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EXTENSIVE SUBCATEGORIES OF THE CATEGORY 
OF 7VSPACES 

SUNG SA HONG 

Introduction. It is well known that epimorphisms in the category Top 
(Topi, respectively) of topological spaces (7Vspaces, respectively) and con
tinuous maps are precisely onto continuous maps. Since every mono-reflective 
subcategory of a category is also epi-reflective and every embedding in Top 
(Topi, respectively) is a monomorphism, there is no nontrivial reflective sub
category of Top (Topi respectively) such that every reflection is an embedding. 
However, in the category Top0 of 7Vspaces and continuous maps as well as in 
the category Haus of Hausdorff spaces and continuous maps, there are epi
morphisms which are not onto. Moreover, every reflection of a reflective sub
category of Topo, which contains a non T1 -space, is an embedding [16]. For an 
epi-reflective subcategory Se of Haus, there is a hereditary subcategory RSë 
of Haus such that Se is extensive in RS§, i.e. every reflection is an extension. 
Using extensive operators, we have been able to characterize every extensive 
subcategory of a hereditary subcategory of Haus [11; 13]. In this paper, we 
deal with all extensive subcategories of Top0. We introduce idempotent semi-
limit-operators. With these, we can also characterize all extensive subcategories 
of Top0. In this approach, one of the main advantages is that by using the 
trace filters, in this case union filters, one can easily characterize extensive sub
categories of Topo and every reflection is precisely given. Moreover, one can 
associate an extensive subcategory of Top0 with a coreflective subcategory of 
Top. We obtain also some interesting results about the front closure operator 
which determines the coreflective subcategory of Top generated by indiscrete 
spaces. 

All topological and categorical concepts will be used in the sense of N. Bour-
baki [4] and H. Herrlich [7], respectively. In particular, we assume throughout 
this paper that a subcategory of a category is full and isomorphism-closed. The 
closure of a subset A of a topological space X will be written c\xA (cl A when no 
confusion is possible) and for x £ X, cl x means cl {x}, which will be called 
point closure. 

The author takes this opportunity to thank Professor L. D. Nel for many 
helpful discussions. 

1. Front closure. The following definition is due to S. Baron [3] and 
L. Skula [16]. 
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1.1 Definition. Let X be a topological space. For A C X, let 

fclx^4 = )x Ç J | for any neighborhood F of x, F H c l x P i i 7e 0). 

Then the operator fcl is called the front closure operator. 

It is known that the front closure operator fcl satisfies the Kuratowski 
axioms. We shall give the usual names preceded by front to the topological 
concepts with respect to the topology defined by the front closure operator. 
H. Herrlich [8] has defined limit-operators with which he has been able to con
struct every coreflective subcategory of Top. The second Proposition on p. 205 
and the first statement of the Theorem on p. 206 [8], were incorrect (see the 
following proposition). 

1.2 PROPOSITION. The front closure operator fcl is an idempotent limit-
operator and the subcategory ^ (fcl) of Top determined by 

{X G Top| each subset A of X with ic\xA = A is closed in X} 

is the category of all coproducts of indiscrete spaces. 

Proof. The first part is immediate from the fact that g(îc\xA) Ç îc\Yg(A) 
for any continuous map g: X —> Y and A C X. 

For the second part, it is enough to show that a topological space X belongs 
to ^(fcl) if and only if cl x is open for every x £ X (see [8, II, (2)]). Supposed 
belongs to ^(fc l ) . For any x £ X and any y G cl x, cl y P\ C cl x = 0, where 
CA means the complement of A. Hence y G fclxC cl x, i.e., C cl x is closed ; cl x 
is open. Noting that îc\x in a space X is precisely the original closure operator 
provided that every point closure in X is open, the converse is also true. 

It is well known [5] that any morphism/: X —* Z in the category Haus, whose 
restriction to a dense subset Y of X is a homeomorphism, carries X — Y into 
Z — f(Y). Obviously it is not so in the category Top0. 

1.3 THEOREM. Let Y be a front-dense subspace of a To-space X and letf: X —* Z 
be a continuous map. If the restriction of f to Y is a homeomorphism, then 
f(X - Y) QZ-f(Y). 

Proof. Suppose, on the contrary, that f(x) = f(y) for some y G Y and 
y 9^ x G X. Suppose y G cl x. Then there is an open neighborhood W of f(y) 
with / ( Y C\ C cl x) = W C\ / ( Y). Since Y is front-dense in X, every neighbor
hood of x contains points of F H cl x. Then the hemeomorphism / | Y takes all 
such points into Z — W; f is not continuous at x. Hence y G cl x. Since X is 
IVspace, x G cl y. Since C cl y is a neighborhood of x, Y P\ cl x Pi C cl y ^ 0. 
Let p be an element of the set. Then/ (£) does not belong to cl / (F)/(:y). On the 
other hand, f(p) belongs to clz/(x) H f(Y) = cl / (F)/(x) = clf(Y)f(y), which 
is a contradiction. This completes the proof. 

