) } , (33) 

where 

"^^(^- 'K^^^- i ) (34 
and <?,(x) is the exponential integral. 

^.(x)= I '" r y U'du. (35) 
fexp(-M) 

Asymptotically 

<(Jv)2> = 167tG2m2n 
1 l \ T2 

r y j - T«"- (36) 
3 T i n — , f ! « T « t 4 (37) 

3A j 2 + ^ T l n ^ + ^ r , n ^ ) > ^ T - ( 3 8 ) 

The infinite system case can be obtained from (37) and we note that it has a T In T 
dependence for all time. This has been derived by other methods by Henon (1958), 
Ostriker and Davidson (1968), Lee (1968), and Prigogine and Severne (1960). 

For finite systems <(^v)2> changes from a T In T dependence for times up to t4 into 
a T dependence for long times. This behavior has been discussed by Henon (1958). 

2.2. THE CORRELATION IN THE FORCE AT TWO POINTS AT THE SAME TIME 

Taking r = 0 and rx = — r2 = s, we have from (7) 

<F(-s)-F(s)> = G2m2
M f ^ Z L . ^ ± L d c s < | C - s | (39) 

J lQ-s|3 lO + sl3 £ < | e + s | 

We shall not evaluate (39) but only give appropriate asymptotic expansions to illus
trate the behavior for large separation distances in the case of finite systems. 
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40 L. COHEN 

(F(-s)-F(s)}=4nG2m2n 

r\+4> s<a<a (41) 

-¥^+¥^, Ka. (42) 
cr ar 

Again, for infinite X we recover the l/a dependence but as in the time correlation 
case the decrease is much faster when X is kept finite. 

3. Dissolution of Binary Systems 

An application which Chandrasekhar (1944c) made of his theory is to the problem of 
the dissolution time of binary systems. The expression he obtained is fundamentally 
different from that obtained by Ambartsumian (1937) in that the dissolution time did 
not depend on the mean velocity of the field stars. Oort (1950) has also obtained an 
expression for the dissolution time and although it differs somewhat from Ambart-
sumian's, it does depend on the mean velocity of the field stars. Heggie (1974) has also 
considered the problem. 

Cruz-Gonzalez and Poveda (1972) performed numerical experiments to test for 
agreement with theory. They found that none of the three expressions of the dissolu
tion time was in conformity with experiment although they did find dependence on 
the velocity of the field stars. (But see note added in proof.) 

We shall explain the reason as to why Chandrasekhar's expression is independent of 
the mean velocity. In particular, we shall show that the reason is not due to the statis
tical theory but in the definition of the 'relative velocity change' of the two components 
of the binary system. Indeed, we shall use the general approach of Chandrasekhar, as 
modified above, to obtain a velocity dependent dissolution time. 

Essentially, in all three approaches the dissolution time is obtained by finding the 
relative absolute velocity change of the binary component within a time T and defining 
the dissolution time as the amount of time needed for the relative velocity change of 
the two components to be of the same order as the initial relative velocity. Or, equiva
lent^, the square of the velocity change is equated to twice the mean kinetic energy of 
the binary. Chandrasekhar calculates the relative change, A\x — A\2 = Ay12 between 
stars 1 and 2, constituting the binary, by considering the component of Ft— F2 in 
the direction of one of the two forces. This is appropriate since the average relative 
velocity change in the perpendicular direction is zero. The forces ¥t and F2 are due to 
the field stars only. 
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It is clear that if we assume field stars to be distributed over all space, <(FX — F2) * Fx >/ 
\FX\ will be independent of time and 

In a previous paper, Chandrasekhar (1944b) obtained*, for small separation, a, 
/ ( F 1 - F 2 ) - F 1 \ 

—— 1 ~ AnGmna (45) 

where m is the average mass of a field star. Equating (45) to 

'GK+m2)Y/2
 tAfX 

(46) 

where ml and m2 are the masses of the stars forming the binary, the dissolution time is 
then 

K+m,)1/2 

47iG1/2mna5 T= v"^"*v (47) 

On the other hand, Oort and Ambartsumian (using a theory developed by Bohr 
for the ionization of hydrogen) calculate <(^v12)2>, which, as will be clear from the 
considerations below, brings in the field velocities. We shall now proceed to calculate 
in the context of Chandrasekhar's Theory with the modifications described above. The 
introduction of e, the cut off at small distances is essential; otherwise the integrals 
appearing would diverge. 

We remark that we will keep the two stars forming the binary stationary. A more 
refined derivation would allow for the motion and take into account the interaction 
between them. 

Also we shall assume that the separation distance, a, is much smaller than a, in 
which case we can neglect r t and r2 appearing in the constraints in (7). Placing the 
two components of the binary at positions — s and s, {a = 2s\ we have for the mean 
square change in the relative velocity, 

<(/lv12)2> = y J Ft dt- J" F2 dtj} = 
i 0 

<F(-s, t1)-F(-s , t2)ydtxdt2 + 

o 
T T 

I 
0 0 

* It may be of interest to point out that <(Fi -F 2 )F 1 / |F 1 | > can be estimated from the usual tidal force 
argument. If d is the distance to a field star, the difference in force on the two components in the direction 
of the field star is (2Gm/d3) a. Inserting 4n to take into account averaging over the sphere of radius a and 
estimating d by the interparticle distance d~n~ 1/3, we have 

< ( F 1 - F 2 ) - F 1 / | F 1 | > - 8 T C G W « « . 
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+ f j ,<F(s, t 1)-F(M 2)>dr 1dr 2-

- 2 f [ <F(-s, tO-Ffs, t2)> dr, dt2. (48) 

Using (32) and remembering that we will take a -4 e 

T 

<(Jv12)2>=4j <JF1 2>(T-t)dt, (49) 
0 

where, for convenience, we have defined 

<JF12> = <F(5,0)-FM>-<F(-s ,0)-F(M)> (50) 
G2m2nf C / r + s r - s \ r+s + vf , , ,, , . 

