FINITE TRIFACTORISED GROUPS AND π -DECOMPOSABILITY

L. S. KAZARIN, A. MARTÍNEZ-PASTOR^{IM} and M. D. PÉREZ-RAMOS

(Received 21 September 2017; accepted 29 September 2017; first published online 31 January 2018)

Abstract

We derive some structural properties of a trifactorised finite group G = AB = AC = BC, where A, B, and C are subgroups of G, provided that $A = A_{\pi} \times A_{\pi'}$ and $B = B_{\pi} \times B_{\pi'}$ are π -decomposable groups, for a set of primes π .

2010 *Mathematics subject classification*: primary 20D40; secondary 20D20. *Keywords and phrases*: finite groups, products of subgroups, π -decomposable groups, π -structure.

1. Introduction

Throughout this paper all groups considered are finite. Within the study of factorised groups one has frequently to consider *trifactorised* groups, that is, groups of the form G = AB = AC = BC, where A, B and C are subgroups of G. This occurs, for instance, when aiming to get information on a normal subgroup N of a factorised group G = AB, with A, B subgroups of G. In this case, an important tool is to analyse the structure of the so-called *factoriser* of N, denoted by X(N), which is the intersection of all factorised subgroups containing N. (A subgroup S of G = AB is *factorised* if $S = (A \cap S)(B \cap S)$ and $A \cap B \leq S$.) The factoriser subgroup X(N) turns out to be a trifactorised group; more precisely, $X(N) = N(A \cap BN) = N(B \cap AN) = (A \cap BN)(B \cap AN)$ (see [1]).

One of the classical results in the literature on finite trifactorised groups is due to Kegel [13]. He proved that a finite group G = AB = AC = BC, which is the product of two nilpotent subgroups A and B, is nilpotent (supersoluble), provided that C is likewise nilpotent (supersoluble). A corresponding statement holds when A and B are nilpotent and C belongs to a saturated formation containing all nilpotent groups

The first author was supported by Project VIP-008 of Yaroslavl P. Demidov State University and by a research grant from the Universitat de València as research visitor (Programa Propi d'Ajudes a la Investigació de la Universitat de València, Subprograma d'Atracció de Talent de VLC-Campus, Estades d'investigadors convidats (2017)). The second and third authors were supported by Proyecto MTM2014-54707-C3-1-P, Ministerio de Economía y Competitividad, Spain.

^{© 2018} Australian Mathematical Publishing Association Inc.

(Peterson [1, Theorem 2.5.10]). It is worth emphasising that such a group is soluble, by the celebrated theorem of Kegel and Wielandt on the solubility of a product of two nilpotent groups.

Some criteria for the π -separability of a trifactorised group, for a set of primes π , under assumptions of existence, conjugacy and dominance of Hall π -subgroups, were obtained by Pennington in [14] (see Theorem 3.1 and Corollary 3.5 below). A much deeper result in the universe of all finite groups was proved by Kazarin in [7] using the classification of finite simple groups: if the group G = AB = AC = BC is the product of three soluble subgroups A, B and C, then G is soluble. Some related results were obtained in [3], again in the universe of soluble groups, by considering some well-known families of subgroup-closed saturated formations of so-called nilpotent type (see [5] for an account of such classes of groups).

In this paper we go further with the research on trifactorised groups, dealing with π -decomposable groups. A group *X* is said to be π -decomposable for a set of primes π , if $X = X_{\pi} \times X_{\pi'}$ is the direct product of a π -subgroup X_{π} and a π' -subgroup $X_{\pi'}$, where π' stands for the complement of π in the set of all prime numbers. For any group *X* and any set of primes σ , we use X_{σ} to denote a Hall σ -subgroup of *X*. In particular, X_p will denote a Sylow *p*-subgroup of *X*, for a prime *p*.

For our purposes the following result is crucial.

THEOREM 1.1 ([12], Main Theorem). Let π be a set of odd primes. Let the group G = AB be the product of two π -decomposable subgroups $A = A_{\pi} \times A_{\pi'}$ and $B = B_{\pi} \times B_{\pi'}$. Then $A_{\pi}B_{\pi} = B_{\pi}A_{\pi}$, and this is a Hall π -subgroup of G.

This theorem, whose proof uses the classification of finite simple groups, is part of a development carried out in [8, 9, 11, 12] and motivated by the search for extensions of the theorem of Kegel and Wielandt mentioned above (see also [10]). We apply Theorem 1.1 to obtain new results on trifactorised groups within the general universe of finite groups.

The notation is standard and is taken mainly from [6], and we refer to this book for the basic terminology and results about classes of groups. We refer to [16] for the elementary facts regarding π -separable groups for a set of primes π . In particular, we denote by $l_{\pi}(G)$ the π -length of a π -separable group G. If X, Y are subgroups of a group G, we set $X^Y = \langle x^y | x \in X, y \in Y \rangle$; in particular, X^G is the normal closure of X in G.

2. Preliminary results

We will frequently use the following well-known result, whose proof is straightforward.

LEMMA 2.1. Let the group G = AB be the product of the subgroups A and B. Assume that $D \subseteq A \cap B$ and that D is a normal subgroup of B. Then $D^G \leq A$.