By the same argument as in [5], one has: 
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1.4 COROLLARY. Every retract of a T0-space X is front-closed in X. In particu
lar, the graph of a morphismf: X —» Yin Top0 is front-closed in X X F, and if a 
To-space Y contains a product X = X Xf and each projection prt: X —» Xx has a 
continuous extension to F, then X is front-closed in Y. 

2. Quasi-sobre spaces and sobre spaces. 

2.1 Definition. A closed subset of a topological space is said to be irreducible 
if it cannot be expressed as the union of two proper closed subsets. A topological 
space is said to be quasi-sobre if every non-empty irreducible closed subset of 
the space is a point closure. A T0 quasi-sobre space is called sobre. 

We note that sobre spaces have been also called pc-spaces in [14], or spectral 
spaces in [9]. 

2.2 PROPOSITION. A topological space is quasi-sobre if and only if its Top0-
reflection space is sobre. 

Proof. For any topological space X, let TX: X —> TX be a Top0-reflection of 
X. It is known that rX is a quotient space X/~ of X, where x ~ y if and only 
if cl x = cl y. Suppose X is quasi-sobre. Let F be a non-empty irreducible closed 
subset of TX. Since rx is closed and onto, and every closed subset of X is 
saturated with respect to the equivalence relation ^ , TX~1{F) is also a non
empty irreducible closed subset; TX~1(F) = c\xx for some x 6 X. Hence 
F = TX(TX-1(F)) = TX(C\XX) = C\TXTX(X). 

Conversely, let G be a non-empty irreducible closed subset of X. Since rx is 
closed, rx(G) is also a non-empty irreducible closed subset of TX. Since TX is 
sobre, there is a point x of G with TX(G) = C\TXTX(X). Using the fact that TX is 
open, it is easy to show that G — &xx. We omit the detail of the proof. 

It is well known [6; 9; 14] that the subcategory Sob of Topo determined by 
sobre spaces is epi-reflective in Top0. Using the limit-operator fcl, we give here 
another proof. 

For any set X, let ^o(X) denote the set of all non-empty subsets of X. 
Let X be a non-empty topological space. We define a space X as follows: its 
underlying set is &Q(X) and its topology has {&0(F)\F: closed subset of X] 
as a subbase for the closed subsets. It is then obvious that the map x \—» {x} is 
an embedding of X into X and for any continuous map / : X —•> F, the map 
/ : X —> F defined by M*—>f(M) is also continuous (see [4, Ex. 7, §2]). We now 
show that X is a quasi-sobre space. Let A be a non-empty irreducible closed 
subset of X\ 

( m 
A = H ) U &K{Fi,j)\nï. natural number and 

iç.1 \ j=\ 

Fitj: non-empty closed subset of X( . 
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Since A is irreducible, we may assume that 

A = n ^O(F,) = @\ n ^ ) . 

Since clxM = <^o(clxM) for every Af Ç X, A = clx{n,€ / Jp,}. We note that X 
is To if and only if X is discrete. 

Let # ( X ) be the Top0-rerlection space of X. By Lemma 1 in [2], the map 
€ x\ X —> € (X) — X —> X —» iû (X) is also an embedding if X is TV Since we 
may assume that € x is the natural embedding, one has by Theorem 3.2 in [14] 
and Proposition 2.2 the following. 

2.3 PROPOSITION. A To-space X is sobre if and only if X is front-closed in 
€{X). 

2.4 THEOREM. The subcategory Sob of all sobre spaces is epi-reflective in the 
category Top0. 

Proof. For any X £ Top0, let irX be the subspace of & (X) whose underlying 
set is fcl#(X)Z and irx: X —» irX be the natural embedding of X into irX. Since 
TTX is a front-closed subspace of the sobre space (f (X), -KX is sobre. Moreover, 
the map TTX: X —> irX is an epimorphism (see [3]). For any F £ Sob and any 
g: X —» F in Top0, we have the following commutative diagram: 

X Tx > TTZC J > *f(X) 

F 

= = f c W ( F ) F c • / ( F ) , 

where g~ is determined by g and the reflection property. Since fcl is a limit-
operator, g~(wX) = g~(îclv(X)X) Q k\vtY)lT(X) Ç f c l W ) F = F. Hence there 
is a unique morphism g71": irX —> F such that g~j is g71" followed by the natural 
embedding Y —> &(Y). It is obvious that g^irx = g. 