= 57T- ? ? T exp( - /V) dr dv 
Tt3'2 J V|r + s|3 | r - s V |r + s+vr|3 FK J ' (51) 

e<r<A; s<\r + \t\<l. 

Following the same procedure as in Section 2.1., we have 

G2m2nco3 C ( Q + S Q - S \ x + s 

x exp [ - CD2 (x - Q)2] dx dq (52) 
e<x<>l; £<^<A. 

As s is small in comparison to a, we can expand (52) as a power series in 5. 

Q + S Q —s \ x + s 2ixl—6fifi2 
. 3 V 2 ■s + 

]Q + S|3 | Q - S | V |X + S|3 g3x 
> _ 6 I I ? _ £ I I ? _ L 1 8 I / ( / ,,_ t 2 -6^ | -6 / i 2 +18^/1^2 2 

+ ^3X3 s - ' 1*>J 

where the cosine of the angles are defined as follows 

Q'S = QSH2 

x-s = xsfi1 (54) 
X'Q = XQfi. 

If we take a spherical coordinate system with the z axis in the direction of x and place s 
in the y, z plane, then 

/ ^ 2 = ^ + V l - ^ \ / l - ^ 2 c o s ( p , (55) 

where cp is the azimuthal angle. 
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Consider the angular integrations 
In 

I 
0 
In 

I 
0 
1 

/ 

fi2 dq> = In^fi 

li\ dip = 2n[i\\i2 + TT(1 - \x\) (1 - /i2) 

t*i d/ i!=0. 

Because of (56) and (58), the s term of (53) is zero. 
Integrating all the angles, except /*, in the s2 term gives 

<JF12> = 16y/n G2m2nco3s2 x 

II 3/x2-l 
XQ 

exp [ — a>2 (x - Q)2] dx dg d/i. 

£ £ - 1 

Performing the // integration we obtain 

<AF12> = - 16^/TT G2m2na)3s2 x 

G(x, g) dx d# + 

— x 

J0fc g) dx dg f, 

where 
G ( x ^ ) = — ( r ^ + t ^ 7 ^ + t-A-i)exp[-co2(x + ^)2]. 

Xg \(0 XQ CO X Q 00 X Q 

The indefinite integral of G(x, g) can be obtained by integration by parts, 

1 1 1 
\G(x9g) dg dx = 

+ 

12CO6X3Q3 6(O*Q3X 6(O4QX3 

1 
+ 

6(O4Q2X2 

1 / l 1 W/rc 

exp[-a>2(x + e ) 2 ] -

[o>(*+ <?)]. 
3co3 Ve3 * 

We shall consider here the case of X = oo, in which case 

1 

(56) 

(57) 

(58) 

(59) 

(60) 

(61) 

(62) 

<zlF12> = 6 v ^ G ^ W S
2 { ( ^ ^ ){1 - e x p [ - ( 2 c e ) 2 ] } 

1 
+ -3co4e4 3co3£3 

<t> (2e&>) (63) 
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and inserting (63) into (49) 

I! <(Av12)2} = l6^n G2m2nfa2\£—-6 { l -exp[- (2£/ /T) 2 ]} + 

3 

+t^{fexp[-(2e//T)2]-l} + 

+ 

+ » ^ 7 " » ( 2 ^ / T ) } . (64) 

For long times (64) asymptotically approaches 

<(Jv12)2> = 1 6 ^ G2m2nfa2 - ^ , T - o o . (65) 

Equating (65) to the square of (46), and using 

f-— 
2Gm 
<v2> 

we have for the time of dissolution (for equal masses) 

T Gm 

This agrees, in functional dependence, with the expression of Ambartsumian for the 
case of a42Gm/(v2). 
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Note added in proof. Dr Heggie has made an extensive study of the evolution of 
binary stars (The Dynamical Evolution of Binary Stars', Thesis, Cambridge Univer
sity Press, 1971). His result for hard binaries is that their disruption rate is exponen
tially small Dr Heggie has pointed out (private communication) that the assumption 
of a<^s implies (if the result of Equation (65) is to be applied to the binary problem) 
that the relative motion of the binary components is much faster than that of the 
field stars and hence the assumption of keeping s constant may be a poor one. The 
calculation can be modified by taking s to be time dependent and a function of the 
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relative velocity of the binary components. This may change the final result signif
icantly. But nonetheless, it is clear that the statistical theory of Chandrasekhar and 
Von Neumann will give a field star velocity dependence for the dissolution time if the 
autocorrelation function is modified as described in Section 1. 

Regarding the numerical experiments of Cruz-Gonzalez and Poveda, M. Henon 
(Astron. Astrophys. 19 (1972), 488), has shown that the method of simulating the field 
stars was incorrect and that when proper account is taken of this fact the numerical 
results yield a better agreement with Oort's formula for the dissolution of binaries. 
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DISCUSSION 
Severne: Is it consistent here to use simultaneously the approximation of straight line trajectories and 
finite system size? 

Cohen: One could take other than linear orbits depending on the problem of hand. But for most sit
uation linear orbits are a good approximation - and simple to work with. 

Lynden-Bell: I would just like to get clear exactly what stars you consider the force from. Your cal
culation essentially considers only forces from the stars that move with the point considered. 

Cohen: Yes. Also, stars are counted in the averaging only if they are within the system at both times. 
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