The next lemma is a reformulation of a result of Kegel, later improved by Wielandt, which appears in [1, Lemma 2.5.1] (see also [9, Lemma 2]).

erez-Kamos

[3]

LEMMA 2.2. Let the group G = AB be the product of the subgroups A and B and let A_0 and B_0 be normal subgroups of A and B, respectively. If $A_0B_0 = B_0A_0$, then $A_0^gB_0 = B_0A_0^g$ for all $g \in G$.

Moreover, if A_0 and B_0 are π -groups for a set of primes π , and $O_{\pi}(G) = 1$, then $[A_0^G, B_0^G] = 1$.

For a set of primes π , we recall that a π -separable group is a D_{π} -group, that is, every π -subgroup is contained in a Hall π -subgroup, and any two Hall π -subgroups are conjugate in the group. We will use, without further reference, the following fact on Hall subgroups of factorised groups, which is applicable to π -separable groups (see [1, Lemma 1.3.2]).

LEMMA 2.3. Let G = AB be the product of the subgroups A and B. Assume that A and B have Hall π -subgroups and that G is a D_{π} -group for a set of primes π . Then there exist Hall π -subgroups A_{π} of A and B_{π} of B such that $A_{\pi}B_{\pi}$ is a Hall π -subgroup of G.

We need specifically the following result, whose proof uses the classification of finite simple groups.

LEMMA 2.4 ([15], Theorem 7.7). Let G be a finite group, $A \leq G$, and π a set of primes. Then G is a D_{π} -group if and only if A and G/A are D_{π} -groups.

3. Main results

Our first results on trifactorised groups, Theorem 3.2 and Corollaries 3.3 and 3.4, provide an alternative approach to that of Pennington [14] concerning the π -separability of trifactorised groups. The main goal is to avoid hypotheses of existence, conjugacy and dominance of Hall π -subgroups (D_{π} -properties), in contrast to Pennington's results. This will follow as consequence of Theorem 3.2, which provides the D_{π} -property of a trifactorised group, as a first application of Theorem 1.1.

We gather first the above-mentioned results of [14]. We recall that a group G is π -closed for a set of primes π if the π -elements of G generate a normal π -subgroup.

THEOREM 3.1 ([14], Theorem, Corollary 2). Let G = AB = AC = BC be a D_{π} -group where A and B are π -closed subgroups and C is a π -separable subgroup, for a set of primes π . Then:

- (1) *G* is π -separable and $O_{\pi}(C) \subseteq O_{\pi}(G)$ and $O_{\pi'}(C) \subseteq O_{\pi,\pi'}(G)$;
- (2) $l_{\pi}(G) \leq l_{\pi}(C) + 1$ and $l_{\pi'}(G) \leq l_{\pi'}(C) + 1$;
- (3) if A and B are also π' -closed (that is, A and B are π -decomposable), then $l_{\pi}(G) = l_{\pi}(C)$ and $l_{\pi'}(G) = l_{\pi'}(C)$ (and also $O_{\pi'}(C) \subseteq O_{\pi'}(G)$).

THEOREM 3.2. Let π be a set of odd primes. Let the group G = AB = AC = BC be the product of three subgroups A, B and C, where $A = A_{\pi} \times A_{\pi'}$ and $B = B_{\pi} \times B_{\pi'}$ are π -decomposable groups and C is a D_{π} -group. Then G is a D_{π} -group.

PROOF. Note first that $A_{\pi}B_{\pi}$ is a Hall π -subgroup of G by Theorem 1.1.

We argue by induction on |G|. The hypotheses of the result hold for factor groups. Hence whenever N is a nontrivial normal subgroup of G, the inductive hypothesis implies that G/N is a D_{π} -group. If in addition N is a D_{π} -group, then the result follows by Lemma 2.4. In particular, we may assume that $O_{\pi}(G) = O_{\pi'}(G) = 1$. By Lemma 2.2 it follows that $[A_{\pi}^G, B_{\pi}^G] = 1$.

We consider now the case where $A_{\pi} \neq 1$ and $B_{\pi} \neq 1$. We claim that $A_{\pi}^{G} \cap B_{\pi}^{G} = 1$. Otherwise, if N is a minimal normal subgroup of G contained in $A_{\pi}^{G} \cap B_{\pi}^{G}$, then [N, N] = 1, that is, N is abelian and then either $N \leq O_{\pi}(G) = 1$ or $N \leq O_{\pi'}(G) = 1$, a contradiction.

On the other hand,

$$A_{\pi}^{G} = A_{\pi}^{A_{\pi}A_{\pi'}B_{\pi}B_{\pi'}} = A_{\pi}^{B_{\pi'}} = A_{\pi}[A_{\pi}, B_{\pi'}] \neq 1$$

and

$$B_{\pi}^{G} = B_{\pi}^{B_{\pi}B_{\pi'}A_{\pi}A_{\pi'}} = B_{\pi}^{A_{\pi'}} = B_{\pi}[B_{\pi}, A_{\pi'}] \neq 1.$$

Let *H* be a π -subgroup of *G*. We aim to prove that $H \leq (A_{\pi}B_{\pi})^g$ for some $g \in G$.