2.4 Remark. (1) The space fë (X) is actually the subspace of X with the set 
of all non-empty closed subsets as its underlying set and the map é?

x: X —> 
*% (X) is defined by x »—» cl x. 

(2) A non-empty closed subset A belongs to the front-closure TX of X in 
€' (X) if and only if for every finite family { C/i, . . . , Un] of open subsets with 
Ut r\ A y£ 0 (i = 1, . . . , »), r \E/< H ,4 ^ 0 if and only if U ^ C K x ) is a 
(proper) open filter on X, where 0(x) denotes the open neighborhood filter of 
x if and only if A is irreducible. Hence TTX is the subspace of € (X) with the set 
of all non-empty irreducible closed subsets as its underlying set (see [6]). 
For any closed subset F of X, let XF denote ^o(F) P\ irX. Then it is obvious 
that { 2F\F: closed subset of X) is precisely the family of closed subsets of wX. 
Moreover, the correspondence F\—> SF is a lattice isomorphism. Hence X is 
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quasi-compact (Lindelof, of second countability, connected respectively) if 
and only if irX is (see [17]). 

2.5 Definition. An open filter on a JVspace X is called a union filter if it is a 
union of open neighborhood filters on X. 

2.6 Remark. For any A Ç irX, its trace filter T(A ) on X is precisely the union 
filter \Jx^A0(x) and irX is the strict extension of X with all union filters as the 
filter trace (see [1]). Hence a JVspace X is sobre if and only if every union 
filter on X is already the open neighborhood filter of some point of X. 

Likewise union filters, if VXÇAO(X) (see [2]) is a (proper) open filter, then so 
is VS€CIAO(X) and 

V 0(x) = V 0(x). 
z€clA TÇA 

We note that a non-empty closed set A belongs to the closure of X in € (X) 
if and only if \/ xcA0(x) is a proper open filter, and that the trace filter of 
A € c\<$(X)X on X is precisely the join filter \J x^A0{x). Contrary to the case of 
irX, the extension c\<#(X)X of X is not relatively T0 (see [1]). 

3. Extensive subcategories of Top0. 

3.1 Definition. A subcategory 38 of Top0 is said to be extensive in Top0 if 38 
is a reflective subcategory of Top0 such that every ^-reflection map 
rx'> X —•» rX is an embedding for each X £ Top0. 

3.2 Remark. (1) Since every extensive subcategory 38 is epi-reflective and 
epimorphisms in Top0 are exactly front-dense continuous maps (see [3]), every 
^-reflection map rx\ X —> rX of X £ Top0 is an extension. 

(2) Likewise H-closed spaces, every sobre space is front-closed in its T0 

superspace (see [14]). Thus every extensive subcategory of Top0 contains all 
sobre spaces and obviously the category Sob is the smallest extensive sub
category of Top0. Moreover every reflective subcategory of Top0 containing 
Sob is also extensive in Top0. 

(3) Using Theorem 1.3 and Corollary 1.4, one can directly show that every 
extensive subcategory of Top0 is front-closed-hereditary and productive. 

3.3 Definition. An operator / which associates every pair (X, A), where X is 
a sobre space and A is a subset of X, a subset lxA of X is said to be an idem-
potent semi-limit-operator if / satisfies the following conditions: 

(1) if A is a subset of a sobre space X, then A C lxA Ç clxA ; 
(2) if/: X —> F is a morphism in the category Sob and A is a subset of X 

then f(lxA)QlYf (A); 
(3) if A is a subset of a sobre space X, then lx(lxA) = lxA. 

It is obvious that the restriction of an idempotent limit-operator to the 
category Sob is an idempotent semi-limit-operator. 
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For an idempotent semi-limit-operator /, a subset A of a sobre space X with 
lxA = A will be called /-closed. 

Hereafter, by an extension space of a space X is meant a space of which X is 
a dense subspace. 

Let / be an idempotent semi-limit-operator and let Sob i be the subcategory of 
Topo determined by TYspaces which are /-closed in their Sob-reflection spaces. 

3.4 THEOREM. A subcategory 38 of Top0 is extensive if and only if 38 is of the 
form Sob x for some idempotent semi-limit-operator I. 

Proof. For any X Ç Top0, let irx: X —> wX be the Sob-reflection of X such 
that X is a subspace of irX and wx is the natural embedding. 

