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Abstract

We derive some structural properties of a trifactorised finite group G = AB = AC = BC, where A, B, and
C are subgroups of G, provided that A = Aπ × Aπ′ and B = Bπ × Bπ′ are π-decomposable groups, for a set
of primes π.
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1. Introduction

Throughout this paper all groups considered are finite. Within the study of factorised
groups one has frequently to consider trifactorised groups, that is, groups of the
form G = AB = AC = BC, where A, B and C are subgroups of G. This occurs, for
instance, when aiming to get information on a normal subgroup N of a factorised
group G = AB, with A, B subgroups of G. In this case, an important tool is to
analyse the structure of the so-called factoriser of N, denoted by X(N), which is the
intersection of all factorised subgroups containing N. (A subgroup S of G = AB is
factorised if S = (A ∩ S )(B ∩ S ) and A ∩ B ≤ S .) The factoriser subgroup X(N) turns
out to be a trifactorised group; more precisely, X(N) = N(A ∩ BN) = N(B ∩ AN) =

(A ∩ BN)(B ∩ AN) (see [1]).
One of the classical results in the literature on finite trifactorised groups is due to

Kegel [13]. He proved that a finite group G = AB = AC = BC, which is the product
of two nilpotent subgroups A and B, is nilpotent (supersoluble), provided that C is
likewise nilpotent (supersoluble). A corresponding statement holds when A and B
are nilpotent and C belongs to a saturated formation containing all nilpotent groups
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(Peterson [1, Theorem 2.5.10]). It is worth emphasising that such a group is soluble,
by the celebrated theorem of Kegel and Wielandt on the solubility of a product of two
nilpotent groups.

Some criteria for the π-separability of a trifactorised group, for a set of primes π,
under assumptions of existence, conjugacy and dominance of Hall π-subgroups, were
obtained by Pennington in [14] (see Theorem 3.1 and Corollary 3.5 below). A much
deeper result in the universe of all finite groups was proved by Kazarin in [7] using the
classification of finite simple groups: if the group G = AB = AC = BC is the product
of three soluble subgroups A, B and C, then G is soluble. Some related results were
obtained in [3], again in the universe of soluble groups, by considering some well-
known families of subgroup-closed saturated formations of so-called nilpotent type
(see [5] for an account of such classes of groups).

In this paper we go further with the research on trifactorised groups, dealing with
π-decomposable groups. A group X is said to be π-decomposable for a set of primes π,
if X = Xπ × Xπ′ is the direct product of a π-subgroup Xπ and a π′-subgroup Xπ′ , where
π′ stands for the complement of π in the set of all prime numbers. For any group X
and any set of primes σ, we use Xσ to denote a Hall σ-subgroup of X. In particular,
Xp will denote a Sylow p-subgroup of X, for a prime p.

For our purposes the following result is crucial.

Theorem 1.1 ([12], Main Theorem). Let π be a set of odd primes. Let the group G = AB
be the product of two π-decomposable subgroups A = Aπ × Aπ′ and B = Bπ × Bπ′ . Then
AπBπ = BπAπ, and this is a Hall π-subgroup of G.

This theorem, whose proof uses the classification of finite simple groups, is part of
a development carried out in [8, 9, 11, 12] and motivated by the search for extensions
of the theorem of Kegel and Wielandt mentioned above (see also [10]). We apply
Theorem 1.1 to obtain new results on trifactorised groups within the general universe
of finite groups.

The notation is standard and is taken mainly from [6], and we refer to this book
for the basic terminology and results about classes of groups. We refer to [16] for the
elementary facts regarding π-separable groups for a set of primes π. In particular, we
denote by lπ(G) the π-length of a π-separable group G. If X,Y are subgroups of a group
G, we set XY = 〈xy | x ∈ X, y ∈ Y〉; in particular, XG is the normal closure of X in G.

2. Preliminary results

We will frequently use the following well-known result, whose proof is
straightforward.

Lemma 2.1. Let the group G = AB be the product of the subgroups A and B. Assume
that D ⊆ A ∩ B and that D is a normal subgroup of B. Then DG ≤ A.

The next lemma is a reformulation of a result of Kegel, later improved by Wielandt,
which appears in [1, Lemma 2.5.1] (see also [9, Lemma 2]).
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Lemma 2.2. Let the group G = AB be the product of the subgroups A and B and
let A0 and B0 be normal subgroups of A and B, respectively. If A0B0 = B0A0, then
Ag

0B0 = B0Ag
0 for all g ∈ G.

Moreover, if A0 and B0 are π-groups for a set of primes π, and Oπ(G) = 1, then
[AG

0 , B
G
0 ] = 1.

For a set of primes π, we recall that a π-separable group is a Dπ-group, that is,
every π-subgroup is contained in a Hall π-subgroup, and any two Hall π-subgroups are
conjugate in the group. We will use, without further reference, the following fact on
Hall subgroups of factorised groups, which is applicable to π-separable groups (see [1,
Lemma 1.3.2]).