We apply induction on the factor groups G/A_{π}^{G} and G/B_{π}^{G} , and may assume that

$$H \leq B_{\pi} A_{\pi} [A_{\pi}, B_{\pi'}]$$

and

$$H \le (A_{\pi}B_{\pi}[B_{\pi}, A_{\pi'}])^g = (A_{\pi}B_{\pi}[B_{\pi}, A_{\pi'}])^b$$

for some g = ab with $a \in A$, $b \in B$, since $B_{\pi}[B_{\pi}, A_{\pi'}]$ is normal in *G* and A_{π} is normal in *A*. Consequently,

$$\begin{aligned} H &\leq (B_{\pi}A_{\pi}[A_{\pi}, B_{\pi'}]) \cap (A_{\pi}B_{\pi}[B_{\pi}, A_{\pi'}])^{b} = ((A_{\pi}B_{\pi}[A_{\pi}, B_{\pi'}]) \cap (A_{\pi}B_{\pi}[B_{\pi}, A_{\pi'}]))^{b} \\ &= (A_{\pi}B_{\pi}([A_{\pi}, B_{\pi'}]) \cap (A_{\pi}B_{\pi}[B_{\pi}, A_{\pi'}]))^{b}, \end{aligned}$$

since $A_{\pi}[A_{\pi}, B_{\pi'}]$ is normal in *G* and B_{π} is normal in *B*.

We claim that $[A_{\pi}, B_{\pi'}] \cap (A_{\pi}B_{\pi}[B_{\pi}, A_{\pi'}])$ is a π -group. Since $A_{\pi}B_{\pi}$ is a Hall π -subgroup of G, this will imply that $H \leq (A_{\pi}B_{\pi}([A_{\pi}, B_{\pi'}] \cap (A_{\pi}B_{\pi}[B_{\pi}, A_{\pi'}])))^{b} = (A_{\pi}B_{\pi})^{b}$, as we aimed to prove.

Let $c \in [A_{\pi}, B_{\pi'}] \cap (A_{\pi}B_{\pi}[B_{\pi}, A_{\pi'}])$. Then c = td with $t \in A_{\pi}B_{\pi}$ and $d \in [B_{\pi}, A_{\pi'}]$. Hence, $t = cd^{-1}$. But $[A_{\pi}, B_{\pi'}] \cap [B_{\pi}, A_{\pi'}] = 1$ and $[[A_{\pi}, B_{\pi'}], [B_{\pi}, A_{\pi'}]] = 1$, because $A_{\pi}^{G} \cap B_{\pi}^{G} = 1$ and $[A_{\pi}^{G}, B_{\pi}^{G}] = 1$. Consequently, it follows in particular that the order of c divides the order of t, which is a π -number. This proves the claim and the result in the case under consideration.

In the case where $A_{\pi} = 1$ and $B_{\pi'} = 1$, the group *G* has Hall π -subgroups and Hall π' -subgroups, which implies that *G* is a D_{π} -group (see [2]).

Hence, we may assume without loss of generality that $A_{\pi} = 1$, $A_{\pi'} \neq 1$, $B_{\pi} \neq 1$ and $B_{\pi'} \neq 1$. Since G = AB = AC = BC and $A_{\pi} = 1$, it is easy to deduce by order arguments that $B_{\pi} \leq C$. Hence, the facts that $B_{\pi} \triangleleft B$ and G = BC imply, by Lemma 2.1, that $B_{\pi}^G \leq C$. Set $N = B_{\pi}^G$. Since *C* is a D_{π} -group, it follows that *N* and so also *G* are D_{π} -groups, by Lemma 2.4, which concludes the proof.

COROLLARY 3.3. Let π be a set of primes. Let the group G = AB = AC = BC be the product of three subgroups A, B and C, where $A = A_{\pi} \times A_{\pi'}$ and $B = B_{\pi} \times B_{\pi'}$ are π -decomposable groups and C is π -separable. Then G is π -separable.

Moreover, $O_{\pi}(C) \subseteq O_{\pi}(G)$ and $l_{\pi}(G) = l_{\pi}(C)$ (and also $O_{\pi'}(C) \subseteq O_{\pi'}(G)$ and $l_{\pi'}(G) = l_{\pi'}(C)$).

PROOF. We may assume that $\pi \neq \emptyset$ and $\pi' \neq \emptyset$. Let $\sigma \in \{\pi, \pi'\}$ such that $2 \notin \sigma$. Then *C* is σ -separable and so *C* is a D_{σ} -group. By Theorem 3.2, *G* is a D_{σ} -group and the result follows by Theorem 3.1.

The following result is easily deduced.

COROLLARY 3.4. Let π be a set of primes. Let the group G = AB = AC = BC be the product of three subgroups A, B and C. If A, B and C are π -decomposable groups, then G is π -decomposable.

It may be of interest to compare Corollary 3.4 with the following result, which appears in [14] as a corollary of Theorem 3.1(1). Indeed, Corollary 3.4 may also be seen as consequence of the following result together with Theorem 3.2.

COROLLARY 3.5 ([13, Satz 1], [14, Corollary 1]). Let G be a D_{π} -group. Then G is π -closed if and only if there are subgroups A, B and C of G, all π -closed and satisfying G = AB = AC = BC.

The following example shows a trifactorised group G = AB = AC = BC with subgroups A, B and C such that A and B are π -decomposable but G and C are not π -separable.

EXAMPLE 3.6. Consider X = Alt(5) the alternating group of degree 5 and let $G = X \times X$. Let $Y, Z \le X$ with $Y \cong Alt(4)$ and $Z \cong C_5$ the cyclic group of order 5. Let $A = Y \times Z$, $B = Z \times Y$, and let $C = D(X) = \{(x, x) | x \in X\} \cong A_5$ be the diagonal subgroup. Set $\pi = \{5\}$, so $\pi' = \{2, 3\}$. Then G = AB = AC = BC and A and B are π -decomposable groups, but G and C are not π -separable.

