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Ventilated cavitating flows are investigated via direct numerical simulations, using a
coupled level set and volume of fluid method to capture the interface between the air and
water phases. A ventilated disk cavitator is used to create the cavity and is modelled by a
sharp-interface immersed boundary method. The simulation data provide a comprehensive
description of the two-phase flow and the air leakage and vortex shedding processes in
the cavitating flow. The mean velocity of the air phase suggests the existence of three
characteristic flow structures, namely the shear layer (SL), recirculating area (RA) and jet
layer (JL). The turbulent kinetic energy (TKE) is concentrated in the JL in the closure
region, and streamwise turbulent fluctuations dominate transverse fluctuations in both
SL and JL. Budget analyses of the TKE show that the production term causes the TKE
to increase in the SL due to the high velocity gradients, and decrease in the JL due
to streamwise stretching effects. Air leakage and vortex shedding occur periodically in
the closure region, and the one-to-one correspondence between these two processes is
confirmed by the velocity and volume fluid spectra results, and the autocorrelation function
of the air volume fraction. Moreover, the coherent flow structures are analysed using
the spectral proper orthogonal decomposition method. We identify several fine coherent
structures, including SLKH induced by the Kelvin–Helmholtz instability, SLout associated
with large-scale vortex shedding, SLin associated with small-scale vortex shedding, and
SLr associated with upstream turbulent convection. The present study complements
previous research by providing detailed descriptions of the turbulent motions associated
with the violent mixing of air and water, and the complex interactions between different
characteristic structures in cavitating flows.
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1. Introduction

Natural cavitation occurs when the local static pressure in a flow becomes lower than
the vapour pressure, leading to the formation of bubbles or cavities. Cavitation effects
can reduce skin friction drag considerably, allowing underwater vehicles to achieve
high speeds, especially when the gas bubbles are sufficiently large and encompass
most of the surface (or the entire surface) of a vehicle travelling through water. In
practice, large cavities are rarely generated by natural cavitation effects because of the
technical challenges faced when a vehicle accelerates from an initially non-cavitating
state to a cavitating state, such as the unsteady effects caused by buffeting and surface
deformation vibrations. On the other hand, artificial ventilation, which involves blowing a
non-condensable gas to create a cavity, can overcome many of these difficulties. However,
a deep understanding of the internal structures of ventilated cavities and their interactions
with turbulent flows is necessary to design appropriate high-speed underwater vehicles
(Semenenko 2001).

In the ventilated cavitation process, air escapes from the cavity through the rear sealing
zone, which is also known as the closure part. Violent flow mixing between water and air
occurs in this region. Two main closure modes have been identified in previous studies,
namely the re-entrant jet (RJ) and the twin vortex (TV). The RJ closure mode occurs
when the gravitational effect is less significant than the advection effect. In this case, the
rear portion of the cavity is filled with periodically expelled foams that are in the form
of doughnut-like axisymmetric vortices (see e.g. Campbell & Hilborne 1958). The TV
closure mode features a pair of vortex tubes at the rear of the cavity and usually occurs
when the gravitational effect is dominant (Cox & Clayden 1956). The TVs in the ventilated
cavity have similar geometries to the TVs in prolate spheroids at certain angles of attack.
However, in flows other than the inclined prolate spheroid case, TVs are generated by
vortex stretching and tilting processes, while in the cavitating flow, TVs are generated by
gravitational effects, which leads to the lift up of the cavity in the streamwise direction,
resulting in a velocity difference between the upper and lower cavity surfaces and the
subsequent flow separation (see e.g. Wang et al. 2021b).

Most previous studies focused on establishing connections among the dimensionless
parameters governing these closure behaviours (e.g. Epshtein 1973; Logvinovich 1973;
Spurk 2002; Kinzel, Lindau & Kunz 2009; Wu et al. 2019) and understanding the
mechanisms that lead to the variations in the closure modes under different flow conditions
(e.g. Semenenko 2001; Zhou et al. 2010; Kawakami & Arndt 2011; Ahn et al. 2017; Wu
et al. 2019). While considerable knowledge on closure behaviours has been gained in
previous studies, few studies have investigated the turbulence dynamics near the closure
part in ventilated cavities, which is the focus of this paper.

Turbulence near the closure is important for understanding the mechanisms governing
air and water mixing, air leakage and vortex shedding in ventilated cavitating flows. It is
also the physical foundation for the development of turbulence models in cavitation flow
applications. However, although some studies have discussed turbulence, most previous
works focused on qualitative descriptions of turbulent flows and unsteady behaviours and
did not analyse cavity–turbulence interactions quantitatively. In particular, few studies
have explored the details of the vortex dynamics, the distribution of turbulent kinetic
energy, the energy transfer budgets, or the distribution of Reynolds stresses near the closure
part of the ventilated cavity. These topics are difficult to investigate experimentally due
to the challenges in obtaining non-intrusive measurements on the turbulence dynamics
in the air–water mixing region. For computational works, it is challenging to simulate
accurately multiphase flows with large density ratios and turbulent motions with wide
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scale ranges. Early theoretical works on cavity–turbulence interactions were based on
statistical theories (e.g. Plesset & Prosperetti 1977; Rood 1991). Later studies focused
on more detailed descriptions of cavity–turbulence interactions. For example, Callenaere
et al. (2001) investigated RJ instability, demonstrating that the pressure gradient in the
cavity sealing zone has a strong influence on the closure and local turbulence intensity.
As reviewed in Arndt (2002), cavitation can influence vortex dynamics and generate
turbulence in complex ways, and cavities are sources of vorticity near the closure region.
Recently, Gnanaskandan & Mahesh (2016) conducted large-eddy simulations (LES) of
cavitating flows over circular cylinders. They found that cavitation can attenuate turbulence
near the wake of the cavity. This result was confirmed by Karathanassis et al. (2018).
Koukouvinis et al. (2017) analysed cavitating flows inside orifices using experimental
techniques and numerical methods, and found that the turbulence in the orifice region
is affected by cavitation structures. More specifically, turbulence is dampened in dense
cavitation regions and enhanced in cavitation collapse regions. Moreover, they found that
turbulence is suppressed in the presence of well-established cavitation. Barbaca et al.
(2019) investigated the influence of the free-stream Reynolds number and Froude number
on cavity closure dynamics, and made a comparison between ventilated and naturally
cavitating flows. They applied shadowgraphy and proper orthogonal decomposition
(POD) analysis techniques to study wake flows, noting that the free-stream velocity
influences the size and number of shed structures in the turbulent mixing region
of the ventilated cavitating flow. Wang et al. (2021a) studied ventilated cavitating
flows in the wake of circular cylinders, through numerical simulations. Their primary
finding on turbulence dynamics is that as the gas entrainment increases, the turbulence
intensity near the closure part decreases, together with a decrease in the number of
bubbles.

Moreover, several previous studies have revealed that coherent flow structures play
important roles in the turbulence dynamics of ventilated cavitation (e.g. Dittakavi,
Chunekar & Frankel 2010; Wang et al. 2018; Wu et al. 2021). However, we still lack an
understanding about how the coherent structures near the closure part of the ventilated
cavity are linked to the turbulence dynamics, and what roles these coherent structures play
during the air leakage and vortex shedding processes. To address this knowledge gap, in
the present work, we employ a spectral proper orthogonal decomposition (SPOD) method
to identify the coherent structures near the closure region in ventilated cavitating flows
to efficiently describe the dynamics with a modal decomposition approach. The SPOD
method is a variant of the POD approach proposed originally by Lumley (1967, 1970),
which extracts a set of eigenmodes to develop a least-squares representation of a given set
of flow data. One of the POD forms described by Sirovich (1987) has been used widely
in the literature (e.g. Aubry 1991; Berkooz, Holmes & Lumley 1993; Meyer, Pedersen &
Özcan 2007; Hellström, Ganapathisubramani & Smits 2015). This POD approach aims to
identify spatially orthogonal modes by decomposing the spatial correlation tensor under
the assumption that each instantaneous snapshot is a temporally independent realization,
and is referred to as the spatial-only POD approach by Towne, Schmidt & Colonius (2018).
In contrast, the SPOD method extracts modes, each of which oscillates at a specific
frequency, by decomposing the cross-spectral density tensor. As a result, the SPOD
method accounts for the temporal coherence in the snapshots (Towne et al. 2018). The
SPOD approach has been applied to identify coherent structures in various flow settings.
For example, Nidhan, Schmidt & Sarkar (2022) used SPOD to extract and analyse coherent
structures in the turbulent wake of a disk, and revealed their relationships with buoyancy,
vortex shedding, and unsteady internal gravity waves. Abreu et al. (2020) employed SPOD
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to analyse coherent structures in a turbulent pipe flow. Li et al. (2021) used the SPOD
method to investigate coherent structures near ground vehicles and their aerodynamic
features. Ghate, Towne & Lele (2020) reconstructed the turbulence field by combining
the SPOD method with a physics-based enrichment algorithm that uses spatiotemporally
localized Gabor modes to represent turbulence in the inertial subrange. Kadu et al. (2020)
employed SPOD to elucidate dynamically important modes in unconfined coaxial jets.
Schmidt et al. (2018) examined turbulence structures in jets using the SPOD approach, and
connected the wavepackets observed at different locations to the flow dynamics. Nekkanti
& Schmidt (2021) demonstrated several applications of the SPOD method in a turbulent jet
flow setting, including flow field reconstruction, denoising, frequency–time analysis, and
prewhitening. In the present paper, we employ SPOD to analyse coherent flow structures
in ventilated cavitating flows for the first time.

Our study utilizes a direct numerical simulations (DNS) approach that indicates
sufficient resolution to resolve the key dynamics associated with closure and entrainment
mechanisms. As computational power has increased, computational fluid dynamics (CFD)
has become a powerful tool in cavitation studies to obtain detailed descriptions of
three-dimensional flow fields. In addition to the works by Gnanaskandan & Mahesh (2016)
and Wang et al. (2021a) reviewed above, Uhlman & James (1989) and Abraham, James
& Ivan (2003) simulated steady cavitating flows numerically using a boundary element
method. Wang & Ostoja-Starzewski (2007) investigated the cavitating flow induced by
natural cavitation using both Reynolds-averaged Navier–Stokes (RANS) simulations and
LES, treating the two fluid phases as a coherent fluid system in the simulations. Senocak
& Shyy (2002) simulated unsteady cavitating flows using a two-phase RANS method.
Kunz et al. (2000) proposed a preconditioned Navier–Stokes method to simulate cavitation
dynamics. Lindau et al. (2015) conducted RANS simulations and LES based on a
finite-volume method to study pulsation phenomena in cavities. Kinzel (2008) developed
a numerical method for compressible cavitating flows by combining the level set interface
capturing method and the overset mesh method, thereby improving the accuracy and
stability of the simulation. This numerical tool has also been employed to investigate the
air entrainment process and closure modes of cavitating flows.

The present paper presents a DNS study of ventilated cavitating flows, focusing on the
interaction between cavity and turbulence, including comprehensive analyses of two-phase
turbulent flows, internal structures and statistical quantities. We investigate the turbulence
dynamics in various cavity structures by analysing the processes of air leakage, vortex
shedding, and oscillations in the ventilated cavitating flow. The aim of this study is to
address the following questions. (1) What are the characteristic flow structures inside a
cavity? (2) What is the physical mechanism responsible for generating turbulence near the
closure region? (3) What roles do the characteristic structures near the closure region play
in the transport of turbulent kinetic energy (TKE)? (4) What flow process governs the air
leakage and vortex shedding in the closure region?

The remainder of this paper is organized as follows. First, § 2 introduces the governing
equations, numerical method and simulation approach. Then the time-averaged statistics
of the flow field, including the mean flow, Reynolds stresses and vortex dynamics,
are presented in § 3. Next, the TKE and its budget in the cavity are discussed in
§ 4. Moreover, § 5 investigates air leakage and its correlation with coherent vortex
structures. The coherent structures near the closure region are analysed using the SPOD
method in § 6. Furthermore, § 7 discusses the assessment of lower-Reynolds-number
DNS simulations for insights into ventilated cavitating flows. Finally, the conclusions are
summarized in § 8.
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2. Problem set-up and numerical methods

In this section, we first introduce the problem set-up and governing equations in § 2.1.
Then, in § 2.2, we describe the numerical methods employed to simulate the air and water
flows and track the dynamic air–water interface. Finally, we present the computational
parameters in § 2.3.

2.1. Problem set-up and governing equations
In our mechanistic study of ventilated cavitation and the turbulent flow therein, we
consider a computational setting with a ventilating cavitator located inside a rectangular
water tunnel with uniform water inflow from the inlet. In the present simulation, we
consider only the case in which the mainstream velocity is not very high so that
the natural cavitation regime is not attained. In other words, the influence of natural
cavitation effects on the cavity is not considered in our computational setting. Figure 1(a)
shows the computational domain in our coordinate system, with x, y and z denoting
the streamwise, vertical and transverse directions, respectively. The water flows through
the inlet with velocity U∞ in the x direction, passes the cavity, and exits through the
outlet. In the simulation, a Dirichlet boundary condition is imposed at the inlet, and a
convective boundary condition is applied at the outlet (Lodato, Domingo & Vervisch
2008).

