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Process-based models of dynamical systems are often used to study engineering and environmental 

systems. Despite their extensive use, these models have several well-known limitations due to incomplete 

or inaccurate representations of the physical processes being modeled. Given rapid data growth due to 

advances in sensor technologies, there is a tremendous opportunity to systematically advance modeling in 

these domains by using machine learning (ML) methods. However, capturing this opportunity is 

contingent on a paradigm shift in data-intensive scientific discovery since the “black box” use of ML often 

leads to serious false discoveries in scientific applications. Because the hypothesis space of scientific 

applications is often complex and exponentially large, an uninformed data-driven search can easily select 

a highly complex model that is neither generalizable nor physically interpretable, resulting in the discovery 

of spurious relationships, predictors, and patterns. This problem becomes worse when there is a scarcity 

of labeled samples, which is quite common in science and engineering domains. 

In this research, we will develop a novel methodology for combining process-based models with state-of-

the-art machine learning models to leverage their complementary strengths. Our objective is to develop 

innovative process-guided deep learning models to better capture the dynamics in scientific systems and 

advance the understanding of underlying physical processes. Effective representation of physical 

processes will require development of novel abstractions and architectures that can simulate these 

processes that may be evolving and interacting at multiple scales. In addition, the optimization process to 

produce an ML model will have to consider not just accuracy (i.e., how well the output matches the 

observations) but also its correctness from a physical perspective (i.e., physical consistency). 

Leveraging physics, both directly (e.g., by incorporating fundamental physical laws), and indirectly (e.g., 

as embodied in mechanistic models), is the key to address limitations of traditional ML models: inability 

to generalize to unseen scenarios and need for massive amounts of training data. Incorporation of relevant 

physical constraints, such as conservation of mass and energy, in the ML model helps ensure that the 

results produced will be physically consistent. At the same time, these constraints reduce the size of the 

hypothesis space, which means that less data is required for training. Violations of these physical laws in 

the output produced by ML models in future (previously unseen) scenarios can indicate that the models 

are no longer applicable to the new scenario, and thus the models become more trustworthy. 

Specifically, we propose Process-Guided Recurrent Neural Network models (PGRNN) [1-3] as a general 

framework for modeling physical phenomena in many disciplines. As an alternative to both process-based 

and empirical models, PGRNN enriches the spatial and temporal modeling structure in the ML model by 

incorporating physical laws and generalizes the loss function to include a process-based penalty (based on 

energy conservation). Most importantly, the PGRNN model can be effectively trained even in absence of 

observed data due to its unique power to leverage the knowledge encoded in process-based models which 

were developed by domain scientists over many years. 

This work makes a case that in real-world systems that are governed by physical processes, there is an 

opportunity to take advantage of fundamental physical principles to inform the search of a physically 

meaningful and accurate ML model.  While we will illustrate this paradigm in the context of modeling 

water temperature, it has the potential to greatly advance the pace of discovery in a number of scientific 
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and engineering disciplines where process-based models are used, e.g., power engineering, climate 

science, weather forecasting, materials science, and biomedicine. 
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