Lemma 2.3. Let G = AB be the product of the subgroups A and B. Assume that A and
B have Hall π-subgroups and that G is a Dπ-group for a set of primes π. Then there
exist Hall π-subgroups Aπ of A and Bπ of B such that AπBπ is a Hall π-subgroup of G.

We need specifically the following result, whose proof uses the classification of
finite simple groups.

Lemma 2.4 ([15], Theorem 7.7). Let G be a finite group, A EG, and π a set of primes.
Then G is a Dπ-group if and only if A and G/A are Dπ-groups.

3. Main results

Our first results on trifactorised groups, Theorem 3.2 and Corollaries 3.3 and
3.4, provide an alternative approach to that of Pennington [14] concerning the
π-separability of trifactorised groups. The main goal is to avoid hypotheses of
existence, conjugacy and dominance of Hall π-subgroups (Dπ-properties), in contrast
to Pennington’s results. This will follow as consequence of Theorem 3.2, which
provides the Dπ-property of a trifactorised group, as a first application of Theorem 1.1.

We gather first the above-mentioned results of [14]. We recall that a group G is
π-closed for a set of primes π if the π-elements of G generate a normal π-subgroup.

Theorem 3.1 ([14], Theorem, Corollary 2). Let G = AB = AC = BC be a Dπ-group
where A and B are π-closed subgroups and C is a π-separable subgroup, for a set of
primes π. Then:

(1) G is π-separable and Oπ(C) ⊆ Oπ(G) and Oπ′(C) ⊆ Oπ,π′(G);
(2) lπ(G) ≤ lπ(C) + 1 and lπ′(G) ≤ lπ′(C) + 1;
(3) if A and B are also π′-closed (that is, A and B are π-decomposable), then

lπ(G) = lπ(C) and lπ′(G) = lπ′(C) (and also Oπ′(C) ⊆ Oπ′(G)).

Theorem 3.2. Let π be a set of odd primes. Let the group G = AB = AC = BC be
the product of three subgroups A, B and C, where A = Aπ × Aπ′ and B = Bπ × Bπ′ are
π-decomposable groups and C is a Dπ-group. Then G is a Dπ-group.
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Proof. Note first that AπBπ is a Hall π-subgroup of G by Theorem 1.1.
We argue by induction on |G|. The hypotheses of the result hold for factor groups.

Hence whenever N is a nontrivial normal subgroup of G, the inductive hypothesis
implies that G/N is a Dπ-group. If in addition N is a Dπ-group, then the result follows
by Lemma 2.4. In particular, we may assume that Oπ(G) = Oπ′(G) = 1. By Lemma 2.2
it follows that [AG

π , B
G
π ] = 1.

We consider now the case where Aπ , 1 and Bπ , 1. We claim that AG
π ∩ BG

π = 1.
Otherwise, if N is a minimal normal subgroup of G contained in AG

π ∩ BG
π , then

[N, N] = 1, that is, N is abelian and then either N ≤ Oπ(G) = 1 or N ≤ Oπ′(G) = 1,
a contradiction.

On the other hand,

AG
π = AAπAπ′BπBπ′

π = ABπ′
π = Aπ[Aπ, Bπ′] , 1

and
BG
π = BBπBπ′AπAπ′

π = BAπ′
π = Bπ[Bπ, Aπ′] , 1.

Let H be a π-subgroup of G. We aim to prove that H ≤ (AπBπ)g for some g ∈ G.
We apply induction on the factor groups G/AG

π and G/BG
π , and may assume that

H ≤ BπAπ[Aπ, Bπ′]

and
H ≤ (AπBπ[Bπ, Aπ′])g = (AπBπ[Bπ, Aπ′])b

for some g = ab with a ∈ A, b ∈ B, since Bπ[Bπ, Aπ′] is normal in G and Aπ is normal
in A. Consequently,

H ≤ (BπAπ[Aπ, Bπ′]) ∩ (AπBπ[Bπ, Aπ′])b = ((AπBπ[Aπ, Bπ′]) ∩ (AπBπ[Bπ, Aπ′]))b

= (AπBπ([Aπ, Bπ′] ∩ (AπBπ[Bπ, Aπ′])))b,

since Aπ[Aπ, Bπ′] is normal in G and Bπ is normal in B.
We claim that [Aπ, Bπ′] ∩ (AπBπ[Bπ, Aπ′]) is a π-group. Since AπBπ is a Hall

π-subgroup of G, this will imply that H ≤ (AπBπ([Aπ, Bπ′] ∩ (AπBπ[Bπ, Aπ′])))b =

(AπBπ)b, as we aimed to prove.
Let c ∈ [Aπ, Bπ′] ∩ (AπBπ[Bπ, Aπ′]). Then c = td with t ∈ AπBπ and d ∈ [Bπ, Aπ′].