We show next that under the hypotheses of Corollary 3.3 the π -length of the group *G* can be arbitrarily large.

EXAMPLE 3.7. Consider *P* a nontrivial π -group and *Q* a nontrivial π' -group, for a set of primes π . For every $i \ge 1$, we define inductively a group X_i as follows:

$$\begin{aligned} X_1 &= P, \quad X_2 = P \sim Q \\ X_i &= X_{i-1} \sim P, \quad X_{i+1} = X_i \sim Q \quad \text{when } i \geq 3, i \text{ odd}, \end{aligned}$$

where $R \sim S$ denotes the regular wreath product of R with S, for any pair of groups R and S.

Consider $X = X_n$ for any positive integer *n*. Write $X^{(1)} = X^{(2)} = X$ and set $G = X^{(1)} \times X^{(2)}$. Take $X_{\sigma}^{(i)}$ a σ -Hall subgroup of *X*, for each $\sigma \in \{\pi, \pi'\}$ and i = 1, 2. Now let $A = X_{\pi}^{(1)} \times X_{\pi'}^{(2)}$, $B = X_{\pi'}^{(1)} \times X_{\pi}^{(2)}$ and $C = D(X) = \{(x, x) \mid x \in X\} \cong X$ the diagonal

subgroup. Then G = AB = AC = BC, A and B are π -decomposable groups, C and G are π -separable and $l_{\pi}(G) = l_{\pi}(C)$ is either n/2 or (n + 1)/2, depending on whether n is even or odd.

It is well known that the Fitting subgroup of a product of two nilpotent groups is factorised (see [1, Lemma 2.5.7]). As an application of Corollary 3.4, we obtain the following generalisation of that result for π -decomposable groups. A particular case in the universe of finite soluble groups was obtained in [4, Theorem 2].

PROPOSITION 3.8. Let \mathcal{F} be the class of all π -decomposable groups, for a set of primes π . If G = AB is a π -separable group and A and B are \mathcal{F} -groups, then the \mathcal{F} -radical $G_{\mathcal{F}}$ of G is a factorised subgroup, that is, $G_{\mathcal{F}} = (G_{\mathcal{F}} \cap A)(G_{\mathcal{F}} \cap B)$ and $A \cap B$ is contained in $G_{\mathcal{F}}$. (Recall that $G_{\mathcal{F}} = O_{\pi}(G) \times O_{\pi'}(G)$.)

PROOF. Assume that the result is not true and let *G* be a counterexample of minimal order. Since *G* is π -separable, $G_{\mathcal{F}} = O_{\pi}(G) \times O_{\pi'}(G) \neq 1$, and the choice of *G* implies that the \mathcal{F} -radical $L/G_{\mathcal{F}}$ of the factor group $G/G_{\mathcal{F}} = (AG_{\mathcal{F}}/G_{\mathcal{F}})(BG_{\mathcal{F}}/G_{\mathcal{F}})$ is factorised; in particular,

$$(AG_{\mathcal{F}}/G_{\mathcal{F}}) \cap (BG_{\mathcal{F}}/G_{\mathcal{F}}) \le L/G_{\mathcal{F}}.$$

Set $X = X(G_{\mathcal{F}})$, the factoriser of $G_{\mathcal{F}}$ in G = AB. Then $G_{\mathcal{F}} < X = AG_{\mathcal{F}} \cap BG_{\mathcal{F}} \leq L$ and

$$L = (L \cap AG_{\mathcal{F}})(L \cap BG_{\mathcal{F}}) = (L \cap A)G_{\mathcal{F}}(L \cap B) \subseteq (L \cap A)X(L \cap B)$$
$$= (L \cap A)(X \cap A)(X \cap B)(L \cap B) = (L \cap A)(L \cap B) \subseteq L,$$

that is, $L = (L \cap A)(L \cap B)$.

If *L* were a proper subgroup of *G*, then by the minimal choice of *G* the \mathcal{F} -radical of *L* would be factorised with respect to the factorisation $L = (L \cap A)(L \cap B)$. But $A \cap B \leq X \leq L$, and so $A \cap B = (L \cap A) \cap (L \cap B) \leq L_{\mathcal{F}}$. Then $G_{\mathcal{F}} = L_{\mathcal{F}}$ would also be factorised with respect to G = AB, a contradiction.

Consequently, L = G and $G/G_{\mathcal{F}}$ is an \mathcal{F} -group, that is,

$$G/G_{\mathcal{F}} = O_{\pi}(G/G_{\mathcal{F}}) \times O_{\pi'}(G/G_{\mathcal{F}}).$$

Since $A = A_{\pi} \times A_{\pi'}$ and $B = B_{\pi} \times B_{\pi'}$ and *G* is π -separable, we deduce by Lemma 2.3 that $A_{\pi}B_{\pi}$ is a Hall π -subgroup of *G*, and $A_{\pi'}B_{\pi'}$ is a Hall π' -subgroup of *G*. It follows that $A_{\pi}B_{\pi}G_{\mathcal{F}} = A_{\pi}B_{\pi}O_{\pi'}(G)$ and $A_{\pi'}B_{\pi'}G_{\mathcal{F}} = A_{\pi'}B_{\pi'}O_{\pi}(G)$ are normal subgroups in *G*. Now, applying Corollary 3.4,

$$X = (A \cap BG_{\mathcal{F}})G_{\mathcal{F}} = (B \cap AG_{\mathcal{F}})G_{\mathcal{F}} = (A \cap BG_{\mathcal{F}})(B \cap AG_{\mathcal{F}})$$

is an \mathcal{F} -group, that is, $X = X_{\pi} \times X_{\pi'}$.