<= Let TT1X be the subspace of irX with lvXX as its underlying set. Obviously, 
the natural embedding j : irlX —> irX is a Sob-reflection of irlX; hence irlX 
belongs to Sobz. Now we wish to show that the natural embedding irx

l: X —•> 
irlX is the Sob rreflection of X. For any F Ç Sob t and any morphism/: X —» F 
in Topo, there is a unique / : irX —> irY with /7rx = 7rF/. Since / is a morphism 
in Sob and hYY = ^, 

J(T1X) = /(/„XX) ç W ( X ) Ql,YY = Y. 

Let/* be the restriction and corestriction of/ to wlX and F respectively. Then 
it is obvious thatflirx

l = / and it is unique. 
=» For any subset 4̂ of a sobre space X, define 

lxA = r\{B\A Q B and £ is an object of 38 as a subspace of X}. 

Since every extensive subcategory of Topo is front-closed-hereditary, 38 is, in 
particular, closed-hereditary. Hence A C lxA C clx^4. For any / : X —» F in 
Sob and 5 Ç F with B £ J * a s a subspace of F, f~l(B) is also an object of a? 
as a subspace of X. Take x £ W a n d ^ D / ( i ) with 5 G 38. Since Z " 1 ^ ) 2 4 
a n d / - 1 ^ ) G ^ s Ç / ^ C B ^ i . e . , ^ * ) 6 ^ . H e n c e / ( / ^ ) C /F/(^l). Since J* is 
closed under the intersections, lxA = A if and only if yl f J . Hence 
W M ) = lxA and ^ = Sob,. 

3.5 Remark. For any extensive subcategory 38 of Top0 and for any X £ Top0, 
its ^-reflection space is given by the intersection of all subspaces of irX which 
belong to 38 and contain X. 

3.6 COROLLARY. For any coreflective subcategory %f c/Top, let Sob^ be the sub
category of Top0 determined by T0-spaces which are closed in the ^ -coreflection 
spaces of their Sob-reflection spaces. Then Sob^ is also an extensive subcategory 
of Top0. 

3.7 Examples. (1) Let k be an infinite cardinal number. For A ÇZ X £ Top, 
we define lk

xA = {x Ç X\ for any family (£/*)*€/ of open neighborhoods of x 
with \I\ < k, r\iUtr\A ?± 0}. Then it is known [10] that /* is an idempotent 
limit-operator. Moreover, for any extension F of a space X, lk

YX = X if and 
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only if any point y of Y whose trace filter on X has the ^-intersection property 
is already a point of X (see [10]). Hence a ZYspace X belongs to Sobj* if and 
only if every union filter with the ^-intersection property is itself the open 
neighborhood filter if and only if every non-empty irreducible closed subset A 
such that every open filter ^ o n l with U C\ A 9^ 0 for every U 6 % has the 
^-intersection property, is a point closure. We note that SobjXo = Sob, 
SobjXi = the category of fc-spaces (see [14]), and more generally Sobj* is the 
category of <p(£)-spaces which is simply generated by E(k): £(So) = 2, 
E(*+) = 2* - {1*}, and 

E{k) = X E(m+) 

for a limit cardinal number k, where 2 is the space {0, 1} with the topology 
{*,{1},{0,1}} (see [15]). 

(2) ForAQXe Top, let 

IxA = {x Ç X\ there is a point b of A with x 6 cl b}. 

Then it is known [8] that I is an idempotent limit-operator. For any extension 
F of a space Xy lYX — X if and only if any point y of Y whose trace filter on X 
is contained in the open neighborhood filter of some point of X is already a 
point of X. Hence a JVspace X belongs to Sob j if and only if every union filter 
which is contained in an open neighborhood filter on X is itself an open neighbor
hood filter if and only if every non-empty irreducible closed subset which is 
contained in a point closure is already a point closure. 

Let X be an ordered set. Let X+ denote the space with the right topology on 
X} i.e. the topology whose base is { [x, —» [| x Ç X). Then R+ £ Sobj — Sob 
and R+ — {0} G Top0 — Sob*, where R is the real line with the usual order. 

(3) F o r i Ç I G Top, let 

lxA = {x 6 X| there is a sequence in A which converges to x}. 

For the limit-operator / and for any extension F of a space X, lYX = X if and 
only if any point y of Y whose trace filter on X is contained in a filter with a 
countable base is already a point of X (see [12]). Hence a 7Yspace X belongs to 
Sobj, where I is the associated idempotent limit-operator with / (see [8]) if and 
only if every union filter which is contained in a filter with a countable base is 
already an open neighborhood filter. It is obvious that N+ Ç Top0 — Soby, 
where N is the set of natural numbers with the usual order. Let W(o>i) be the 
set of ordinals < wi with the usual order. Then W(œi)+ Ç Soby — Sob. 
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