Figure 1(b) shows a schematic of the cavity, with the cavitator and ventilation source
indicated. The cavitator, which is located on the central axis at xc = 30dc, is a circular
disk with diameter dc and thickness 0.3dc. We use a spherical source region with diameter
0.6dc that is located 1dc behind the disk to generate ventilation in the simulation. This
numerical treatment overcomes the numerical difficulty of representing a practical small
air ventilation configuration with limited grid resolution. More numerical details are
provided in § 2.2. In our experiments and applications, air is ventilated out through a vent
port mounted on the strut, which is used to support the cavitator. The shape and position of
the vent port and the air ventilation direction can influence the cavity (Semenenko 2001).
Because the aim of the present work is to elucidate the fundamental mechanisms of the
cavity, the complex object and vent settings can be replaced by a simplified model without
loss of generality in this mechanistic study.

In the simulation, a fluid system with variational densities and viscosities is used to
treat the air and water simultaneously. The fluid motion is governed by the incompressible
Navier–Stokes equations and continuity equation as follows:

∂ui

∂t
+ ∂(uiuj)

∂xj
= − 1

ρ

∂p
∂xi

+ gi + 1
ρ

∂σij

∂xj
+ 1
ρ

Ti, (2.1)

∂uj

∂xj
= 0. (2.2)

In the above equations, xi (i = 1, 2, 3) denote the Cartesian coordinates (x, y, z), ui are the
(u, v,w) components of the flow velocity, ρ is the density of the fluid, p is the dynamic
pressure, gi (i = 1, 2, 3) indicate the components of the gravitational acceleration, σij =
μ(∂ui/∂xj + ∂uj/∂xi) (i, j = 1, 2, 3) denote the components of the stress tensor, Ti (i =
1, 2, 3) denote the components of the surface tension at the air–water interface, and μ is
the dynamic viscosity.
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50 dc

Ventilation source

Cavitator

Cavitator

Ventilation source

Cavity interface

y

xWater inf low

0.3dc

0.6dc

1dc

1dc
u0

Inlet

Outlet

5
0
 d

c

z

y
x

(b)

(a)

Figure 1. Schematic of the simulation set-up: (a) computational domain, and (b) cavity, cavitator and
ventilation source. The blue arrow on the left of the cavitator indicates the water inflow direction. The green
arrows indicate the air ventilation directions.

2.2. Numerical methods
The momentum equations (2.1) are spatially discretized using the second-order central
difference scheme. Several considerations were noted when we adopted this scheme. First,
this scheme is simple to implement and requires less computational time per step than
other approaches. Furthermore, this scheme works robustly with our approach for solving
the Poisson equation. Moreover, the short stencil of this scheme allows us to implement
the immersed boundary method and the coupled level set and volume-of-fluid (CLSVOF)
method, and increases the numerical robustness. Finally, this scheme is numerically
non-dissipative, which enables the DNS to resolve turbulent motions over a wide range of
scales. The second-order Runge–Kutta (RK2) method is employed for time advancement.
To enforce the continuity equation (2.2), the fractional-step method (Kim & Moin 1985)
is utilized at each substep of the RK2 method. The pressure is obtained by solving the
Poisson equation as follows:

∂

∂xi

(
1
ρ

∂p
∂xi

)
= 1

Δt

(
∂u∗

j

∂xj
− SΦ

)
, (2.3)
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where Δt is the time step, and u∗ is the intermediate velocity in the projection method
without adding the pressure gradient in (2.1). Moreover,

S = u04π(0.5ds)
2

4
3π(0.5ds)3

= 10u0

dc
(2.4)

is the divergence constant in the ventilation source, Φ is a Heaviside function that
equals 1 inside the ventilation source and 0 otherwise, ds = 0.6dc is the diameter of the
ventilation source, and u0 is the uniform air ventilation speed (sketched in figure 1a). The
uniform air ventilation speed u0 can be calculated using the air entrainment coefficient
Cq = Q/(U∞d2

c ), where Q is the air ventilation rate:

u0 = Cq(U∞d2
c )

4π(0.5ds)2
= 25CqU∞

9π
. (2.5)

Equation (2.3) is a Poisson equation with a large matrix because it involves grid points
in three dimensions. The direct inversion of such a large matrix is computationally
prohibitive. As a result, this matrix needs to be solved with an iterative method. Moreover,
the simulations must be performed on large parallel computers, which increases the
computational costs. The portable extensible toolkit for scientific computation (PETSc)
package has been applied in many previous studies (see e.g. Balay et al. 2017; Yang, Deng
& Shen 2018; Gao, Deane & Shen 2021b) and has been shown to be computationally
efficient and robust in solving the Poisson equation. Thus this package is adopted in this
study.

The air–water interface is captured using the CLSVOF method (Sussman & Puckett
2000). The level set function ψ describes the distance to the air–water interface, with
positive and negative values in the water and air, respectively. The zero value of ψ
corresponds to the interface. The norm of the gradient of ψ is identically unity, i.e.

|∇ψ | = 1. (2.6)

The governing equation of ψ takes the form

∂ψ

∂t
+ uj

∂ψ

∂xj
= 0, (2.7)

which can be spatially discretized by applying a second-order essential non-oscillatory
scheme (Shu & Osher 1989), and integrated over time with a second-order
operator-splitting method. A reinitialization procedure (Min 2010) is employed to ensure
that the advected ψ is the signed-distance function described by (2.6).

The air and water phases are recognized by their density and viscosity, which are
determined based on the level set function ψ as

ρ = H(ψ) ρw + (1 − H(ψ)) ρa, (2.8)

μ = H(ψ)μw + (1 − H(ψ)) μa, (2.9)

where H(ψ) is the Heaviside function, ρw and ρa are the densities of water and air, and μw
and μa are the dynamic viscosities of water and air, respectively. In the simulation, these
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values are smoothed near the air–water interface as

H(ψ) =

⎧⎪⎨⎪⎩
0, ψ < −ε,
1
2

[
1 + ψ

ε
+ 1

π
sin
(
ψπ

ε

)]
, |ψ | ≤ ε,

1, ψ > ε.

(2.10)

Here, ε is the half-thickness of the diffusion region. According to our previous research
(Yang et al. 2018), ε is set to three times the smallest grid size.

The volume-of-fluid (VOF) method, which captures the interface according to the colour
function φ, is implemented to enforce mass conservation for each fluid phase. Here, φ is
the volume fraction of water in a grid cell, which is equal to 1 in the water, and 0 in the
air. The governing equation of φ is

∂φ

∂t
+ ∂(ujφ)

∂xj
= 0, (2.11)

which is solved by using the conservative VOF method (Weymouth & Yue 2010).
The CLSVOF method proposed by Sussman, Smereka & Osher (1994) is used to couple

ψ and φ. Before solving the advection equations (2.7) and (2.11) in each time integration
substep, the level set function ψ is used to determine the normal direction of the interface
in each grid cell. The coefficients in the normal direction are calculated by minimizing a
weighted summation of the distances from the surrounding nodes to the interface. After
obtaining the interface function in each grid cell, a piecewise linear interface calculation
algorithm is used to calculate the flux of φ, which is used to advect φ. Then φ is used
to adjust the values of the advected ψ near the interface to maintain mass conservation.
Details on the CLSVOF algorithm and its applications in a variety of multifluid problems
can be found in previous papers by our group, including Hu et al. (2012), Yang et al. (2017,
2018) and Gao et al. (2021a).

To capture the effect of the submerged cavitator on the flow, the immersed boundary
method (Mittal & Iaccarino 2005; Kim & Choi 2019) is employed in the flow solver
(Cui et al. 2018), wherein an appropriate body force is applied on the grid points near
the cavitator surface to enforce the no-slip boundary condition. The immersed boundary
method can be applied to resolve solid bodies in Cartesian grids instead of in body-fitted
grids, thereby simplifying the algorithm and reducing the computational time. Figure 2
shows a typical instantaneous cavity in our simulation. Several ventilated cavitation
components are indicated in the figure, including the interface, which is the air–water
boundary, the front part, which is the main body of the cavity, and the closure part, which
is the rear portion of the cavity from which air escapes and where the two phases mix
violently. To further illustrate these dynamics, a supplementary movie is provided. It offers
a real-time visual representation, specifically highlighting the violent mixing process and
the escape of air packets from the closure part of the cavity (see supplementary movie
available at https://doi.org/10.1017/jfm.2023.431).

2.3. Computational parameters
The 50dc × 50dc × 50dc (length × height × width) computational domain is discretized
using a stretched Cartesian mesh grid. The length of the computational domain is enlarged
to the maximal possible range according to the available computational resources to ensure
that the outlet boundary condition has an insignificant effect on the ventilated cavitation.
We conducted three simulations using different mesh grids with various resolutions,
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Interface

Cavitator

Front part Closure part

Leaking air

y

z x

Figure 2. Visualization of a cavity with various components. The isosurfaces of ψ = 0 (blue) and the disk
cavitator (green) are plotted.

50 dc

50 dc

N = 320

N = 1440

4 dc

18 dc

y

x

Figure 3. Sketch of the mesh grid M3 on the midplane of the computational domain, where the red dashed
rectangle indicates the refined mesh region, and the green rectangle denotes the disk cavitator. For illustration
purposes, only one of every four grid points in each direction is plotted.

which are denoted as M1, M2 and M3. The grids M1, M2 and M3 have 400 × 96 × 96,
800 × 192 × 192 and 1600 × 384 × 384 grid points, respectively. The mesh grid is
refined around the cavitator and is coarsened progressively along the (x − xc)/dc < 4 and
(x − xc)/dc > 18 directions (figure 3). Table 1 lists the grid resolution in terms of the
minimum cell size Δmin, the time step Δtf , the grid number, the number of cores used for
the parallel computing, and the total core-hours spent on the simulations.

The M1 simulation was performed until the size of the cavity became statistically stable
at approximately tc = 700dc/U∞. The simulation was continued for tc = 500dc/U∞ to
obtain the flow statistics. Then the M2 and M3 simulations were initialized by interpolating
the M1 simulation flow field data at t = tc to the mesh grids with higher resolutions.

The flow statistics of the M2 and M3 simulations are calculated after transient periods
t = 3.8dc/U∞ and t = 5.2dc/U∞, respectively, during which the flows adjust to the
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Mesh grids Total
and runs dc/Δmin Δtf U∞/dc No. of cells No. of cores core-hours

M1 20 2.0 × 10−3 3.69 × 106 128 ∼ 8 × 104

M2 40 2.0 × 10−3 2.95 × 107 1024 ∼ 1 × 105 (started from t = tc)
M3 80 1.0 × 10−3 2.36 × 108 8192 ∼ 3 × 106 (started from t = tc)

Table 1. Summary of simulation runs.

statistical stationary status under the new grid resolutions. The flow statistics of the M2
and M3 simulations are calculated over durations t = 480dc/U∞ and t = 440dc/U∞,
respectively.

The time step is set based on the stability criteria (Ling et al. 2019)

Δt ≤ Δtconv = c
min

umax
, (2.12)

Δt ≤ Δtvis = 
2
min

6ν
, (2.13)

where c is the Courant–Friedrichs–Lewy (CFL) number, Δtconv is the time step restriction
for the convection term, and Δtvis is the time step restriction for the viscous term.
Take simulation M3 as an example. The CFL number c is set to 0.4, Δmin/dc = 0.01,
Δtconv U∞/dc = 0.005 and Δtvis U∞/dc = 0.01. Therefore, we set the time step as Δt =
2 × 10−3 to ensure computational stability. The numerical method and grid resolution
selection approach are validated by comparisons with data in the literature and grid
convergence tests, and the details are provided in Appendix A.