Let $\sigma \in \{\pi, \pi'\}$. Since $G_{\mathcal{F}} = O_{\pi}(G) \times O_{\pi'}(G) \leq X$, we deduce in particular that $[X_{\sigma}, O_{\sigma'}(G)] = 1$. Since *G* is π -separable, X_{σ} is contained in some Hall σ -subgroup of *G*. But every Hall σ -subgroup of *G* has the form $(A_{\sigma}B_{\sigma})^t$ for some $t \in O_{\sigma'}(G)$, as $A_{\sigma}B_{\sigma}O_{\sigma'}(G) \leq G$, so it contains X_{σ} . Hence $X_{\sigma} \leq O_{\sigma}(G)$. Consequently, $X = G_{\mathcal{F}}$, the final contradiction.

The next example shows that the above result is not true if G is not a π -separable group.

EXAMPLE 3.9. Let $N = L_2(2^6)$ and let ϕ be the Frobenius automorphism of N and $\psi = \phi^2$, which is an automorphism of N of order 3. Consider $G = [N]\langle\psi\rangle$ the natural semidirect product of N with $\langle\psi\rangle$. We note that $|G| = 2^6 \cdot 3^4 \cdot 5 \cdot 7 \cdot 13$ and also that $C_G(\psi) \cong L_2(2^2)$. Set $\pi = \{2, 3, 7, 13\}$.

The group *G* can be factorised as G = AB, where $A = N_G(G_2)$ is a π -group, $B = N_G(G_{13}) = B_{\pi} \times B_{\pi'} \cong ([C_{13}]C_3) \times C_5$ is π -decomposable and $|A \cap B| = 3$. Hence, if \mathcal{F} is the class of all π -decomposable groups, the \mathcal{F} -radical of *G* is $G_{\mathcal{F}} = 1$, and it is not factorised.

Theorem 3.11 below provides a stronger version of Corollary 3.4 for a trifactorised group where two of the factors are π -decomposable and the third factor is a subnormal subgroup. We will need the following preliminary result. For any formation \mathcal{F} and any group *X*, we denote by $X^{\mathcal{F}}$ the \mathcal{F} -residual of *X*.

LEMMA 3.10. Let \mathcal{F} be a Fitting formation. If the group G = HK is the product of two subnormal subgroups H and K, then $G^{\mathcal{F}} = H^{\mathcal{F}}K^{\mathcal{F}}$.

PROOF. We argue by induction on $d_H + d_K$, where d_X denotes the subnormal defect of X in G for each $X \in \{H, K\}$, that is, the smallest nonnegative integer d_X such that there exists a series $X = X_0 \triangleleft X_1 \triangleleft \cdots \triangleleft X_{d_X} = G$ of subgroups of G. If H and K are normal subgroups of G ($d_H + d_K \leq 2$), the result follows by [6, II, Lemma 2.12]. Without loss of generality assume that H is not normal in G and let $H < \hat{H} \triangleleft G$. We observe that $\hat{H} = H(\hat{H} \cap K)$, so, by the inductive hypothesis, $G^{\mathcal{F}} = \hat{H}^{\mathcal{F}} K^{\mathcal{F}}$ and $\hat{H}^{\mathcal{F}} = H^{\mathcal{F}} (\hat{H} \cap K)^{\mathcal{F}}$. Since \mathcal{F} is closed under taking subnormal subgroups, it follows that $(\hat{H} \cap K)^{\mathcal{F}} \leq K^{\mathcal{F}}$, and so $G^{\mathcal{F}} = H^{\mathcal{F}} K^{\mathcal{F}}$.

THEOREM 3.11. Let π be a set of primes. Let the group G = AB = AC = BC be the product of three subgroups A, B and C, where $A = A_{\pi} \times A_{\pi'}$ and $B = B_{\pi} \times B_{\pi'}$ are π -decomposable groups and C is a subnormal subgroup of G. If \mathcal{F} is the class of all π -decomposable groups, then $G^{\mathcal{F}} = C^{\mathcal{F}}$.

PROOF. We may assume that π is a set of odd primes.

First notice that the class \mathcal{F} of all π -decomposable groups is a Fitting formation. Suppose the result is not true and let *G* be a group of minimal order among the groups *X* having two π -decomposable subgroups *H* and *K* and a subnormal subgroup *L* such that G = HK = HL = KL and $G^{\mathcal{F}} \neq L^{\mathcal{F}}$.

Then there exist two π -decomposable subgroups A and B of G and a subnormal subgroup C of G such that G = AB = AC = BC and $G^{\mathcal{F}} \neq C^{\mathcal{F}}$. We choose C with |C| maximal. We split the proof into the following steps.

Step 1. $G^{\mathcal{F}} = C^{\mathcal{F}}N$ for every minimal normal subgroup N of G, $C^{\mathcal{F}} \triangleleft G^{\mathcal{F}}$ and $\operatorname{Core}_{G}(C^{\mathcal{F}}) = 1$.

