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Dedicated to Professor K. NOSHIRO for his 60th birthday

In this note we will improve the dual EHP sequence which has been con-

structed in [6] by showing that that can be extended by one term. We then

observe that this can be used to deduce a result which has been announced by

T. Ganea in [4]. As another application we will establish a theorem which

asserts that, under certain conditions, a principal fibration with a loop-space

as fibre is principally equivalent to the one induced by some map.

Throughout this note, we make use of the notations and results described

in [5] and [6] without specific reference. In particular, Eftg and Eg denote

the mapping track of a triad A—>Y<—B and the fibre of g respectively. Dually,
. • ! - ! ••• - -: •• f g

Cf,g and Ce denote the mapping cylinder of a cotriad Λ<—X—>B and the

cofibre of g respectively. We denote the loop and (reduced) suspension functor

by Ω and S respectively. We use π(X, Y) to denote the set of based homotopy

classes of based maps X-*Y, but we will permit ourselves not to distinguish

between a map and the homotopy class it represents.

1. The dual EHP sequence

f g
For a triad A—>Y*— Bf we introduce in [6] the maps

ξ' :'CPU*,-+Y and i : SEf,8^Gf,g

which make the following diagram homotopy-commutative:

;E/*Eg
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in which the columns are fibre triples, the middle row is the sequence associated
Pi Pi

with the cotriad A*—E/tg-—>B consisting of projections, and zΊ, i2, k are ap-

propriate injections. The map η't which is defined by
(α} 4 s) 0^4

•η'iα, γ, b s) = 2 )

(bt 4 - 4 5)

for α e A , ί s ί , r ^ Y1 with f(α) = r(0), gib) = r(l), induces the ''suspension"

^ * : π(C/vg, V)->π(SEf,g, V).

The composite ^sf/- Q°jt which is given by

J ^ ( ( l - ί ) ( α , α)®t(β, b)) = (α, α: + & b t)

forαeA, bt=B, <x, i?e Y1 with /(β) = α(0), ̂ (ft) - /9(1), α(l) =i?(0) = *, induces

the dual Hopf invariant

c ^ * : π(SE/,g, V)->π{Ef*Eg, V).

Now, the cooperation of SAM SB on C/vs in the Puppe sequence for .fVg,

defines an action of π(SAVSB, V) on π(C/τS9 V). We denote the result of

the action of (or, β)^π(SA, V)®π(SB} V) on v<Ξπ{Cf?e, V) by (α,. β ) τ ί;.

Then we can easily verify the following

LEMMA 1.1. #*((«, j3)τt;) = (SPi)*α + ίί*(t;) - (SP»)*J9.
k v

Next, given t; : Cfvg->Vy let ^ denote the composite Y—>C/?g—>V. v

determines the liftings / : A-*EU and g ' B-*EU of /and g with respect to

the projection £M-»F. We denote the adjoint oί-tf*(v) by θ : Ef,g-*ΩV. Let

Ί : ^7 ~*Ef>s a n ( i ./s : Eg-*E/,g denote the obvious injections. Then we have

LEMMA 1.2. following diagram is homotopy-commutative
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where i is the inclusion of the fibre.

Proof: According to Proposition 5. 14 of [6], we have

where m : ΩVxEu^Eu is the action of ΩV on Eu. Note that Pi°jz and P2°jι

are trivial maps. Consequently, by composing with j u we see that i*(θ*ji) =

f°Pι°j\. Similarly for homotopy-commutativity of the lower square.

The main purpose of this section is to improve Theorem 5. 8 of [6] as

follows

THEOREM 1.3. Suppose that /, g and Y are p-t q- and r-connected respectively,

and that τr/( V) - 0 for i>p + q + r-\- 2. If A, B and Y have the homotopy type

of CW-complexes, then the sequence

π(E}*Eg9 V)< π(SE/,g, VH π(C/vg, V)

is exact.

Proof Since E}*Eg is (p-{- q)-connected, it follows from a theorem of

Sugawara [9, Theorem 6. 5] that the sequence

E V ) ( C V} g u π(Yt V)

is exact. Consequently, given p.s rΛSE/,g1 V) with Jfr'*(p) =j*Q*(p) = 0, there

exists τeτr(7, V) such that Q*(p) = ?'*U). Since

ki = τ°ζ'°iι- p°Q°ii = *

for the injection kt : A~>AVB> we see that (/V£)*r = 0, so that r = k*v for

some υ e π(CfV8, V). Thus,

Now, by Lemma 1. Γ in [6], we can find a^πiSA, V), βtΞπiSB, V) such that

p = (SPi)*a + ̂ *(v) - (SP2)*β, whence, by Lemma 1. 1, we have

#"*((α, β)-rv) = p,

which completes the proof of our theorem.