Ventilated cavitating flows are characterized by several dimensionless parameters,
including: the cavitation number σc = ( p∞ − pc)/(0.5ρwU2∞), where p∞ and pc are the
pressure of the incoming flow and the pressure inside the cavity, respectively; the air
entrainment coefficient Cq = Q/(U∞d2

c ); the Froude number Fr = U∞/
√

gdc, where g is
the gravitational acceleration; the Reynolds number Re = ρwU∞dc/μw; the blockage ratio
B = dc/DT , where DT represents the hydraulic diameter of the water tunnel cross-section;
and the Weber number We = ρwU2∞dc/σT , where σT is the surface tension coefficient.
Note that the definition of σ considers only the ventilation effect, which is consistent with
previous studies, e.g. Ahn et al. (2017), as the vaporized liquid is negligible compared with
the ventilated gas. In this study, we are interested in the scenario in which the gravitational
effect is negligible; thus we set Fr to ∞. In this case, the flow field is axisymmetric, and
the closure mode is RJ. Because most of the cavity has a small curvature and surface
tension effects are negligible, We is set to ∞. The other dimensionless parameters are
set as Cq = 0.14, Re = 1000 and B = 1.8 %. A relatively small Reynolds number is
chosen to resolve all the turbulent eddies in the cavity by the DNS without introducing
a turbulence model. Although the Reynolds number is considerably higher (105–107) in
practice, the present DNS approach is still a useful research tool that provides insight into
the fundamental dynamics of flow physics (Moin & Mahesh 1998). In a previous study, we
found that B = 1.8 % is sufficiently small to prevent blockage effects. The density ratio is
set to ρa/ρw = 0.0012, and the dynamic viscosity ratio is set to μa/μw = 0.0154, which
are realistic values for air and water.
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Low-Reynolds-number ventilated cavity flow

3. Flow statistics

Although the simulation is conducted on a Cartesian grid, the data must be transformed
from Cartesian coordinates, namely (x, y, z), to cylindrical coordinates, namely (r, θ, x),
to analyse the flow field, which is statistically axisymmetric because Fr = 0, as explained
in § 2.3. The transformation is performed as follows:

r =
√

y2 + z2 (3.1)

and

θ = tan−1
(

z
y

)
. (3.2)

Finally, x remains the same in both coordinate systems.
The vector components in the cylindrical coordinate system, namely ( fr, fθ , fx), can

be calculated according to the components in the Cartesian coordinate system, namely
( f1, f2, f3), as follows:

fr = f2 cos(θ)+ f3 sin(θ), (3.3)

fθ = −f2 sin(θ)+ f3 cos(θ), (3.4)

and

fx = f1. (3.5)

After the simulation reaches a fully turbulent and statistically steady state, the mean
quantity of a variable f , denoted as f̄ , can be determined by averaging over both the
azimuthal direction and time as

f̄ (x, r) = 1
2π(t2 − t1)

(∫ 2π

0

∫ t2

t1
f (r, θ, x, t) dt dθ

)
. (3.6)

The integration in the azimuthal direction is performed numerically as

∫ 2π

0
f (r, θ, x, t) dθ =

Nz∑
k=1

Ny∑
j=1

f (xi, yj, zk)Hr(rjk)

Nz∑
k=1

Ny∑
j=1

Hr(rjk)

, (3.7)

where i, j and k are the indices of discretized grid points in the x, y and z directions, and

Hr(rjk) =
{

1, |rjk − r| < Δr/2,
0, other area,

(3.8)

with

rjk =
√

y2
j + z2

k, (3.9)

Δr = c(ΔxΔyΔz)1/3. (3.10)

In the above equations, c is a constant that is set to 1.9 to ensure that∑Nz
k=1

∑Ny
j=1 Hr(rjk) > 0 for all considered r values and that f̄ is not oversmoothed.
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Figure 4. Contours of the mean volume fraction of water φ̄ and the streamlines of the mean flow field ū.

Statistical averaging is performed over a duration 80dc/U∞, as a fluid particle can travel
through the computational domain during this period.

To consider the density difference between the water and gas phases, density-weighted
averaging, which is also known as Favre averaging, is employed to analyse the results. The
Favre average is expressed as

f̃ = ρf
ρ̄
. (3.11)

The fluctuations are thus defined as

f ′ = f − f̄ (3.12)

and
f ′′ = f − f̃ . (3.13)

3.1. Mean flow
Figure 4 shows the contours of the mean volume fraction of water superimposed over
the streamlines of the mean flow, which are obtained based on the time and azimuthal
averages (3.6). The streamlines indicate the presence of a recirculation zone inside the
cavity, in which the air travels forwards near the air–water interface but backwards near
the central axis of the cavity. The mean profile of the cavity is defined by the isoline
of the mean volume fraction at φ̄ = 0.5. Figure 5 shows the contours of the mean volume
fraction of water and the corresponding isolines at the closure of the cavity. The value of φ
inside the closure region is within the range 0.2–0.8, which implies that the air and water
mix violently in this region. Moreover, the contour pattern is concave near the central
axis, which is due to the jet flow of the outside water. The underlying physics of this
phenomenon is discussed further in the rest of § 3, as well as in §§ 4 and 5.

The streamwise and radial velocities of the air phase are defined as (Kinzel et al. 2009)

ux,a = (1 − φ)u (3.14)

and
ur,a = (1 − φ)ur, (3.15)

where ur is the radial velocity, which is calculated according to (3.3). They characterize the
streamwise and transverse motions of air inside the cavity, as they equal the local velocities
if the position is in the air phase, zero in the water phase, and (1 − φ)u and (1 − φ)ur in
grid cells with two phases.

Figures 6(a,b) show ūa and ūr,a inside the cavity. Figure 6(a) indicates that forward and
backward motions occur inside the cavity in the red-coloured and blue-coloured areas,
respectively. Figure 6(b) shows that compared with the streamwise velocity, the radial
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Low-Reynolds-number ventilated cavity flow
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0
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(x – xc) /dc

13.0 13.5 14.0

Figure 5. Contours of the mean volume fraction of water, φ̄, and the corresponding isolines in the closure
region of the cavity.

velocity of the air flow is negligible, except in the regions near the head and rear of the
cavity. The φ̄ = 0.5 contour through the red-coloured region indicates that the air moves
outwards and approaches the interface at the head of the cavity before travelling inwards
towards the central axis near the rear part of the cavity. These results are consistent with
the flow pattern shown in figure 4.

Figures 6(c,d) display the contours of ūa in the middle and closure regions of the cavity.
Figure 6(c) demonstrates that two flow structures dominate in the middle part of the cavity:
the shear layer (SL), corresponding to the red-coloured contour area near the interface, and
the recirculation area (RA), corresponding to the blue-coloured area near the streamwise
central axis. In the SL, the flow is characterized by high local shear. In the RA, the fluid
particles move backwards towards the cavitator and decelerate. Another characteristic flow
structure, known as the jet layer (JL), can be observed outside the cavity near the closure
region, as depicted in figure 6(e). One branch of the jet moves backwards and re-enters
the bubble as a two-phase mixed fluid, while the other jet branch moves forwards into the
wake.

The structures of the SL and RA have been discussed in previous studies (Callenaere
et al. 2001; Spurk 2002; Kinzel et al. 2009). To the best of our knowledge, however,
no previous studies have investigated the JL in ventilated cavitating flows. Moreover, the
relationships between the SL, RA and JL and the turbulent flow in a cavity have not yet
been elucidated. In the present study, the roles of these structures in turbulence generation
and transport are investigated in § 4. Moreover, in § 5, their relationship with the air leakage
and vortex shedding processes is discussed.

Figures 7(a,b) show the mean air-phase velocity profiles of the streamwise and radial
components at the streamwise locations marked by the vertical lines in figure 6. Figure 7(a)
indicates that the maximum streamwise recirculating velocity, i.e. the maximum negative
ūa, occurs at the central axis of the cavity. Moreover, its magnitude increases along the
streamwise direction. The peak of the positive ūa occurs near the air–water interface of the
cavity. This value increases until the maximum cavity radius at (x − xc)/dc ∼ 6, and then
decreases. Figure 7(b) shows that the peak value of the mean radial velocity ūr,a decreases
before this point and then increases with the opposite sign. Furthermore, figure 7 shows
that the air-phase streamwise motion dominates the radial component inside the cavity. The
air-phase streamwise velocity ux,a is also referred to as the local rate of air entrainment in
the literature (Kinzel et al. 2009).

Figure 8 shows the distribution of the mean cavitation number σ̄c along the central axis.
Near the closure region, σ̄c decreases suddenly due to the increase in pressure caused by
stagnation inside the JL. However, σ̄c remains constant inside the cavity.
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(x – xc)/dc

Figure 6. Contours and profile of the mean air-phase velocities: (a) contours of ūa, (b) profile of ūa along the
central axis, (c) contours of ūr,a, (d) contours of ūa in the region 4.5 < (x − xc)/dc < 8.0 and 0 < r/dc < 1.4,
and (e) contours of ūa in the region 11.5 < (x − xc)/dc < 14.0 and 0 < r/dc < 1. The black rectangle and
green hemisphere in (a,c) denote the cavitator and ventilation source, respectively. The black dashed line
corresponds to the isoline of φ̄ = 0.5. The vertical solid lines in (a,c) indicate the locations where the
cross-sectional profiles are plotted in figure 7. The green dashed rectangles correspond to the locations of (d,e).

3.2. Vortex dynamics
Because of the difficulty in obtaining measurements inside the bubble, only a few
experimental studies (e.g. Yoon et al. 2020) on vorticity dynamics in cavities have
been conducted. However, vortex dynamics are important in air leakage, air ventilation
and turbulence production. In the present paper, characteristic vortex structures and the
corresponding vortex dynamics are studied in the various parts of the cavity to elucidate
the physical mechanisms in the cavity.

Figure 9 shows the contours of the instantaneous azimuthal vorticity ωθ through a
midplane in the computational domain. The upper blue region and lower red region
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Figure 7. Mean air-phase velocity profiles at different downstream locations: (a) streamwise velocity ūx,a,
and (b) radial velocity ūr,a.

0.5

0

–0.5

σ̄

–1.0

0 10 155

(x – xc) / dc

Figure 8. Variation in the mean cavitation number along the central axis in the streamwise direction.

indicate two SL structures at the front of the cavity, and the vorticity is generated mainly by
the shear between the water and air phases. In the closure region, these two SL structures
interact with each other and generate smaller vortex structures. Moreover, some of these
small vortices leave the cavity and enter the wake flow. In the RA, i.e. the front part
of the cavity, alternating red and blue vortex structures can be observed. Near-cavitator
vortices were also observed experimentally by Yoon et al. (2020). However, these vortices
were generated by a different process, namely, the interaction between the injection and
reverse flows. The various mechanisms are caused by the differences in the ventilation
settings between the present simulation and the experiment by Yoon et al. (2020). Yoon
et al. (2020) set the direction of the injection flow towards the reversal flow, which caused
interactions between the two flows, thus generating vortices. In contrast, in the present
simulation, we used a spherical source to ventilate air into the cavity, which does not
lead to strong interactions between the ventilated air and the reversal flow. The vortices
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Figure 9. Contours of the instantaneous vorticity component ωθ on a midplane in the computational domain.

observed in our simulations are generated mainly in the closure region and convected
backwards by the recirculating flow.

The square of the vorticity, ζ = (ω2
x + ω2

y + ω2
z )/2, represents the enstrophy per unit

mass. In this work, this quantity is employed to evaluate the intensity of vortex structures
to study the vortex dynamics in the cavity. Specifically, the enstrophy is decomposed into
two parts: ζ = ζx + ζyz, where ζx = ω2

x/2 is the streamwise enstrophy caused by spiral
motions in the cross-sectional plane, and ζyz = ω2

yz = (ω2
y + ω2

z )/2, which denotes the
transverse enstrophy and is related mainly to shear motion in the x–r plane.

Figure 10 shows the contours of the mean enstrophy ζ̄ and its two components ζ̄x and
ζ̄yz. Figure 10(a) indicates that strong vortical motions occur in the SL in the front and
closure regions of the cavity. Figure 10(b) shows that strong streamwise vorticity occurs
only in the closure region. Moreover, figure 10(c) suggests that strong transverse vortices
occur not only in the closure region of the cavity but also in the SL in the front part. In
the closure region, the transverse enstrophy is larger than the streamwise enstrophy. The
dominance of transverse vortical motions inside the cavity is attributed to the strong shear
at the air–water interface. The strong streamwise vortical motion in the closure region
suggests that the flow in this area transitions to a more three-dimensional and isotropic
state due to the strong mixing between the two fluid phases in this region.

To elucidate the underlying physics of the vortex dynamics in the cavity, the mean
enstrophy distributions along the radial direction are examined. Figure 11 shows the
profiles of the mean enstrophy (ζ̄ ) and its two components (ζ̄x and ζ̄yz) at different
streamwise locations (see the vertical lines in figure 10) inside the cavity. The peak value
of the transverse enstrophy ζ̄yz occurs near the interface of the cavity, where the shear
effect is strong. The peak ζ̄yz remains approximately constant at the front (comparing
(x − xc)/dc = 2, 4, 6, 8, 10) and becomes larger in the closure region ((x − xc)/dc = 12).
However, the peak value of the streamwise enstrophy increases along the downstream
direction until the closure region. The above variations occur because the transverse
vortical motion is caused by the two-phase shear effect, which maintains a nearly constant
strength in the SL in the front region, while the streamwise vortical motion is ascribed to
the development of turbulence, which gradually intensifies along the streamwise direction.

To study the vortex dynamics and identify the governing mechanism during the
cavity–turbulence interaction, we examine the enstrophy budget equation, which is
expressed as

∂(1
2ωiωi)

∂t
+ ∂(1

2ωiωiuj)

∂xj
= ωiωj

∂ui

∂xj︸ ︷︷ ︸
Ws

+ 1
ρ2 ωiεijk

∂ρ

∂xj

∂p
∂xk︸ ︷︷ ︸

Wb

+ωiεijk
∂

∂xj

(
1
ρ

∂σkl

∂xl

)
︸ ︷︷ ︸

Wv

.