Let *N* be a minimal normal subgroup of *G*. Since $(G/N)^{\mathcal{F}} = G^{\mathcal{F}}N/N$, the minimal choice of *G* implies that $G^{\mathcal{F}}N = C^{\mathcal{F}}N$. Moreover, $C^{\mathcal{F}} \leq G^{\mathcal{F}}$ which implies that $G^{\mathcal{F}} = C^{\mathcal{F}}(G^{\mathcal{F}} \cap N)$. Since $G^{\mathcal{F}} \neq C^{\mathcal{F}}$, it follows that $G^{\mathcal{F}} \cap N = N$ and so $N \leq G^{\mathcal{F}}$. Then $G^{\mathcal{F}} = C^{\mathcal{F}}N$ and also $\operatorname{Core}_G(C^{\mathcal{F}}) = 1$. Moreover, since $C^{\mathcal{F}}$ is a subnormal subgroup of *G*, *N* normalises $C^{\mathcal{F}}$ (see [6, A, Lemma 14.3]), which implies that $C^{\mathcal{F}} \triangleleft G^{\mathcal{F}}$.

Step 2. If there are two different minimal normal subgroups, then they are abelian.

Assume that N_1, N_2 are minimal normal subgroups, $N_1 \neq N_2$. By Step 1, $G^{\mathcal{F}} = C^{\mathcal{F}}N_1 = C^{\mathcal{F}}N_2$. Since $[N_1, N_2] = 1$, we deduce that $N'_i \leq C^{\mathcal{F}}$ for i = 1, 2. Since $Core_G(C^{\mathcal{F}}) = 1$ it follows that N_1 and N_2 are abelian.

Step 3. $G_{\mathcal{F}} = O_{\pi}(G) \times O_{\pi'}(G) \leq C$.

Suppose *C* is a proper subgroup of $CG_{\mathcal{F}}$. Since $G = AB = A(CG_{\mathcal{F}}) = B(CG_{\mathcal{F}})$, $CG_{\mathcal{F}}$ is a subnormal subgroup of *G* and $|C| < |CG_{\mathcal{F}}|$, it follows by the maximality of *C* that $G^{\mathcal{F}} = (CG_{\mathcal{F}})^{\mathcal{F}}$. By Lemma 3.10, $G^{\mathcal{F}} = C^{\mathcal{F}}$, a contradiction. Therefore $C = CG_{\mathcal{F}}$ and so $G_{\mathcal{F}} \leq C$.

Step 4. $G_{\mathcal{F}} = O_{\pi}(G) \times O_{\pi'}(G) \neq 1$. Moreover, if $\sigma \in \{\pi, \pi'\}$ such that $O_{\sigma}(G) \neq 1$, then $O_{\sigma'}(G) = 1$.

Assume that $O_{\pi}(G) = 1$ and $O_{\pi'}(G) = 1$. We know that $A_{\pi}B_{\pi}$ is a subgroup of G by Theorem 1.1. Then Lemma 2.2 implies that $[A_{\pi}^{G}, B_{\pi}^{G}] = 1$. Consequently, from this fact together with Step 2, we deduce that, if $A_{\pi} \neq 1$ and $B_{\pi} \neq 1$, then there is an abelian minimal normal subgroup, and so a normal *p*-subgroup, for a prime *p*, which is a contradiction. Therefore, we may assume without loss of generality that $A_{\pi} = 1$ and $B_{\pi} \neq 1$. Since G = AB = AC = BC, by order arguments it follows that $B_{\pi} \leq C$. Moreover, $B_{\pi} \triangleleft B$ and G = BC, which implies, by Lemma 2.1, that $B_{\pi}^{G} \leq C$. Then there is a minimal normal subgroup N of G contained in C, and $G^{\mathcal{F}} = C^{\mathcal{F}}N \leq C$. Hence $G^{\mathcal{F}}/C^{\mathcal{F}} \cong N/(N \cap C^{\mathcal{F}}) \in \mathcal{F}$. Now N is a nonabelian minimal normal subgroup, and so it is a direct product of copies of a nonabelian simple group. But $N \cap C^{\mathcal{F}}$ is a direct product of simple components of N, because it is a normal subgroup of N. It follows that N is a π' -group, and so $N \leq O_{\pi'}(G) = 1$, a contradiction. Therefore, $G_{\mathcal{F}} = O_{\pi}(G) \times O_{\pi'}(G) \neq 1$.

The last statement follows because $G^{\mathcal{F}}/C^{\mathcal{F}} \cong N/(N \cap C^{\mathcal{F}})$ for every minimal normal subgroup N of G.

Step 5. $G^{\mathcal{F}} \leq O_{\sigma}(G)$. If there is a minimal normal subgroup which is an elementary abelian *p*-group for a prime *p*, then $G^{\mathcal{F}}$ has the same properties. Moreover, *G* is σ -separable (and σ' -separable).

Let N be a minimal normal subgroup of G, $N \leq O_{\sigma}(G)$. Since $G^{\mathcal{F}} = C^{\mathcal{F}}N$, we see that $G^{\mathcal{F}}/C^{\mathcal{F}} \cong N/(N \cap C^{\mathcal{F}})$. Then $O^{\sigma}(G^{\mathcal{F}}) \leq \operatorname{Core}_{G}(C^{\mathcal{F}}) = 1$, which implies that $G^{\mathcal{F}}$ is a σ -group. If there is a minimal normal subgroup which is an elementary abelian p-group for a prime p, analogous arguments prove that $G^{\mathcal{F}}$ has the same properties. Moreover, it follows now that G is σ -separable, as is $G/G^{\mathcal{F}}$.