COROLLARY 1.4. (Sugawara [9, Lemma 7.4]). Let Y be a r-connected space

which has the homotopy type of a CW complex and let V be such that τr, ( V) = 0
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for z>3 r + 2. Then an element of π{ΩY, ΩV) is primitive if, and only if, it is a

suspension element, i.e., lies in the image of π{Yf V)-*πiΩY> ΩV).

This follows by considering a triad * -> Y<r~ * and applying Lemma 5. 1 in

[6].
/ g

Now consider a triad A—>Y<—B in which/and g are fibrations with fibres

Fi, F2 respectively. Let Ker (/ : g) be the pull-back, i.e., Ker(/ : g) =

{(a, b)\f(a)=g(b)}. Let m : Ker(/ : g)-*A, π, : Ker (/ : g)-*B denote the

projections. Then the map CΛ,,Λ,->y corresponding to ξf, is essentially the

same as the Whitney sum of / and g (as defined by I. M. Hall [3]). It is also

known as the fibre-join of / and g (see [l]). To if corresponds the map

V : 5Ker(/ g)-*Cfvg

which is given by

- J (a. 2 s) if 2 s ^ l
# U , b s) =

I (A, 2 - 2 s ) if 2s>l .

Also, in this case, to the dual Hopf invariant J(f corresponds

J F : Fi*F 2 ->5Kerl/ : g)

which is defined by setting

J?((l-t)a®tb) =«(«, b t).

With these notations we have

COROLLARY 1.5. Suppose Fif F2 and Y are (p-l) t (q — D- and r-connected

respectively and let V be such that πi(V) = 0 for i>p -f q+ r + 2. If A, B and Y

have the homotopy type of CW-complexes, then the sequence

ττ(SKer(/ : g), V)< π(C/7g9 V)

is exact.

Finally we observe that the following result announced in LA] can be
g

derived from Lemma 1. 2 and Theorem 1. 3 by considering a triad *—>Y<—B.

g
THEOREM OF GANEA. Let F—>B—>Y be a fibration in which Y is (m — 1)-

connected and suppose m(F) =*F 0 only if n^i^*n + 2 m — 2, w ^ l , w > 1. Let
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θ ' F-+ΩV be a homotopy equivalence such that the composite

~θ
ΩY*F—>SF—±V

is nullhomotopic, where the first is obtained by Hop/ construction associated with

the action ΩYxF-^F and ~θ is adjoint to θ. Then there exists a map u : Y-+V

and a fibre homotopy equivalence B^EU with induced fibre equivalence in 6 e π{F9 ΩV).

Moreover, it follows from Theorem 5.12 in [6] that, if V is an i?-space

with 7Γί (V) = 0 f or z Ξ> m -f n + min ( m , » + l ) , maps u in the above forms a coset

of the image of

<β>* : rΛSCg^SY, V)->πiYy 7),

where JP = <~Sk, W> is the cojoin product of the adjoints of Sk : SY->SCg

and the identity lSr of SY.

2. An application to principal fibrations in the restricted sense

In [7] we strengthened the notion of principal fibrations in the sense of
i p

Peterson-Thomas [8] as follows. A fibration F—>E—>B is said to be principal

in the restricted sense, if F is a homotopy-associative ϋΓ-space (with inversion)

and if there exist maps

μ : FxE~+E and h ' Kerip : p)~>F

subject to the following conditions:

(i) μ(lFxi) = //io where μQ : FxF-+F is the multiplication of F,

(ii) ptA =-pq%> h{q2, μ)-qι where qγ : FxE-*F and qz : FxE->E are the

projections,

(Hi) μ(μox 1E) ~ nβ( IFX μ) where 21B indicates "is vertically homotopΐc to",

(iv) μ{h, pit^Bp'i where pu pi : Ker {p : p)-+E are the projections,

(v) μ{0, IE}~B1E where 1* is the identity map of E.

For example, a principal fibre bundle and E/-*X induced by / : X-+Y from

the contractible path space over Y are principal fibrations in the restricted

sense. Note that, from (iv), h{p-2,pi)~ -h where {p2, pi} - Kev(p : p)

-*Ker (p : p) is the permutation.

LEMMA 2.1. {A, £i} : Ker (p : p)-*FxE and {q2i μ) ' FxE-*Kev(p : />)

<zr£ mutually inverse homotopy equivalences.