(3.16)
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Figure 10. Contours of the mean enstrophy and its components: (a) ζ̄ , (b) ζ̄x, and (c) ζ̄yz. The dashed line
represents the isoline of φ̄ = 0.5. The vertical solid lines indicate the locations of the cross-sectional profiles
in figure 11.
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Figure 11. Profiles of the mean enstrophy and its components at different downstream locations: (a) ζ̄ , (b) ζ̄x,
and (c) ζ̄yz.
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Figure 12. Contours of the mean budget terms in the enstrophy equation (3.16): (a) the stretching effect term
Ws, (b) the baroclinic effect term Wb, and (c) the viscous effect term Wv . The dashed line indicates the isoline
of φ̄ = 0.5. The vertical solid lines indicate the locations of the cross-sectional profiles in figure 13.

This equation is derived from the variable-density Navier–Stokes equations (2.1). The
vortex dynamics is governed by three terms, namely, the stretching effect term Ws, the
baroclinic effect term Wb, and the viscous effect term Wv in (3.16). These effects are
displayed in figure 12. The stretching and baroclinic effects are responsible for generating
enstrophy, while the viscous term dissipates enstrophy. Figure 12 shows that all three
effects are weak at the front part of the cavity and strong in the closure region.

Moreover, we obtained the radial distributions of the three budget terms. Figure 13
shows the profiles of these three terms at different downstream locations. The magnitudes
of the baroclinic and viscous terms are comparable and dominate the stretching term. The
baroclinic effect plays an essential role in the production of enstrophy, while the baroclinic
and viscous terms nearly cancel one another. In addition, the peak values of the three terms
occur near the air–water interface in the cavity, and tend to increase along the downstream
direction due to the increasing intense interaction between the air and water phases.

3.3. Reynolds stresses
Reynolds stresses play important roles in momentum transport and the interaction between
turbulent fluctuations and the mean flow, which is responsible for the production of TKE.
Previous studies have investigated Reynolds stress distributions in sheets and attached
cavitation processes (Gopalan & Katz 2000; Iyer & Ceccio 2002). However, less is
known about the Reynolds stress distribution in artificial ventilated cavitation processes.
The present simulation data can be used to address this knowledge gap. In an air–water
two-phase flow, Reynolds stresses are defined with a variable density. The Favre-averaged
momentum equations for a variable-density flow are written as

∂(ρ̄ũi)

∂t
+ ∂(ρ̄ũiũj)

∂xj
= − ∂ p̄

∂xi
−
∂ρ̄ ũ′′

i u′′
j

∂xj
+ ∂σ̄ij

∂xj
, (3.17)
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Figure 13. Profiles of the mean budget terms in the enstrophy equation (3.16) at different streamwise
locations: (a) stretching effect term W̄s, (b) baroclinic effect term W̄b, and (c) viscous effect term W̄v .

where
τR

ij = −ρ̄ ũ′′
i u′′

j , (3.18)

is the Reynolds stress tensor. In RANS simulations, the Reynolds stresses need to be
closed in terms of the mean quantities. To develop models to describe cavitating flows in
the future, we study the structural characteristics and spatial distribution of the Reynolds
stress. Because of the axisymmetry of the cavitating flow under investigation, the Reynolds
stress components τR

xθ and τR
rθ are zero. Therefore, only the four independent components

of the Reynolds stress tensor, namely, τR
xx, τR

rr, τR
θθ and τR

xr, are considered in the discussions
below.

Figure 14 shows the contours of the four components of the Reynolds stress tensor.
To visualize the distributions more clearly, we also depict profiles of the Reynolds stress
components at several downstream locations in figure 15. As shown in the figures, in the
front part of the cavity, τR

xx is the dominant component of the Reynolds stress, while
the other components are negligibly small. Figure 15(a) indicates that the maximum
magnitude of τR

xx occurs at the air–water interface, where strong interactions occur between
the two phases, and the peak value increases in the downstream direction. Figures 15(b,c)
show that τR

rr and τR
θθ are similar in the closure region of the cavity, indicating that

the flow becomes more isotropic in this region. Moreover, figure 14(d) shows that τR
xr
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Figure 14. Contours of the Reynolds stress components: (a) τR
xx, (b) τR

rr, (c) τR
θθ , and (d) τR

xr. The black dashed
line denotes the isoline of φ̄ = 0.5. The vertical lines indicate the locations where the cross-sectional profiles
are plotted in figure 15.

is mostly positive. The quadrant analysis in Appendix B shows that the positive τR
xr

component is associated with the dominant contributions of the Q2 and Q4 quadrants
over the Q1 and Q3 quadrants of the Reynolds shear stress. Similarly, the peak value of τR

xr
tends to occur near the two-phase interface, and increases along the streamwise direction.

In summary, the following conclusions can be drawn according to the Reynolds stress
analysis. First, the peak value of the streamwise component of the Reynolds stress occurs
near the air–water interface, and this component dominates the other components in most
of the cavity. Second, the Reynolds stresses become stronger near the closure region, and
the diagonal components are comparable, indicating that the flow becomes more turbulent
and isotropic in this region.

4. Turbulence and energy budget

The TKE dynamics is particularly important in turbulence modelling. In the present
multiphase flow study, based on the Favre average and the fluctuations defined in (3.11)
and (3.13), the TKE is defined as

q = 1
2 u′′

i u′′
j . (4.1)

Turbulence occurs predominantly in the closure region and tends to be concentrated in
the JL structure. Figure 16 plots the contours of the Favre-averaged TKE q̃ in this region.
The TKE isolines qualitatively resemble a group of ellipses. Their centre occurs near the
stagnation point in the JL, where the TKE obtains its peak value. The strong turbulence is
caused by the violent mixing of air and water in this region. To further evaluate the isotropy
of turbulence in the cavity, we consider the TKE fraction function (Liu & Xiao 2016),
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Figure 15. Profiles of the Reynolds stress components at different streamwise locations: (a) τR
xx, (b) τR

rr,
(c) τR

θθ , and (d) τR
xr.

which is expressed as

fq = 2 ũ′′
1u′′

1

ũ′′
2u′′

2 + ũ′′
3u′′

3

. (4.2)

This fraction is twice the ratio of the TKE associated with streamwise fluctuations to
that associated with transverse fluctuations. If fq ∼ 1, then the turbulence reaches an
approximately isotropic state. Figure 17 displays the contours of fq in the same closure
region as shown in figure 16. The peaks occur near the shear layer and the stagnation
point in the JL. The peak values are larger than 3.0, which indicates that the streamwise
component of the TKE is considerably stronger than the transverse component of the TKE
in both SL and JL.

To elucidate the mechanisms responsible for generating and transporting TKE, we
examine its budget equation based on density-weighted averaging as follows:

0 = − ∂

∂xj
(ρ̄q̃ũj)︸ ︷︷ ︸
Πc

− ρu′′
i u′′

j
∂ ũi

∂xj︸ ︷︷ ︸
Πd

− ∂

∂xj

[
u′′

j

(
1
2
ρu′′

i u′′
i

)]
︸ ︷︷ ︸

Πtt

− u′′
i
∂p
∂xi︸ ︷︷ ︸

Πp

+ ∂

∂xj

(
u′′

i σ
′
ij

)
︸ ︷︷ ︸

Πvt

− σ ′
ij
∂u′′

i
∂xj︸ ︷︷ ︸
ε

,

(4.3)
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Figure 16. Contours of the Favre-averaged TKE, q̃. The green solid lines are the isolines of q̃, and the black
dashed line corresponds to the isoline of φ̄ = 0.5.
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Figure 17. Contours of the TKE fraction function, fq. The green solid lines are the isolines of fq, and the
black dashed line corresponds to the isoline of φ̄ = 0.5.
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Figure 18. Contours of the viscous dissipation term ε. The green solid lines are the isolines of ε, and the
black dashed line corresponds to the isoline of φ̄ = 0.5.

whereΠc = −∂(ρ̄q̃ũj)/∂xj is the mean flow advective transport,Πd = −ρu′′
i u′′

j ∂ ũi/∂xj is

the production, Πtt = −∂[u′′
j (

1
2ρu′′

i u′′
i )]/∂xj is the turbulent transport, Πp = −u′′

i ∂p/∂xi

is the pressure transport, Πvt = ∂(u′′
i σ

′
ij)/∂xj is the viscous transport, and ε = σ ′

ij ∂u′′
i /∂xj

is the viscous dissipation. The numerical results show that Πtt and Πvt are negligible (not
plotted here). Therefore, in the discussions below, we focus on the remaining terms.

Figure 18 shows the contours of the dissipation term ε in the closure region, where
the TKE is the largest (figure 16). The contour pattern is qualitatively similar to that of
the TKE, especially in the JL region, as depicted in figure 16. The maximum dissipation
occurs in the vicinity of the stagnation point. As is well known, ε is always positive and
transforms TKE into internal energy.
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Figure 19. Contours of the advective transport term Πc. The green lines with arrows indicate the streamlines,
the black dashed line corresponds to the isoline of φ̄ = 0.5, and the black solid lines represent the TKE isolines.

Figure 19 displays the contours of the advective transport component Πc. The blue
contour in the SL indicates that energy is convected out of this region by the mean flow,
and the red contour in the JL region suggests that the mean flow convects the energy
into this area. This TKE transport phenomenon can be explained as follows. We can
rewrite Πc as Πc = −ρ̄ũk ∂q/∂xk = −v · ∇q. Additionally, figure 19 displays the TKE
isolines. Here, ∇q is normal to these isolines and points towards the stagnation point. The
streamlines are plotted as green lines with arrows. In the SL, the mean flow moves towards
the stagnation point, leading to negative Πc (−v · ∇q < 0). Thus TKE is convected out
of the SL region. However, in the JL, the mean flow moves away from the stagnation
point, leading to positive Πc (−v · ∇q > 0). Therefore, TKE is convected into the two JL
branches.

The contours of the TKE production term Πd are plotted in figure 20(a), which shows
different characteristics in the SL and JL regions. The positive contour values in the
red-coloured region indicate that kinetic energy is transferred from the mean flow to the
turbulent flow by Πd in the SL, while the negative contour values in the blue-coloured
region indicate that energy is transferred in the reverse direction. To elucidate the
physical mechanism underlying this energy transfer process, we decompose Πd into three
components:

Πd = −ρu′′
i u′′

j
∂ ũi

∂xj
= Πdx +Πdt +Πds, (4.4)

where Πdx = −ρu′′
1u′′

1 ∂ ũ1/∂x1 represents the production due to streamwise stretching
effects,Πdt = −(ρu′′

2u′′
2 ∂ ũ2/∂x3 + ρu′′

3u′′
3 ∂ ũ3/∂x3) is the production due to the transverse

motion, and Πds = −(ρu′′
1u′′

2 (∂ ũ1/∂x2 + ∂ ũ2/∂x1)+ ρu′′
3u′′

1 (∂ ũ3/∂x1 + ∂ ũ1/∂x3) is the
production due to shear effects. Figure 20(b) shows that Πdx is negative in both the SL
and JL. Figure 20(c) indicates thatΠdt is positive and concentrated in the JL. Figure 20(d)
shows that Πds is mainly positive and concentrated in the SL. Note that Πd is positive in
the SL and negative in the JL. Therefore, Πds dominates in the SL, while Πdx dominates
in the JL. To further assess the relative importance of the above terms, we calculate the
fraction functions of the magnitudes of different terms as

fdx = |Πdx|/(|Πdx| + |Πdt| + |Πds|), (4.5)

fdt = |Πdt|/(|Πdx| + |Πdt| + |Πds|), (4.6)

and

fds = |Πds|/(|Πdx| + |Πdt| + |Πds|). (4.7)
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Figure 20. Contours of the TKE production term and its components: (a) Πd , (b) Πdx, (c) Πdt, and (d) Πds.
The black dashed line represents the isoline of φ̄ = 0.5.

In both the SL and JL, compared with fdx and fds, fdt is negligible (not plotted). The
contours of fdx and fds are depicted in figures 21(a,b): fdx is concentrated in the JL,
while fds dominates in the SL. These results can be explained by the distributions of the
Reynolds stress and mean strain rate in the closure region of the cavity. In the SL, the shear
effect leads to a positive and strong ∂ ũx/∂r. Moreover, the Reynolds stress τR

xr is positive
and non-negligible. Hence the TKE production rate is dominated by the positive Πds
component. However, in the two JL branches, the jet flow increases the stretch-strain rate
components, i.e. the jet flow generates negative ∂ ũr/∂r and positive ∂ ũx/∂x components
with large magnitudes.

Note that the streamwise Reynolds stress dominates in the JL (see figure 17).
Consequently, the TKE production rate is dominated by the negative Πdx component in
the JL because of the negative τR

xx and positive ∂ ũx/∂x.
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Figure 21. Contours of the fraction functions of the components of Πd: (a) fdx, and (b) fds. The black dashed
line represents the isoline of φ̄ = 0.5.

The TKE pressure transport term can be decomposed into three parts:

Πp = −u′′
k
∂p
∂xk

= Πpm +Πpt +Πpd, (4.8)

where Πpm = −u′′
k ∂ p̄/∂xk is the transport due to the mean pressure gradient, Πpt =

−∂p′u′′
k/∂xk is the transport due to the pressure–velocity fluctuation correlation, and

Πpd = p′ ∂u′′
k/∂xk is the transport due to the dilatation effect. Note that Πpd decreases

because of the incompressibility of the two phases. The contours of Πpm and Πpt are
displayed in figures 22 (a,b). The figure shows that Πpm is positive in both the SL and
JL, which enhances the TKE in the closure region of the cavity. On the other hand, Πpt is
largely negative in the SL and tends to transport TKE from the SL region to the JL region.