 $Step \ 6. \ \ G = G_{\sigma}G_{\sigma'}, \ G^{\mathcal{F}} \leq G_{\sigma} \trianglelefteq G, \ G^{\mathcal{F}}G_{\sigma'} \trianglelefteq G, \ G^{\mathcal{F}} = (G^{\mathcal{F}}G_{\sigma'})^{\mathcal{F}}.$

This follows by Step 5 and Lemma 3.10.

Step 7. The final contradiction.

If $A_{\sigma'} = 1$, then we may take $G_{\sigma'} = B_{\sigma'} \leq C$, which implies that $G^{\mathcal{F}}G_{\sigma'} \leq C$ and so $G^{\mathcal{F}} = (G^{\mathcal{F}}G_{\sigma'})^{\mathcal{F}} \leq C^{\mathcal{F}}$, a contradiction. Analogously $B_{\sigma'} = 1$ is not possible. Consequently $A_{\sigma'} \neq 1$, $B_{\sigma'} \neq 1$ and $O_{\sigma'}(G) = 1$. Again, by Lemma 2.2, $[A^G_{\sigma'}, B^G_{\sigma'}] = 1$, and together with Step 2, we can consider a minimal normal subgroup $N \leq B^G_{\sigma'}$ which is abelian. In particular, $[A^G_{\sigma'}, N] = 1$.

By Lemma 2.3 there exists a Hall σ' -subgroup of C, say $C_{\sigma'}$, such that $A_{\sigma'}C_{\sigma'}$ is a σ' -Hall subgroup of G. Since N is an elementary abelian group and $C_{\sigma'}$ acts coprimely on N, we can apply Maschke's theorem (see [6, A, Theorem 11.5]) to deduce that the $C_{\sigma'}$ -invariant subgroup $C^{\mathcal{F}} \cap N$ has a $C_{\sigma'}$ -invariant complement in N, say H. Moreover, since $\operatorname{Core}_G(C^{\mathcal{F}}) = 1$, it follows that $H \neq 1$. So $G^{\mathcal{F}} = C^{\mathcal{F}}N = C^{\mathcal{F}}H$ with $C^{\mathcal{F}} \cap H = 1$.

Now $C_{\sigma'}G^{\mathcal{F}}/C^{\mathcal{F}} \leq C/C^{\mathcal{F}}$ is an \mathcal{F} -group. But $C_{\sigma'}G^{\mathcal{F}}/C^{\mathcal{F}} = C_{\sigma'}HC^{\mathcal{F}}/C^{\mathcal{F}} \cong C_{\sigma'}H$, because $C^{\mathcal{F}} \cap C_{\sigma'}H = 1$. This means that $C_{\sigma'}H$ is an \mathcal{F} -group, and so H centralises $C_{\sigma'}$. Since $[N, A_{\sigma'}] = 1$, it follows that H centralises $G_{\sigma'} = A_{\sigma'}C_{\sigma'}$, which is a Hall σ' -subgroup of G. In particular, $H \times G_{\sigma'} \in \mathcal{F}$.

Since $G^{\mathcal{F}} = C^{\mathcal{F}}H$ is an elementary abelian subgroup by Step 5, again by Maschke's theorem, there exists a complement of H in $G^{\mathcal{F}}$, say T, which is $G_{\sigma'}$ -invariant. But then, by Step 6, we see that $G^{\mathcal{F}} = (G^{\mathcal{F}}G_{\sigma'})^{\mathcal{F}} = (THG_{\sigma'})^{\mathcal{F}} \leq T$, which is a proper subgroup of $G^{\mathcal{F}}$, the final contradiction.

REMARK 3.12. Example 3.6 shows that the statement in Theorem 3.11 does not remain true if the subgroup C fails to be subnormal.

As a particular case of Theorem 3.11 we recover the following extension of Kegel's result quoted in the introduction, which appears in [3].

COROLLARY 3.13. Let the finite group G = AB = AN = BN be the product of three subgroups A, B and N, where N is subnormal in G. If A and B are nilpotent, then the nilpotent residual of G coincides with the nilpotent residual of N. In particular, the nilpotent residual of N is normal in G.

One might expect that the result of Peterson [1, Theorem 2.5.10] mentioned in the introduction should generalise to a corresponding positive result by replacing the class of nilpotent groups by a class of π -decomposable groups for a set of primes π . The following example shows that this is not the case, even if the factor *C* is assumed to be a π -separable normal subgroup and the saturated formation to contain all π -decomposable groups.

EXAMPLE 3.14. Let π be a set of primes. Assume that the group G = AB = AC = BC is the product of three subgroups A, B and C, where $A = A_{\pi} \times A_{\pi'}$ and $B = B_{\pi} \times B_{\pi'}$ are π -decomposable groups, and C is a π -closed normal subgroup of G. If \mathcal{F} is a saturated

formation containing the class of all π -decomposable groups, the next example shows that it is not true in general that $G \in \mathcal{F}$ whenever $C \in \mathcal{F}$.