Proof. This follows from the following:
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<Qt, μ){Kpi)-{pu P2) by (iv),

{h,pι){q2, μ}-{qu φ) by (ii).

{1,1} h
LEMMA 2.2. The composite E >Ker(£ p)—>F is nullhomotopic, where

Proof By (v) and (ii) we have

h{lt l}^h{qZi μ){Q, l}-#i{0, l } = 0 .

LEMMA 2.3. Suppose F has the inversion ω : F-*F. Then the composite

I h
FxF—»Ker(£ : p)—-*F

is homotopic to the composite

τ Ipxω μo

F x F—>F x F >F x F—>F,

where I is the inclusion and r is the switching map.

Proof We define n : FxF-*Fx F by setting nix, xf) = u ; , M%, * '> )

Since F has an inversion, n is a homotopy equivalence. We see at once that

μ*(lFxω)τn is homotopic to the projection FxF-^F on the first factor. Now,

since the diagram

FxF

FxE Q u β >Ker{p:p)

is homotopy commutative, it follows that hln — μo(lFXω)τnt whence the desired

conclusion.

The goal in this section is to prove the following

i p
THEOREM 2.4. Let F—>E—>B be a principal fibration in the restricted sense

such that B is m-connected and πj( F) ^ 0 only if n + l^j^2 n + m -+• 2. Suppose

there is given an H-homotopy equivalence θo : F-*ΩV. If E and B have the
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homotopy type of CW-complexes, then there exist a map u ' B-+V and a fibre

homotopy equivalence p * E-*EU with induced fibre equivalence in θo&πiF, ΩV),

so that the diagram

FxE

ΩVxEu

-> E

m

is homotopy commutative, where m is the action of ΩV on Eu-

P P
Proof. We apply Corollary 1. 5 to the triad E—>B<—E and use Lemma

1.2 for 0 = ( - 0 o ) ° ^ : Ker(p : p)-+ΩV.

First we show that J&'*(Ίi) = 0 for the adjoint 1 : SKer(p :/>)-* V of θ.

Consider the diagram

F*F

ΩV*ΩV

in which the row in the bottom is the fibre sequence constructed for the triad

*->y«_*. By Lemma, 2.3, we see that the above diagram is homotopy-com-

mutative. Since ξ'oJ^^0y it follows that

as required.

By the assumption on connectedness, Corollary 1. 5 now implies that

tf*(v) = θ for some v : CPvp-* V. Let u B ~> V denote the composite
k v

B—>Cpvp—>V. Then, by Lemma 1.2, we obtain the homotopy commutative
diagram
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ΩV

E

Ϋ
Eu

\
F > E,

where /, g are liftings of p. Using Lemma 2.3, we see that θ{i> 0} 2r ΘQ,

-θ{0, i}-θQ. By Proposition 5.14 of [6], m *{ - θy fpi)= Spt, and, in turn,

nt*(θQXf){h, pι)=gμ{hy pi) by (iv). This, together with Lemma 2.1, yields

But 7— g, because/and ^define the separation element inτt(Et ΩV),^ the

adjoint of which is thecomposite

S{U, 1IP> V v
SE >SKer(/> : p)—*CPAp—+V.

This composite is nullhomotopic by Lemma 2. 2. This shows that m{0o x ί}- ί//

for ί = 7 , which completes the proof of the theorem.

3. The dual situations

In this section we briefly state the results which are dual to the previous

sections. With a cotriad

we associate in C6] the following homotopy commutative diagram

Ω(A x

H

?/ N

AxB
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in which y, a generalization of the Freudenthal suspension, is defined in §4 of

[63, the Hopf invariant H is defined in §6 of [63, • F' is the map defined in §6

of [63, and 7i, 72, k are the appropriate injections.

LEMMA 4.1. For a e τrl V, ΩA) and β<=π{V, ΩB) we denote the result of

the action of {a, β}^π(V, ΩlAxB)) on v<Ξπ{V, E/Δg) by {a, β)-rv. Then we

have

v
Now, given t e rΛ V, E/άg), we denote the composite V—>E/&g—^X by u\

then v determines the extensions

/ : Cu-*A, g : Cu-^B

of /, g. Let θ e π(SVy C/,g) denote the adjoint of η*(v), and let n : CH-*5FV Cu

be the cooperation. Then we have

LEMMA 4.2. w*{̂ , I2gϊ = Iif.

LEMMA 4.3. 77*0 following diagram is homotopy-commutative:

A — > C/

~t' tr
Cu ^ SV

in which pL : Cf,g-**Cf% pz Cf,g-+Cg are the quotient maps which identify B, A

with basepoint respectively.