To summarize § 4, figure 23 illustrates the energy transfer processes among the turbulent
flows in the SL and JL regions and the mean flow. The aforementioned results show that
the SL and JL structures have distinct characteristics during TKE generation and transport.
In the SL, the TKE is increased by the production term due to the shear effect term Πds,
while in the JL structure, the TKE decreases due to the streamwise stretching effect term
Πdx. The pressure transport term Πpm tends to enhance the TKE in both the JL and SL.
Moreover, the mean flow advective transport term Πc and pressure transport term Πpt are
conducive to transporting TKE from the SL to the JL.

5. Air leakage and vortex shedding

In ventilated cavitation, some air escapes from the cavity through the closure part, where
violent flow mixing between water and air occurs. Wu et al. (2019) conducted experiments
and used particle image velocimetry to study quantitatively the gas leakage process that
occurred in the RJ and TV closure modes. Moreover, they discussed the variation in gas
leakage during the transition between the RJ and TV modes. Their results indicated that
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Figure 22. Contours of the pressure transport terms: (a) Πpm, and (b) Πpt. The black dashed line denotes the
isoline of φ̄ = 0.5.
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Figure 23. Schematic of the energy transport among the mean flow, SL turbulent flow and JL turbulent flow.

gas leakage occurs due to interactions between the internal and external flows. According
to the present simulation results, we made several observations to elucidate the flow
characteristics and dynamics in the RJ closure region of the cavity.

First, the simulation data indicate that the air leakage process in the closure region
has a one-to-one correspondence with the vortex shedding process, as shown by the
instantaneous visualization of the flow. Previous studies (Shao et al. 2017; Karn, Arndt
& Hong 2016) have shown that the RJ mode leaks gas via toroidal-like vortices. However,
these works did not connect the gas leakage to the vortex shedding process. Figures 24(a,b)
plot the isosurfaces of the VOF function φ = 0.5 and the second invariant of the strain rate
tensor Q = 2, with the former coloured according to the magnitude of the pressure, and the
latter coloured according to the magnitude of φ. The leakage air–water interface exhibits
the same pattern as the vortex structures characterized by Q (Haller 2005).

Furthermore, only a few previous laboratory studies (Karn et al. 2016; Wu et al.
2019) identified the location where the air pockets leave the cavity and the associated
vortex shedding. From our simulation result, flow visualization shows that air leakage
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Figure 24. Instantaneous structures of air leakage and vortex shedding in the closure region of the cavity.
(a) Isosurface of φ = 0.5, which is coloured according to the magnitude of the pressure. (b) Isosurface of the
second invariant of the strain rate tensor (Q = 2), which is coloured according to the magnitude of φ.

and vortex shedding occur within the JL structure in the closure region. The colours in
figure 24(a) illustrate the pressure distribution on the surface of the cavitation bubble. The
disconnection and breakup of the leaked air flow structures from the body of the cavity
occur near the high-pressure region, which corresponds to the stagnant region inside the
JL structure. The vortex structures in figure 24(b) are coloured according to the value of
φ on the isosurface. The results indicate that vortex tubes and rings occur in the violent
air–water mixing region, i.e. the JL region.

Moreover, we observe that the air leakage and vortex shedding processes in the
closure region of the cavity are not random, and these processes exhibit semi-periodic
patterns with intrinsic characteristic frequencies. Few previous experimental works have
investigated the spectra and oscillation patterns of the closure modes due to measurement
limitations. Jiang, Shao & Hong (2018) conducted a spectral analysis of the cavity
length but did not find a dominant oscillation frequency. In the present study, our
three-dimensional simulation results illustrate more details about the oscillations within
the different structures in the closure mode.

To investigate the relationship between the vortex shedding and air leakage processes,
we employ a temporal Fourier transform to obtain the frequency spectra of the radial
velocity E(ur) and the VOF function E(Φ). The results for 10 < (x − xc)/dc < 15 along
the central axis are shown in figure 25. Figures 25(a) and 25(b) both indicate a significant
characteristic frequency, namely St ≈ 0.1, where the spectra reach their local peaks,
indicating that the air leakage and vortex shedding processes share the same characteristic
frequency. Moreover, the spectra are more concentrated in the 12.5 < (x − xc)/dc < 14
region, where the turbulent mixing between the air and water is violent, which contributes
to the strong turbulence within this region.

The air leakage frequency can also be quantified by defining the total air volume as a
function of time in a fixed control volume (CV) bounded by 12.5 < (x − xc)/dc < 14 and
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Figure 25. Frequency spectra of the radial velocity ur and VOF function φ along the central axis:
(a) log10(E(ur)), and (b) log10(E(φ)).

r/dc < 0.8. The total volume of air Va(t) in the CV is expressed as

Va(t) =
∫

x∈CV
φ(x, t) dx. (5.1)

We then define the following normalized autocorrelation function for Va:

RV(Δt) =

∫ T

0
Va(t)Va(t + Δt) dt∫ T

0
Va(t)Va(t) dt

. (5.2)

Figure 26 shows RV(Δt) versus the time interval Δt, normalized by dc and U∞. A peak
occurs at Δt = 11.1dc/U∞, which corresponds to the Strouhal number St = 0.09. This
value is close to the peak in the frequency spectra of the radial velocity and VOF function
(figure 25). In other words, the air leakage and vortex shedding processes occur at the same
frequency, and the two processes are strongly correlated in the closure region in ventilated
cavitating flows.

In summary, figures 24–26 demonstrate several properties about the air leakage and
vortex shedding processes. First, the generation of vortex structures is associated with the
leakage of air bubbles. Both processes occur in the stagnant high-pressure region with
violent turbulent mixing between the air and water phases. Second, the vortex shedding in
the closure region shows a semi-periodic pattern, and an intrinsic characteristic frequency
can be observed in the energy spectra. Third, the air leakage and vortex shedding processes
share the same characteristic frequency. Based on the above results, we summarize the air
leakage and vortex shedding processes in the closure region of the cavity in the sketch
in figure 27. The underlying mechanism can be described as follows. Air is convected
forwards through the SL and then terminates, which is accompanied by the generation of
vorticity in the SL, as shown by Part 1 in the figure. Due to the constant ventilation from
the front part of the cavity, the air cannot remain in the end of the SL region and thus
moves into the JL in the closure region, where the air and water are fully mixed, as shown
by Part 2 in figure 27. Finally, the air leaks and exits the cavity, generating complex vortex
structures that are convected downstream, as depicted in Part 3.
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Figure 26. Normalized autocorrelation function of the bubble volume in the region 12.5 < (x − xc)/dc < 14,
r/dc < 0.8.

1
2 3

SL

JL

Figure 27. Schematic of the air leakage and vortex shedding processes. Part 1: vorticity is generated in the SL
and convected to the end of the cavity. Part 2: the air in the JL in the cavity continues to convect. Part 3: the air
leaks accompanied by the formation of complex large-scale vortex structures.

6. Spectral proper orthogonal decomposition analysis of coherent structures

In this section, we employ the SPOD method (Towne et al. 2018) to extract and analyse
the coherent structures near the closure region of the ventilated cavitating flow. To
perform the SPOD analysis, Ns snapshots of the flow field q acquired at constant time
intervals are decomposed into a set of blocks along the temporal direction as Q =
[q(1), q(2), . . . , q(i), . . . , q(Nfreq)], where i is the index of the block, q = [ux,ur,uθ ] is the
vector of the velocity components in cylindrical coordinates, and Nfreq is the number of
snapshots in each block (Nidhan et al. 2022). To improve our spectral analysis, we include
Novl overlapping snapshots between neighbouring blocks, following the treatment in
Schmidt & Colonius (2020). Therefore, the total number of blocks after this decomposition
can be calculated as

Nblk = Ns − Novl

Nfreq − Novl
. (6.1)

Then a temporal Fourier transform is performed in each block to obtain the projections in
the frequency domain as

q(j)(x, r, θ, t) = Σω q̂(j)ω (x, r, θ) eiωt, (6.2)

where i is the imaginary unit, and ω = 2π St is the angular frequency, which is calculated
according to the Strouhal number St = dcf /U∞. The obtained ensemble of Nblk blocks
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φ̄

Figure 28. Contours of the mean volume fraction of water φ̄ and the streamlines of the mean flow field near
the closure region. The four subdomains D1, D2, D3 and D4, and the whole domain Dt, for the SPOD analyses
are shown. The black dashed line is the isoline of φ̄ = 0.5.

with frequency ω is denoted as Qω = [q̂(1)ω , q̂(2)ω , . . . , q̂
(Nfreq)
ω ]. After the Fourier transform,

we calculate the SPOD eigenvalues and eigenvectors corresponding to the frequency ω via
eigenvalue decomposition as

Q̂∗
ωW Q̂ωΨ ω = Ψ ωΛω, (6.3)

where W is a weighting matrix, and Λω = diag(λ(1)ω , λ
(2)
ω , . . . , λ

(Nblk)
ω ) is a diagonal matrix

containing the eigenvalues ranked according to decreasing energy from j = 1 to Nblk. The
jth SPOD mode Φ(j)ω is computed as

Φ̂ω = Q̂ωΨ ω(Λω)
−1/2. (6.4)

An energy-based inner product is employed to compute the eigenvalues and eigenvectors
by defining the weight matrix W as a trapezoidal integration matrix. Thus the norm can
be calculated as

Q̂∗
ωW Q̂ω =

∫ ∫ ∫
D

Q̂∗
ω diag(1, 1, 1) Q̂ωr dr dx dθ, (6.5)

where D is the domain of interest. More details on the SPOD formulation can be found in
Towne et al. (2018) and Nidhan et al. (2022).

For the SPOD analysis in the present work, we use Ns = 4096 consecutive snapshots
of the plane at z = 0 spanning 9.5 < (x − xc)/dc < 15.5 and 0 < ( y − 0.5Ly)/dc < 1.3,
which includes the closure region of the ventilated cavity. The time interval for the sampled
snapshots is Δtdc/U∞ = 0.1. We select the number of frequencies as Nfreq = 512, and
implement a 50 % overlap between blocks, i.e. Novl = 256, to balance improved spectral
convergence with reduced spectral entanglement between each window in the Fourier
transform. Each data block is multiplied by a Hamming window function before the
Fourier transform to effectively reduce errors due to spectral leakage (Schmidt & Colonius
2020). To study the variation in the eigenspectral features at different locations, we perform
SPOD analyses in four consecutive domains, D1, D2, D3 and D4, which are shown in
figure 28.
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Figure 29. Cumulative fraction of energy in different domains, Cj: (a) as a function of the modal index n;
and (b) as a function of St. The plots are shown for the four considered domains, namely D1, D2, D3 and D4.

We start our analysis of the SPOD modes by studying their relative contributions to
the fluctuation energy. Figure 29(a) shows the cumulative fraction of energy, Cj(n), as a
function of the SPOD modal index n in the four downstream domains D1, D2, D3 and D4,
which is computed as

Cj(n) =

n∑
i=1

Stmax∑
s=Stmin

λ(i)s (Dj)

Nblk∑
i=1

Stmax∑
s=Stmin

λ(i)s (Dj)

. (6.6)

A comparison of the curves among the different subdomains indicates that the relative
energies contributed by the leading SPOD modes increase with the downstream distance.
In addition, we observe that the curves for D1 and D2 essentially collapse onto a single
curve, whereas the curves for D2 and D3 differ considerably, indicating that a transition
occurs between D2 and D3. This result is consistent with our observation in figure 25 that
D3 contains the region where the air and water mix violently and the turbulence intensity
is strong. Moreover, figure 29(a) demonstrates that the first SPOD mode contributes a
significant fraction of the total energy, contributing approximately 60 % of the energy in
D1 and D2, and approximately 70 % and 80 % of the energy in D3 and D4, respectively.
These results indicate low-rank behaviours, which are used to describe scenarios in which
the physical mechanism associated with the leading mode dominates (Schmidt et al.
2018).

The SPOD analyses have shown that low-rank behaviours can be observed in
various flow dynamics, including turbulent stratified wakes (Nidhan et al. 2022),
jet turbulence (Schmidt et al. 2018) and turbulent premixed flames (Brouzet et al.
2020). In the present study, the low-rank behaviour is prevalent near the closure
region of the ventilated cavitating flow, and the results in figure 29(a) show that the
low-rank behaviour becomes stronger with increasing downstream distance in the closure
region.
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The cumulative fraction of energy contributed by SPOD modes as a function of
dimensionless frequencies, measured by St, is computed as

Cj(St) =

St∑
s=Stmin

Nblk∑
i=1

λ(i)s (Dj)

Stmax∑
s=Stmin

Nblk∑
i=1

λ(i)s (Dj)

, (6.7)

which is plotted in figure 29(b). The figure shows that in the downstream direction,
Cj(St) in the range 0 < St < 0.4 first increases (D1 to D3) and then decreases (D3 to
D4). However, Cj(St) in the higher frequency range (0.4 < St) increases monotonically.
This result indicates an energy redistribution in the frequency domain in the closure
region, which is caused by the interaction between the SL and JL structures, as discussed
in § 5. Additionally, figure 29(b) shows that the curves have inflection points near the
characteristic frequency St = 0.1, which is more pronounced for D3 and D4. This result
indicates that the SPOD modes oscillating around the characteristic frequency contribute
a significant amount of energy.