Choose the groups $T = \langle t \rangle \cong C_7$, $Y = \langle y \rangle \cong C_3$, $X = \langle x \rangle \cong C_2$ and consider the natural action of $Y \times X \cong \operatorname{Aut}(T)$ on T as automorphism group; more precisely, $t^y = t^2$, $t^x = t^{-1}$. Let *TYX* be the corresponding semidirect product. We consider now an irreducible and faithful *TYX*-module *V* over the field of five elements (see [6, B, Theorem 10.3]) and form G = VTYX the corresponding semidirect product.

Take π to be the set of all odd primes, so $\pi' = \{2\}$, A = VTY which is a π -group, B = YX which is a π -decomposable group, and C = VTX which is a π -closed normal subgroup of *G*. We note that G = AB = AC = BC. By [6, IV, Proposition 1.3)], the class of groups

$$\mathcal{H} = (G \mid \operatorname{Aut}_G(S) \in (C_2, \mathcal{E}_{2'}) \text{ for all 7-chief factors } S \text{ of } G)$$

is a formation, where $(C_2, \mathcal{E}_{2'})$ denotes the class of groups which either are isomorphic to C_2 or belong to $\mathcal{E}_{2'}$, the class of groups of odd order.

We now consider $\mathcal{F} = LF(f)$ the saturated formation locally defined by the formation function *f* given in the following way:

$$f(p) = \mathcal{H}$$
 for every prime $p \neq 2$,
 $f(2) = \mathcal{E}_2$ the class of 2-groups.

It is easy to see that the class of all π -decomposable groups is contained in \mathcal{F} . Moreover, $C \in \mathcal{F}$ but $G \notin \mathcal{F}$.

Acknowledgement

The first author would like to thank the Universitat de València for its warm hospitality and financial support during the preparation of this paper.

References

- [1] B. Amberg, S. Franciosi and F. de Giovanni, Products of Groups (Clarendon Press, Oxford, 1992).
- [2] Z. Arad and E. Fisman, 'On finite factorizable groups', J. Algebra 86 (1984), 522–548.
- [3] A. Ballester-Bolinches, A. Martínez-Pastor and M. C. Pedraza-Aguilera, 'Finite trifactorized groups and formations', J. Algebra 226 (2000), 990–1000.
- [4] A. Ballester-Bolinches, A. Martínez-Pastor and M. D. Pérez-Ramos, 'Nilpotent-like Fitting formations of finite soluble groups', *Bull. Aust. Math. Soc.* 62 (2000), 427–433.
- [5] A. Ballester-Bolinches, A. Martínez-Pastor, M. C. Pedraza-Aguilera and M. D. Pérez-Ramos, 'On nilpotent-like Fitting formations', in: *Groups St Andrews 2001 in Oxford*, Vol. I, London Mathematical Society Lecture Note Series, 304 (Cambridge University Press, Cambridge, 2003), 31–38.
- [6] K. Doerk and T. Hawkes, *Finite Soluble Groups* (Walter de Gruyter, Berlin, 1992).
- [7] L. S. Kazarin, 'Factorizations of finite groups by solvable subgroups', Ukr. Mat. J. 43(7) (1991), 883–886.
- [8] L. S. Kazarin, A. Martínez-Pastor and M. D. Pérez-Ramos, 'On the product of a π -group and a π -decomposable group', *J. Algebra* **315** (2007), 640–653.
- [9] L. S. Kazarin, A. Martínez-Pastor and M. D. Pérez-Ramos, 'On the product of two πdecomposable soluble groups', *Publ. Mat.* 53 (2009), 439–456.

[10]

- [10] L. S. Kazarin, A. Martínez-Pastor and M. D. Pérez-Ramos, 'Extending the Kegel–Wielandt theorem through π-decomposable groups', in: *Groups St Andrews 2009 in Bath*, Vol. 2, London Mathematical Society Lecture Note Series, 388 (Cambridge University Press, Cambridge, 2011), 415–423.
- [11] L. S. Kazarin, A. Martínez-Pastor and M. D. Pérez-Ramos, 'A reduction theorem for a conjecture on products of two π-decomposable groups', J. Algebra 379 (2013), 301–313.
- [12] L. S. Kazarin, A. Martínez-Pastor and M. D. Pérez-Ramos, 'On the product of two πdecomposable groups', *Rev. Mat. Iberoam.* 31 (2015), 51–68.
- [13] O. H. Kegel, 'Zur Struktur mehrfach faktorisierter endlicher Gruppen', Math. Z. 87 (1965), 42-48.
- [14] E. Pennington, 'Trifactorisable groups', Bull. Aust. Math. Soc. 8 (1973), 461-469.
- [15] D. O. Revin and E. P. Vdovin, 'Hall subgroups in finite groups', in: *Ischia Group Theory* 2004, Contemporary Mathematics, 402 (American Mathematical Society, Providence, RI, 2006), 229–263.
- [16] D. J. Robinson, A Course in the Theory of Groups (Springer, New York, 1982).

L. S. KAZARIN, Department of Mathematics, Yaroslavl P. Demidov State University, Sovetskaya Str. 14, 150003 Yaroslavl, Russia e-mail: Kazarin@uniyar.ac.ru

A. MARTÍNEZ-PASTOR, Instituto Universitario de Matemática Pura y Aplicada IUMPA-UPV, Universitat Politècnica de València, Camino de Vera, s/n, 46022 València, Spain e-mail: anamarti@mat.upv.es

M. D. PÉREZ-RAMOS, Departament de Matemàtiques, Universitat de València, C/ Doctor Moliner 50, 46100 Burjassot (València), Spain e-mail: Dolores.Perez@uy.es