In the sequel we assume that /, g and X are p-> q- and r-connected res-

pectively, and that V is a CW-complex. Assume further A and B are «-, δ-

connected respectively.

LEMMA 4.4. 77ze sequence

/or V swcΛ that dim F^/> + ^ + r - 1 (cf. Theorem 4.3 or Corollary 4. 5
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in [6]).

The proof of the following theorem is similar to that of Theorem 1.3,

except that we use the fact that F' is [/> + tf-f-min(r+ 1, p, q, max {a, b)) - 1]-

connected by Lemma 6. 6 in [ 6 1

THEOREM 4.5. The sequence

)+W C^C)π{V,

is exact for V with dim V£p + q+ min(r+ 1, />, q, max (a, ft)) — 2.

COROLLARY 4.6 (Theorem 5.2 in [2]). If X is r-connected, then the sequence

τr(F, X)-^π(V, ΩSX)-^π(Vt SX^SX)

is exact for V with dim

COROLLARY 4.7. Assume f and g are cofibrations. Then the sequence

π(V, E/Δg)—+π(V, Ω Coker</ : » ^

is exact for V with dim V£p + q + min(r+ 1, p, q, max (Λ, ft)) - 2, where C, D are

cofibres off, g respectively, Coker</ : g> is the quotient space obtained from AM B

by the identifications fix) =gix), x&X and Έ, Ή are defined as follows'-

β(2-2t)

, q : CokeK/ : ^>

It follows from Lemma 4, 3 and Theorem 4. 5 that

THEOREM OF GANEA. Let g : X-> B be a cofibration with m connected cofibre

D and let X be (n - 1)-connected. If there is a homotopy equivalence θ : SV-+D

such that the composite

ΰ Ή
V-^ΩD s ΩC8—»SXJ£D

is null'homotopiCy where 1 is adjoint to 0, and if dim F^»-fm + min(m, ») -2,

/Â n ^ is induced by some map u : F-*X

Now we strengthen the notion of principal cofibrations introduced in [10]
i q

as follows. Let A—>B—>C be a cofibration with cofibre C~BlA and let €
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be an //'-space which is homotopy associative. We say that i is a principal

cofibration in the restricted sense, if there exist maps

μ1 : B-+CVB, A : C->Coker<ι ι>

subject to the following conditions:

(i) (lcVq)μ' = μlq, where μ[ : C-+CVC is the comultiplication,

(u) μ'i = iίi, {h, μ'}h~ii where ιΊ : C-+CVB9 k : B-*CVBare the injections

and {z2, μ1) Coker<ί i>-*CV B is the map determined by ί2 and μ',

(iii) (//ίVl/fV-^lcV/ίO/ί' where — ̂  indicates "is homotopic rel. 4̂ to*',

(iv) {A, ji}μ'-AJ2 where Λ, y2 : £-*Coker</ : i> denote the injections,

(v) {0, I B V ^ I * .

Then we can readily verify the following properties:

(vi) {hji) : eVB->Coker<ι : ί> and {ί2, y} : Coker<ι i> -> C V B ate

mutually inverse homotopy equivalences.
h {1B, lft}

(vii) C—>Coker</ : /> >B i s n u l l - h o m o t o p i c .

(v i i i ) T h e c o m p o s i t e C—>Coker</ : ϊ>lA = CVC i s h o m o t o p i c t o

μo lcVω Γ

C—>CV C >C\/C—>C\/C where ω is the inversion and r is switching

map.

With these preliminaries we can prove
i q

THEOREM 4.10. Let A—>B—>C be α principal cofibration in the restricted

sense such that A is m-connected and C is an n-connected CW-complex with dim

C£2n +minim, n) — 1. Suppose given an H1 homotopy equivalence 0O

 : SV->C.

If V has the homotopy type of a CW-complex, then there exist a map u : V-+A

and a homotopy equivalence ϊ ' Cu-*B with induced cofibre equivalence 0O so that

the diagram

_ ni1

o v 7

is homotopy commutative, where m1 is the coaction of SV on Cu.
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Added in proof. There is an error in computing the connectedness of C/,g

in §6 of [6]. Theorem 6.2 of [6] should be stated as follows: Let /, g be p->

^-connected respectively and let X, A, B be r-r a-, ό-connected respectively.

Then p is ίp + q•+• min (p, q, max (atb)) — 1]-connected and v is Xp + q + min(p, qt

r-tl, max(β, b)) - 2>connected. The word ^minί^, q, r+ 1)" in Lemma 6.6 and

Theorem 6.8 of [6] should be replaced by the one "min(/>, q, r+ 1, max(fl, b))'\
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