Next, we discuss the SPOD eigenspectra. Figure 30 shows the SPOD eigenspectra λ(i)
in the different downstream domains. The red shades in the figure indicate significant
differences between the first and second modes in each domain. This result is consistent
with our previous observation of low-rank behaviour. Moreover, the differences tend to
be larger in the low-frequency range, indicating that the low-rank behaviour is more
pronounced at lower frequencies. In addition, the figure shows a distinct spectral peak at
approximately St = 0.1, which can also be observed in our other spectral results (figures 25
and 26). This characteristic frequency is correlated with the oscillatory dynamics of the
coherent structure at this frequency. Moreover, by comparing figures 30(c,d) and 30(a,b),
we find that the distinct spectral peaks in D3 and D4 are higher than those in D1 and D2.
This difference occurs because the turbulence intensity is stronger in D3 and D4 than in
D1 and D2.

Based on the above analyses, we summarize the implications from figures 29 and 30 as
follows. (i) The relative contributions by the leading SPOD modes increase with increasing
downstream distance. (ii) The SPOD modes show low-rank behaviours. The first mode
dominates and is more pronounced in the low-frequency range. (iii) A distinct spectral
peak exists in the SPOD eigenspectrum.

To analyse the dominant coherent structures oscillating at different frequencies near
the closure region, we study the real part of the first SPOD mode for the radial velocity
Φ
(1)
r (x, r, St), which was obtained by performing the SPOD analysis in the whole domain

Dt, and is plotted in figure 28. The results in figure 31 are consistent with those obtained
by phase matching the modes obtained in the four subdomains, and provide a global view.
According to the analysis in § 3, two characteristic structures can be observed near the
cavity closure, i.e. the SL, where the shearing effect dominates, and the JL, where the
stretching effect caused by the strong pressure gradient dominates. According to figure 31,
we can identify finer coherent structures located near the SL and JL. Figure 31(a) shows
the first SPOD mode at the characteristic frequency St = 0.1. Near the right branch of
the JL, we observe a wavepacket spanning from the end of the SL to the wake region.
A comparison of figures 31(a)–31(d) shows that the spatial wavelength and span of this
wavepacket decrease with increasing St. Figures 31(c) and 31(d) show another wavepacket
located parallel to the first structure and closer to the central axis. Combined with
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Figure 30. SPOD eigenspectra obtained in the four domains: (a) D1, (b) D2, (c) D3, and (d) D4. The dark to
light colours correspond to the increasing model index i in λ(i). The red shade between λ(1) and λ(2) indicates
their difference.

the visualization of the Q-criterion in figure 24, we can infer that the outer and inner
wavepackets are both associated with the vortex shedding dynamics near the closure
region. However, the outer wavepacket is associated with the shedding of larger vortical
structures from the end of the SL, which include mainly elongated and tilting toroidal
vortices, whereas the inner wavepacket is associated with the smaller and more isotropic
vortical structures shed from the central part of the closure region (r/dc < 0.5). We refer
to these two coherent structures as JLout and JLin, respectively, as indicated in figure 31(c).
Note that at St = 0.1, JLout dominates over JLin, whereas in the higher frequency range,
JLout and JLin are both pronounced. Figure 31(c) shows a wavepacket (denoted as SLKH)
distributed parallel to the SL. Because the shearing effect dominates in this region, we
can infer that this structure is caused by the Kelvin–Helmholtz (KH) instability triggered
by shearing across the air–water interface. Similar KH-induced wave structures near this
region in ventilated cavities have been observed in previous experimental results (see e.g.
Wu et al. 2019). Moreover, inside the cavity, we observe wavepackets (denoted as JLr)
that are distributed irregularly near the left branch of the JL, as shown in figure 31(c).
These structures are associated with the re-entrant vortices, which are generated by the
turbulent mixing in the closure region and are convected upstream due to the strong
pressure gradient.

In summary, the results in figure 31 and the SPOD analysis lead to the following
conclusions. First, coherent structures that are associated with different mechanisms are
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Figure 31. Contours of the real part of the normalized first SPOD mode for the radial velocity,
Φ
(1)
r (x, r, St)/‖Φ(1)r (x, r, St)‖∞, in the domain Dt: (a) St = 0.10, (b) St = 0.20, (c) St = 0.31, and (d)

St = 0.92. The black dashed lines are the isolines of φ̄ = 0.5. The black solid lines in (c) indicate the observed
wavepackets, including SLKH , JLr , JLout and JLin.

observed, including SLKH induced by KH instability, SLout associated with large-scale
vortex shedding, SLin associated with small-scale vortex shedding, and SLr associated with
the upstream convection of the more developed turbulence. Second, at the characteristic
frequency St = 0.1, JLout plays a dominant role in the flow dynamics. Finally, the SLKH
results agree with previous experimental findings.

7. Assessment of low-Reynolds-number DNS for insights into ventilated cavitating
flows

In the present study, idealized DNS of ventilated cavitating flows with a Reynolds number
of O(103) are conducted, neglecting both gravity and interfacial tension effects. Previous
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experimental research, such as the study by Mäkiharju et al. (2013), has shown that
the Reynolds number can impact the dynamics of ventilated cavity flows. In order to
understand the implications of the low Reynolds number employed in the present DNS
approach, a critical assessment of the fidelity of the model with respect to realistic flows
is presented in this section.

Addressing the limitations of the present study is essential for understanding the extent
to which the simulation results represent actual flow physics. In their comprehensive
experimental work, Mäkiharju et al. (2013) investigated air entrainment at the closure of a
wall bounded partial cavity ventilated with air injection, examining geometrically similar
flows over a range of Reynolds numbers, from 106 to 107. They conducted Froude-scaled
experiments with a Weber number variation of two orders of magnitude (103 to 105),
observing significant variations in cavity interface patterns, closure topology, and gas
entrainment rates. They found that lower Re cases exhibited glassy cavity interfaces, while
higher Re cases showed stronger interactions with the turbulent flow of the liquid near
the interface. The limitations of the current DNS study arise primarily from the lower
Reynolds number, which may not capture the complex interactions between the liquid
and gas phases at the realistic intensity. Moreover, neglecting the gravity and surface
tension effects could affect the results’ applicability to real-world scales and geometries.
Consequently, further investigation at higher Reynolds numbers and incorporating other
relevant effects, such as the Froude number and Weber number, is necessary for a more
comprehensive understanding of ventilated cavitating flows.

Although the Reynolds number in the current study is lower than realistic values, the
DNS can still provide valuable insights into the fundamental dynamics of ventilated
cavitating flows and their interaction with turbulence. For example, several studies
have examined the effects of the Reynolds number in breaking wave flows, focusing
on key properties such as viscous dissipation, penetration depth, and transition from
planar to three-dimensional flow. Deane, Stokes & Callaghan (2016) discussed turbulence
saturation, where the increase in plume cross-sectional area is more relevant than the
increase in fluid shear stress within the plume. Giorgio, Pirozzoli & Iafrati (2022)
corroborated the findings that the dissipated energy fraction does not depend much on the
Reynolds number or dimensionality. Mostert, Popinet & Deike (2022) observed that the
Reynolds number does not affect the shape of the bubble size distribution after Re reaches
a threshold, as the mean turbulent dissipation rate is not sensitive to Re. The ventilated
cavity flows discussed in the present study and the wave breaking flows are both air–water
turbulent mixed flow systems. Although their physics are different, findings from breaking
wave studies can offer valuable insights for ventilated cavity studies. Based on the findings
of Deane et al. (2016), Giorgio et al. (2022) and Mostert et al. (2022), the mean volume
fraction of air, the mean velocity, and the pressure distributions inside the cavity obtained
in the present study may help the understanding of the underlying dynamics of these
flow processes. Moreover, the present DNS may provide valuable information on the flow
dynamics and turbulence through detailed analyses, including vortex dynamics, Reynolds
stresses, TKE generation and transport, air leakage and vortex shedding processes, and the
relationships between gas exchange, vortical flow and Reynolds stress.

In summary, the low-Reynolds-number simulations in the present study hold the
potential of shedding light on the fundamental dynamics of ventilated cavitating flows.
Recognizing the limitations imposed by the chosen Reynolds number and the neglect of
the effects of surface tension and gravity, it is important for future investigations into
ventilated cavitating flows to consider these effects. By considering both the strengths and
limitations of the current study, future studies can better understand the complex nature of
this type of flow, and continue to advance the field.
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8. Conclusions

In this work, we performed DNS studies with corresponding evaluations of discretization
correlating to turbulent character to study ventilated cavitating flows. The interface
between the air and water phases was captured by the CLSVOF method, which can
describe accurately the interface geometry, shows good mass conservation performance,
and captures robustly the dynamics of the two-phase flow. The essential non-oscillatory
scheme was applied to the advection terms to improve the numerical accuracy. The
cavitator body was represented using an immersed boundary method. The DNS results
provide detailed descriptions of turbulent ventilated cavitating flows. Our analyses focus
on the fundamental dynamics of the interaction between turbulence and ventilated
cavitation.

Based on the DNS data, temporal and azimuthal averaging were employed to calculate
the mean volume fraction of the fluid phases and the mean velocity. The mean volume
fraction of air was approximately 0.5 in most of the closure region of the cavity due to the
violent mixing of air and water.

At the front part of the cavity, the streamwise flow dominates over the radial flow. The
mean streamwise velocity indicates several characteristic flow structures, including the
shear layer (SL) structure, where the air is sheared by the outside water flow and moves
forwards, and the recirculation area (RA), where the air travels backwards into the cavitator
and decelerates. Moreover, in the closure region of the cavity, the water jet flow behind the
SL, i.e. the jet layer (JL), is another characteristic structure, where one branch of the jet
moves backwards and re-enters the bubble, while the other branch moves forwards into
the wake. The pressure distributions inside the cavity and near the closure region were
studied by examining the mean cavitation number along the central axis, which maintains
a constant value of approximately σ = 0.15 and then decreases sharply near the closure
region due to the stagnation zone inside the JL structure. The variations in the cavitation
number and the cavity profile are consistent with existing semi-empirical theories.

The mean enstrophy and its components were analysed to elucidate the vortex dynamics
in the cavitating flow. The results show that the enstrophy is contributed mainly by the
transverse vorticity component due to the shear effect between the air and water, which
is concentrated in the SL at the front part of the cavity and throughout the whole closure
region. The streamwise component of the enstrophy is negligible at the front part but
increases in the closure region. The vortex dynamics in the cavity was also investigated by
studying the enstrophy budget equation. We emphasized evaluating the terms that govern
the vorticity generation, i.e. the stretching effect term, baroclinic effect term and viscous
effect term. At the front part of the cavity, the vortex dynamics are governed by all three
effects, while in the closure region, the vortex dynamics is dominated by baroclinic and
viscous effects.

Moreover, a study of the Reynolds stresses suggested that the streamwise component,
whose peak value occurs near the air–water interface, dominates the other components in
most of the cavity. Overall, the Reynolds stresses become stronger near the closure region,
where the diagonal components are comparable, indicating that the flow becomes isotropic
in this region.

Furthermore, we found that the TKE is large near the closure region of the cavity,
especially within the JL structure. Moreover, in both the SL and JL structures, streamwise
turbulent fluctuations dominate transverse fluctuations. In addition, the SL and JL
structures play different roles in the generation and transport of TKE. In the SL structure,
the TKE is increased by the production transport term due to shear effects, while in the JL
structure, the TKE decreases due to streamwise stretching effects. In both the SL and JL,
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the pressure transport term tends to enhance the TKE. Moreover, the mean flow advective
transport and pressure transport terms are conducive to transporting TKE from the SL to
the JL.

The air leakage and vortex shedding processes in the closure region were also
investigated. The generation of vortex structures is associated with the leakage of air
bubbles. In addition, these processes occur in a stagnant high-pressure region where the
air and water phases mix violently and turbulently. Moreover, the frequency spectra of the
velocity and VOF function of water near the closure region were calculated. The vortex
shedding in the closure region shows a semi-periodic pattern, and the energy spectra show
an intrinsic characteristic frequency. The autocorrelation function of the volume fraction
of air in a control volume in the closure region demonstrates that the air leakage and vortex
shedding processes have the same characteristic frequency.

To study further the structures near the closure region, and connect these structures
to the vortex shedding and air leakage processes, we performed SPOD analyses to
identify coherent structures oscillating at different frequencies. The cumulative fraction
of energy results indicate that the first SPOD mode contributes more to the energy
than the remaining modes, especially in the low-frequency range, indicating a low-rank
behaviour. The relative contribution by the leading mode increases with increasing
downstream distance. Moreover, the contours of the first SPOD mode for the radial
velocity at different frequencies show that various coherent structures are associated with
different mechanisms near the closure region, including SLKH induced by KH instability,
SLout associated with large-scale vortex shedding, SLin associated with small-scale
vortex shedding, and SLr associated with the upstream turbulent convection. Near
the characteristic frequency St = 0.1, the JLout structure plays a dominant role in the
dynamics.

We note that the present study uses an incompressible flow model and does not consider
compressibility effects. A study by Ganesh, Mäkiharju & Ceccio (2016) showed that the
formation and propagation of bubbly shocks can play an important role in the dynamics
of the cavity. Their study indicates that cavitating flows with volume fractions of the order
of 0.1 have low sound speeds and relatively high Mach numbers. The resulting formation
and propagation of bubbly shocks has a considerable influence on the dynamics of the
cavity. Additionally, bubbly shocks can change the pattern of the closure. Their study
noted two different mechanisms associated with shedding cavities in unsteady cavitating
flows: RJ-induced shedding, and bubbly shock propagation, which shows strong, periodic
cloud shedding behaviours. Their results indicate that models for the dynamics of cavities
and closures need to be improved by incorporating the bubbly shock effect. In addition,
Ganesh et al. (2016) found that analytical models and basic jump relations associated with
one-dimensional bubbly shock propagation can capture essential cavity dynamics.

In cavitating flows, there exist turbulent motions over a wide range of scales, violent
mixing between the air and water, and interactions between different characteristic
structures. High-fidelity numerical simulations complement experimental research by
providing non-intrusive methods for describing flow fields in detail. This work is DNS
with reasonable practice. In future work, to perform more realistic numerical simulations
and improve the role of these simulations in studying ventilated cavitation problems,
the following topics should be considered. First, Reynolds numbers higher than those
employed in the present study need to be considered in future applications. Second,
we emphasize that the problem studied is artificial cavitation, not natural cavitation.
Future simulations should consider the effects of natural cavitation to investigate its
influence on the dynamics in ventilated cavitating flows. Moreover, an appropriate
two-phase subgrid-scale turbulence model should be developed for large-eddy simulations
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of cavitating flows. Additionally, reduced-order models need to be established based on
the characteristics of the SL and JL structures for applications such as the optimization
of supercavities. Moreover, the relationship among the gas exchange, vortical flow in the
closure, and Reynolds stress needs to be studied further by performing more simulations
with a wider range of parameters. Furthermore, future simulations should consider
compressibility to study the effects of bubbly shocks on cavities (Ganesh et al. 2016).

Supplementary movies. A supplementary movie is available at https://doi.org/10.1017/jfm.2023.431.
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Appendix A. Validation and resolution test

The computational methods employed in the present study have been validated extensively
by our group in previous research on other multifluid problems (e.g. Hu et al. 2012; Yang
et al. 2017, 2018; Gao et al. 2021a,b). To validate further the applicability of the numerical
schemes in addressing the present ventilated cavitation problem, we have performed more
tests by making comparisons of our results with the results in the literature, and conducted
grid convergence tests. Note that although our simulation considers viscous effects by
solving the Navier–Stokes equations, the front geometry of the cavity is dominated mainly
by the inviscid flow dynamics, which validates the following comparison between our CFD
results and the potential flow theory.

Brennen (1969) studied the blockage effect on the minimal cavitation number σmin based
on potential flow theory, where σmin is approached at large Cq values. In our numerical
tests, we used three sets of grids with different resolutions, namely Δxmin/dc = 0.08,
Δxmin/dc = 0.04 and Δxmin/dc = 0.02. Figure 32 shows that when the mesh is refined, the
σmin value calculated according to our simulations approaches the prediction of Brennen
(1969). The result indicates that the grid resolution of Δxmin/dc = 0.02 is sufficient to
capture accurately the cavity for B < 18 %. We also conducted simulations using the same
parameter values as those in the Cao et al. (2017) experiment, namely B = 9 %, Cq = 0.14
and Fr = 18. Figure 33 compares the cavity profiles. Our result is consistent with the
experimental profiles in the front part of the cavity.

To verify the convergence for the three grids used in the present study, the mean flow
and the turbulence statistics of the simulations on a coarse grid M1, intermediate grid M2,
and fine grid M3 are compared. The details of the grids M1, M2 and M3 are provided in
§ 2.3. Figure 34 shows that the discrepancy in the isolines φ̄ = 0.5 between the M2 and M3
simulations is considerably smaller than that between the M1 and M2 simulations, which
indicates a trend to converge when the mesh grid is refined.

Figure 35 plots the mean flow and turbulence statistics along the streamwise axis,
including the averaged VOF function φ̄, mean streamwise velocity ū, streamwise turbulent
fluctuation u′u′, and turbulent energy dissipation rate ε. The first-order statistics (φ̄ and ū)
and second-order statistics (u′u′ and ε) are both captured qualitatively by the simulations
using the mesh grids M1, M2 and M3. The discrepancies between the results using grids
M2 and M3 are substantially smaller than the discrepancies between the results using
grids M1 and M2, which again shows a trend to converge when the mesh grid is refined.
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Figure 32. Predicted minimal cavitation number σmin for a given blockage ratio B. The red squares, green
triangles and blue circles correspond to the simulation results using coarse, medium and refined grids,
respectively. The black dashed line corresponds to the formula from the theory of Brennen (1969).
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Figure 33. Comparison of the cavity profiles in the Cao et al. (2017) experiment (red circles) and the present
simulation (black solid lines). The parameters are set to B = 9 %, Cq = 0.14 and Fr = 18.
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Figure 35. Grid convergence results for multiphase turbulent flow statistics: (a) φ̄, (b) ū, (c) u′u′, and (d) ε.

The differences in the results between grids M2 and M3 are negligibly small, indicating
numerical convergence.

To confirm that the mesh resolution employed in the present study is sufficient to capture
the turbulence dynamics in the closure region of the ventilated cavity, we calculate the
smallest scale of the turbulent eddies, i.e. the Kolmogorov length scale, which is defined
as (Kolmogorov 1941)

η =
(
ν

ε/ρ

)1/4

. (A1)

Based on the criterion given by Pope (2000), simulations can be considered DNS with
the Kolmogorov scale η resolved if the ratio of the local cell size Δ to η satisfies Δ/η <
2.1. Figure 36 plotsΔ/η in the closure region of the cavity according to simulations using
mesh grids M1, M2 and M3. The results show that the Δ/η ratio in the M3 simulation
satisfies Δ/η < 2.1, while the Δ/η ratios in the M1 and M2 simulations show some areas
with Δ/η ≥ 2.1 in the closure region. In this paper, the data obtained on the fine grid M3
are used in the analyses and discussions.

Appendix B. Quadrant analysis of the Reynolds shear stress

To examine further the Reynolds shear stress τR
xr shown in figure 14(d), we

perform a quadrant analysis to illustrate the contributions by four different
quadrants of τR

xr, which are classified according to the signs of the velocity
fluctuations: Q1(+√

ρ u′′
x ,+

√
ρ u′′

r ), Q2(−√
ρ u′′

x ,+
√
ρ u′′

r ), Q3(−√
ρ u′′

x ,−
√
ρ u′′

r ), and
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√
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√
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covariance integrand ρu′′

x u′′
r P(

√
ρ u′′

x ,
√
ρ u′′

r ), at the location where τR
xr reaches its peak value. The contour

intervals in (a) and (b) are [0.01, 0.1] and [0.02, 0.1], respectively.

Q4(+√
ρ u′′

x ,−
√
ρ u′′

r ) (Wallace 2016). Figures 37(a) and 37(b) present the joint
probability distribution function P(

√
ρ u′′

x ,
√
ρ u′′

r ) and the covariance integrand
ρu′′

x u′′
r P(

√
ρ u′′

x ,
√
ρ u′′

r ), respectively, which are obtained at the location where τR
xr

obtains its peak value. Figure 37(a) shows that the major axis of the elliptically shaped
P(

√
ρu′′

x ,
√
ρu′′

r ) is inclined towards Q4 and Q2. Additionally, the covariance integrand
shown in figure 37(b) indicates that the Q2 and Q4 quadrants contribute more to the
Reynolds shear stress τR

xr than the Q1 and Q3 quadrants.

966 A20-41

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

43
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.431


H. Liu, Z. Xiao and L. Shen

REFERENCES

ABRAHAM, N.V., JAMES, S.U. & IVAN, N.K. 2003 High-speed bodies in partially cavitating axisymmetric
flow. In Proceedings of the Fifth International Symposium on Cavitation, Osaka, Japan.

ABREU, L.I., CAVALIERI, A.V., SCHLATTER, P., VINUESA, R. & HENNINGSON, D.S. 2020 Spectral proper
orthogonal decomposition and resolvent analysis of near-wall coherent structures in turbulent pipe flows.
J. Fluid Mech. 900, A11.

AHN, B.K., JEONG, S.W., KIM, J.H., SHAO, S., HONG, J. & ARNDT, R.E.A. 2017 An experimental
investigation of artificial supercavitation generated by air injection behind disk-shaped cavitators. Intl J.
Nav. Archit. 9 (2), 227–237.

ARNDT, R.E. 2002 Cavitation in vortical flows. Annu. Rev. Fluid Mech. 34 (1), 143–175.
AUBRY, N. 1991 On the hidden beauty of the proper orthogonal decomposition. Theor. Comput. Fluid Dyn.

2 (5), 339–352.
BALAY, S., ABHYANKAR, S., ADAMS, M., BROWN, J., BRUNE, P., BUSCHELMAN, K., DALCIN, L.D.,

EIJKHOUT, V., GROPP, W. & KAUSHIK, D. 2017 PETSc users’ manual revision 3.8. Tech. Rep. Argonne
National Laboratory (ANL).

BARBACA, L., PEARCE, B.W., GANESH, H., CECCIO, S.L. & BRANDNER, P.A. 2019 On the unsteady
behaviour of cavity flow over a two-dimensional wall-mounted fence. J. Fluid Mech. 874, 483–525.

BERKOOZ, G., HOLMES, P. & LUMLEY, J.L. 1993 The proper orthogonal decomposition in the analysis of
turbulent flows. Annu. Rev. Fluid Mech. 25 (1), 539–575.

BRENNEN, C. 1969 A numerical solution of axisymmetric cavity flows. J. Fluid Mech. 37, 671–688.
BROUZET, D., HAGHIRI, A., TALEI, M., BREAR, M.J., SCHMIDT, O.T., RIGAS, G. & COLONIUS, T. 2020

Role of coherent structures in turbulent premixed flame acoustics. AIAA J. 58 (6), 2635–2642.
CALLENAERE, M., FRANC, J.P., MICHEL, J.M. & RIONDET, M. 2001 The cavitation instability induced by

the development of a re-entrant jet. J. Fluid Mech. 444, 223–256.
CAMPBELL, I.J. & HILBORNE, D.V. 1958 Air entrainment behind artificially inflated cavities. In Proceedings

of the Second Symposium on Naval Hydrodynamics, Washington, DC, USA. Office of Naval Research.
CAO, L., KARN, A., ARNDT, R.E.A., WANG, Z. & HONG, J. 2017 Numerical investigations of pressure

distribution inside a ventilated supercavity. J. Fluid Engng 139 (2), 021301.
COX, R.N. & CLAYDEN, W.A. 1956 Air entrainment at the rear of a steady cavity. In Proceedings of the

Symposium on Cavitation in Hydrodynamics, London, UK. National Physical Laboratory.
CUI, Z., YANG, Z., JIANG, H., HUANG, W. & SHEN, L. 2018 A sharp-interface immersed boundary method

for simulating incompressible flows with arbitrarily deforming smooth boundaries. Intl J. Comput. Meth.
15, 1750080.

DEANE, G.B., STOKES, M.D. & CALLAGHAN, A.H. 2016 The saturation of fluid turbulence in breaking
laboratory waves and implications for whitecaps. J. Phys. Oceanogr. 46 (3), 975–992.

DITTAKAVI, N., CHUNEKAR, A. & FRANKEL, S. 2010 Large eddy simulation of turbulent–cavitation
interactions in a Venturi nozzle. Trans. ASME J. Fluids Engng 132, 121301.

EPSHTEIN, L.A. 1973 Characteristics of ventilated cavities and some scale effects. In Proceedings of the
International Symposium IUTAM, Unsteady Water Flow with High Velocities, Nauka, Japan.

GANESH, H., MÄKIHARJU, S.A. & CECCIO, S.L. 2016 Bubbly shock propagation as a mechanism for
sheet-to-cloud transition of partial cavities. J. Fluid Mech. 802, 37–78.

GAO, Q., DEANE, G., LIU, H. & SHEN, L. 2021a A robust and accurate technique for Lagrangian tracking
of bubbles and drops and detecting fragmentation and coalescence. Intl J. Multiphase Flow 135, 103523.

GAO, Q., DEANE, G.B. & SHEN, L. 2021b Bubble production by air filament and cavity breakup in plunging
breaking wave crests. J. Fluid Mech. 929, A44.

GHATE, A.S., TOWNE, A. & LELE, S.K. 2020 Broadband reconstruction of inhomogeneous turbulence using
spectral proper orthogonal decomposition and Gabor modes. J. Fluid Mech. 888, R1.

GIORGIO, S.D., PIROZZOLI, S. & IAFRATI, A. 2022 On coherent vortical structures in wave breaking.
J. Fluid Mech. 947, A44.

GNANASKANDAN, A. & MAHESH, K. 2016 Numerical investigation of near-wake characteristics of cavitating
flow over a circular cylinder. J. Fluid Mech. 790, 453–491.

GOPALAN, S. & KATZ, J. 2000 Flow structure and modeling issues in the closure region of attached cavitation.
Phys. Fluids 12 (4), 895–911.

HALLER, G. 2005 An objective definition of a vortex. J. Fluid Mech. 525, 1–26.
HELLSTRÖM, L.H., GANAPATHISUBRAMANI, B. & SMITS, A.J. 2015 The evolution of large-scale motions

in turbulent pipe flow. J. Fluid Mech. 779, 701–715.
HU, Y., GUO, X., LU, X., LIU, Y., DALRYMPLE, R.A. & SHEN, L. 2012 Idealized numerical simulation of

breaking water wave propagating over a viscous mud layer. Phys. Fluids 24 (11), 112104.

966 A20-42

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

43
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.431


Low-Reynolds-number ventilated cavity flow

IYER, C.O. & CECCIO, S.L. 2002 The influence of developed cavitation on the flow of a turbulent shear layer.
Phys. Fluids 14 (10), 3414–3431.

JIANG, Y., SHAO, S. & HONG, J. 2018 Experimental investigation of ventilated supercavitation with gas jet
cavitator. Phys. Fluids 30 (1), 012103.

KADU, P.A., SAKAI, Y., ITO, Y., IWANO, K., SUGINO, M., KATAGIRI, T., HAYASE, T. & NAGATA, K.
2020 Application of spectral proper orthogonal decomposition to velocity and passive scalar fields in a
swirling coaxial jet. Phys. Fluids 32 (1), 015106.

KARATHANASSIS, I.K., KOUKOUVINIS, P., KONTOLATIS, E., LEE, Z., WANG, J., MITROGLOU, N. &
GAVAISES, M. 2018 High-speed visualization of vortical cavitation using synchrotron radiation. J. Fluid
Mech. 838, 148–164.

KARN, A., ARNDT, R.E.A. & HONG, J. 2016 An experimental investigation into supercavity closure
mechanisms. J. Fluid Mech. 789, 259–284.

KAWAKAMI, E. & ARNDT, R.E.A. 2011 Investigation of the behavior of ventilated supercavities. J. Fluid
Engng 133 (9), 091305.

KIM, W. & CHOI, H. 2019 Immersed boundary methods for fluid–structure interaction: a review. Intl J. Heat
Fluid Flow 75, 301–309.

KIM, J. & MOIN, P. 1985 Application of a fractional-step method to incompressible Navier–Stokes equations.
J. Comput. Phys. 59, 308–323.

KINZEL, M.P. 2008 Computational techniques and analysis of cavitating-fluid flows. PhD thesis, Pennsylvania
State University, PA.

KINZEL, M.P., LINDAU, J. & KUNZ, R. 2009 Air entrainment mechanisms from artificial supercavities:
insight based on numerical simulations. In Proceedings of the Seventh International Symposium on
Cavitation, (CAV2009), Ann Arbor, MI, USA, vol. 136.

KOLMOGOROV, A.N. 1941 Local structure of turbulence in an incompressible fluid for very large Reynolds
numbers. Dokl. Akad. Nauk SSSR 30, 299–303.

KOUKOUVINIS, P., MITROGLOU, N., GAVAISES, M., LORENZI, M. & SANTINI, M. 2017 Quantitative
predictions of cavitation presence and erosion-prone locations in a high-pressure cavitation test rig. J. Fluid
Mech. 819, 21–57.

KUNZ, R.F., BOGER, D.A., STINEBRING, D.R., CHYCZEWSKI, T.S., LINDAU, J.W., GIBELING, H.J.,
VENKATESWARAN, S. & GOVINDAN, T.R. 2000 A preconditioned Navier–Stokes method for two-phase
flows with application to cavitation prediction. Comput. Fluids 29 (8), 849–875.

LI, X.B., CHEN, G., LIANG, X.F., LIU, D.R. & XIONG, X.H. 2021 Research on spectral estimation
parameters for application of spectral proper orthogonal decomposition in train wake flows. Phys. Fluids
33 (12), 125103.

LINDAU, J., SKIDMORE, G., BRUNGART, T., MOENY, M. & KINZEL, M.P. 2015 Finite volume computation
of the mitigation of cavity pulsation. In Proceedings of the Ninth International Symposium on Cavitation,
(CAV2015), Lausanne, Switzerland, vol. 656.

LING, Y., FUSTER, D., TRYGGVASON, G. & ZALESKI, S. 2019 A two-phase mixing layer between parallel
gas and liquid streams: multiphase turbulence statistics and influence of interfacial instability. J. Fluid
Mech. 859, 268–307.

LIU, H. & XIAO, Z. 2016 Scale-to-scale energy transfer in mixing flow induced by the Richtmyer–Meshkov
instability. Phys. Rev. E 93 (5), 053112.

LODATO, G., DOMINGO, P. & VERVISCH, L. 2008 Three-dimensional boundary conditions for direct and
large-eddy simulation of compressible viscous flows. J. Comput. Phys. 227 (10), 5105–5143.

LOGVINOVICH, G. 1973 Hydrodynamics of free-boundary flows. Tech. Rep. National Advisory Committee for
Aeronautics.

LUMLEY, J.L. 1967 The structure of inhomogeneous turbulent flows. In Atmospheric Turbulence and Radio
Wave Propagation (ed. A.M. Yaglom & V.I. Tatarski), pp. 166–178. Nauka.

LUMLEY, J.L. 1970 Stochastic Tools in Turbulence. Academic.
MÄKIHARJU, S.A., ELBING, B.R., WIGGINS, A., SCHINASI, S., BROECK, J.M.V., PERLIN, M.,

DOWLING, D.R. & CECCIO, S.L. 2013 On the scaling of air entrainment from a ventilated partial cavity.
J. Fluid Mech. 732, 47–76.

MEYER, K.E., PEDERSEN, J.M. & ÖZCAN, O. 2007 A turbulent jet in crossflow analysed with proper
orthogonal decomposition. J. Fluid Mech. 583, 199–227.

MIN, C. 2010 On reinitializing level set functions. J. Comput. Phys. 229 (8), 2764–2772.
MITTAL, R. & IACCARINO, G. 2005 Immersed boundary methods. Annu. Rev. Fluid Mech. 37 (1), 239–261.
MOIN, P. & MAHESH, K. 1998 Direct numerical simulation: a tool in turbulence research. Annu. Rev. Fluid

Mech. 30 (1), 539–578.
MOSTERT, W., POPINET, S. & DEIKE, L. 2022 High-resolution direct simulation of deep water breaking

waves: transition to turbulence, bubbles and droplets production. J. Fluid Mech. 942, A27.

966 A20-43

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

43
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.431


H. Liu, Z. Xiao and L. Shen

NEKKANTI, A. & SCHMIDT, O.T. 2021 Frequency–time analysis, low-rank reconstruction and denoising of
turbulent flows using SPOD. J. Fluid Mech. 926, A26.

NIDHAN, S., SCHMIDT, O.T. & SARKAR, S. 2022 Analysis of coherence in turbulent stratified wakes using
spectral proper orthogonal decomposition. J. Fluid Mech. 934, A12.

PLESSET, M.S. & PROSPERETTI, A. 1977 Bubble dynamics and cavitation. Annu. Rev. Fluid Mech. 9 (1),
145–185.

POPE, S.B. 2000 Turbulent Flows, 1st edn. Cambridge University Press.
ROOD, E.P. 1991 Mechanisms of cavitation inception. Trans. ASME J. Fluids Engng 113, 163–175.
SCHMIDT, O.T. & COLONIUS, T. 2020 Guide to spectral proper orthogonal decomposition. AIAA J. 58 (3),

1023–1033.
SCHMIDT, O.T., TOWNE, A., RIGAS, G., COLONIUS, T. & BRÈS, G.A. 2018 Spectral analysis of jet

turbulence. J. Fluid Mech. 855, 953–982.
SEMENENKO, V.N. 2001 Artificial Supercavitation: Physics and Calculation. Ukrainian Academy of Sciences,

Kiev Institute of Hydromechanics.
SENOCAK, I. & SHYY, W. 2002 A pressure-based method for turbulent cavitating flow computations.

J. Comput. Phys. 176 (2), 363–383.
SHAO, S., KARN, A., AHN, B.K., ARNDT, R.E.A. & HONG, J. 2017 A comparative study of natural

and ventilated supercavitation across two closed-wall water tunnel facilities. Exp. Therm. Fluid Sci. 88,
519–529.

SHU, C.W. & OSHER, S. 1989 Efficient implementation of essentially non-oscillatory shock-capturing
schemes, I. J. Comput. Phys. 83 (1), 32–78.

SIROVICH, L. 1987 Turbulence and the dynamics of coherent structures. I. Coherent structures. Q. Appl. Maths
45 (3), 561–571.

SPURK, J.H. 2002 On the gas loss from ventilated supercavities. Acta Mechanica 155 (3), 125–135.
SUSSMAN, M. & PUCKETT, E.G. 2000 A coupled level set and volume of fluid method for computing 3D and

axisymmetric incompressible two-phase flows. J. Comput. Phys. 162 (2), 301–337.
SUSSMAN, M., SMEREKA, P. & OSHER, S. 1994 A level set approach for computing solutions to

incompressible two-phase flow. J. Comput. Phys. 114 (1), 146–159.
TOWNE, A., SCHMIDT, O.T. & COLONIUS, T. 2018 Spectral proper orthogonal decomposition and its

relationship to dynamic mode decomposition and resolvent analysis. J. Fluid Mech. 847, 821–867.
UHLMAN, J.S. & JAMES, S. 1989 Supercavitating hydrofoils. J. Ship Res. 33 (1), 16–20.
WALLACE, J.M. 2016 Quadrant analysis in turbulence research: history and evolution. Annu. Rev. Fluid Mech.

48, 131–158.
WANG, Z., LIU, H., GAO, Q., WANG, Z., WANG, Y., WANG, G. & SHEN, L. 2021a Numerical investigation

of ventilated cavitating flow in the wake of a circular cylinder. Phys. Rev. Fluids 6 (6), 064303.
WANG, G. & OSTOJA-STARZEWSKI, M. 2007 Large eddy simulation of a sheet/cloud cavitation on a

NACA0015 hydrofoil. Appl. Math. Model. 31 (3), 417–447.
WANG, Z., YANG, J., ANDERSSON, H.I., ZHU, X., LIU, M., WANG, L. & LU, X. 2021b Numerical

investigation on the flow around an inclined prolate spheroid. Phys. Fluids 33 (7), 074106.
WANG, Z., ZHANG, M., KONG, D., HUANG, B., WANG, G. & WANG, C. 2018 The influence of ventilated

cavitation on vortex shedding behind a bluff body. Exp. Therm. Fluid Sci. 98, 181–194.
WEYMOUTH, G.D. & YUE, D.K.-P. 2010 Conservative volume of fluid method for free-surface simulations

on Cartesian-grids. J. Comput. Phys. 229 (8), 2853–2865.
WU, J., DEIJLEN, L., BHATT, A., GANESH, H. & CECCIO, S.L. 2021 Cavitation dynamics and vortex

shedding in the wake of a bluff body. J. Fluid Mech. 917, A26.
WU, Y., LIU, Y., SHAO, S. & HONG, J. 2019 On the internal flow of a ventilated supercavity. J. Fluid Mech.

862, 1135–1165.
YANG, Z., DENG, B. & SHEN, L. 2018 Direct numerical simulation of wind turbulence over breaking waves.

J. Fluid Mech. 850, 120–155.
YANG, Z., LU, X.H., GUO, X., LIU, Y. & SHEN, L. 2017 Numerical simulation of sediment suspension and

transport under plunging breaking waves. Comput. Fluids 158, 57–71.
YOON, K., QIN, S., SHAO, S. & HONG, J. 2020 Internal flows of ventilated partial cavitation. Exp. Fluids

61, 100.
ZHOU, J., YU, K., MIN, J. & YANG, M. 2010 The comparative study of ventilated super cavity shape in water

tunnel and infinite flow field. J. Hydrodyn. B 22 (5), 689–696.

966 A20-44

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

43
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.431

	1 Introduction
	2 Problem set-up and numerical methods
	2.1 Problem set-up and governing equations
	2.2 Numerical methods
	2.3 Computational parameters

	3 Flow statistics
	3.1 Mean flow
	3.2 Vortex dynamics
	3.3 Reynolds stresses

	4 Turbulence and energy budget
	5 Air leakage and vortex shedding
	6 Spectral proper orthogonal decomposition analysis of coherent structures
	7 Assessment of low-Reynolds-number DNS for insights into ventilated cavitating flows
	8 Conclusions
	A Appendix A. Validation and resolution test
	B Appendix B. Quadrant analysis of the Reynolds shear stress
	References