Hence, t = cd−1. But [Aπ, Bπ′] ∩ [Bπ, Aπ′] = 1 and [[Aπ, Bπ′], [Bπ, Aπ′]] = 1, because
AG
π ∩ BG

π = 1 and [AG
π , B

G
π ] = 1. Consequently, it follows in particular that the order of

c divides the order of t, which is a π-number. This proves the claim and the result in
the case under consideration.

In the case where Aπ = 1 and Bπ′ = 1, the group G has Hall π-subgroups and Hall
π′-subgroups, which implies that G is a Dπ-group (see [2]).

Hence, we may assume without loss of generality that Aπ = 1, Aπ′ , 1, Bπ , 1 and
Bπ′ , 1. Since G = AB = AC = BC and Aπ = 1, it is easy to deduce by order arguments
that Bπ ≤ C. Hence, the facts that Bπ C B and G = BC imply, by Lemma 2.1, that
BG
π ≤ C. Set N = BG

π . Since C is a Dπ-group, it follows that N and so also G are
Dπ-groups, by Lemma 2.4, which concludes the proof. �
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Corollary 3.3. Let π be a set of primes. Let the group G = AB = AC = BC be the
product of three subgroups A, B and C, where A = Aπ × Aπ′ and B = Bπ × Bπ′ are
π-decomposable groups and C is π-separable. Then G is π-separable.

Moreover, Oπ(C) ⊆ Oπ(G) and lπ(G) = lπ(C) (and also Oπ′(C) ⊆ Oπ′(G) and lπ′(G) =

lπ′(C)).

Proof. We may assume that π , ∅ and π′ , ∅. Let σ ∈ {π, π′} such that 2 < σ. Then
C is σ-separable and so C is a Dσ-group. By Theorem 3.2, G is a Dσ-group and the
result follows by Theorem 3.1. �

The following result is easily deduced.

Corollary 3.4. Let π be a set of primes. Let the group G = AB = AC = BC be the
product of three subgroups A, B and C. If A, B and C are π-decomposable groups,
then G is π-decomposable.

It may be of interest to compare Corollary 3.4 with the following result, which
appears in [14] as a corollary of Theorem 3.1(1). Indeed, Corollary 3.4 may also be
seen as consequence of the following result together with Theorem 3.2.

Corollary 3.5 ([13, Satz 1], [14, Corollary 1]). Let G be a Dπ-group. Then G is
π-closed if and only if there are subgroups A, B and C of G, all π-closed and satisfying
G = AB = AC = BC.

The following example shows a trifactorised group G = AB = AC = BC with
subgroups A, B and C such that A and B are π-decomposable but G and C are not
π-separable.

Example 3.6. Consider X = Alt(5) the alternating group of degree 5 and let G = X × X.
Let Y, Z ≤ X with Y � Alt(4) and Z � C5 the cyclic group of order 5. Let A = Y × Z,
B = Z × Y , and let C = D(X) = {(x, x) | x ∈ X} � A5 be the diagonal subgroup. Set
π = {5}, so π′ = {2, 3}. Then G = AB = AC = BC and A and B are π-decomposable
groups, but G and C are not π-separable.

We show next that under the hypotheses of Corollary 3.3 the π-length of the group
G can be arbitrarily large.

Example 3.7. Consider P a nontrivial π-group and Q a nontrivial π′-group, for a set of
primes π. For every i ≥ 1, we define inductively a group Xi as follows:

X1 = P, X2 = P ∼ Q
Xi = Xi−1 ∼ P, Xi+1 = Xi ∼ Q when i ≥ 3, i odd,

where R ∼ S denotes the regular wreath product of R with S , for any pair of groups R
and S .

Consider X = Xn for any positive integer n. Write X(1) = X(2) = X and set G =

X(1) × X(2). Take X(i)
σ a σ-Hall subgroup of X, for each σ ∈ {π, π′} and i = 1, 2. Now

let A = X(1)
π × X(2)

π′ , B = X(1)
π′ × X(2)

π and C = D(X) = {(x, x) | x ∈ X} � X the diagonal
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subgroup. Then G = AB = AC = BC, A and B are π-decomposable groups, C and G
are π-separable and lπ(G) = lπ(C) is either n/2 or (n + 1)/2, depending on whether n is
even or odd.

It is well known that the Fitting subgroup of a product of two nilpotent groups is
factorised (see [1, Lemma 2.5.7]). As an application of Corollary 3.4, we obtain the
following generalisation of that result for π-decomposable groups. A particular case
in the universe of finite soluble groups was obtained in [4, Theorem 2].

Proposition 3.8. Let F be the class of all π-decomposable groups, for a set of primes
π. If G = AB is a π-separable group and A and B are F -groups, then the F -radical GF
of G is a factorised subgroup, that is, GF = (GF ∩ A)(GF ∩ B) and A ∩ B is contained
in GF . (Recall that GF = Oπ(G) × Oπ′(G).)

Proof. Assume that the result is not true and let G be a counterexample of minimal
order. Since G is π-separable, GF = Oπ(G) × Oπ′(G) , 1, and the choice of G
implies that the F -radical L/GF of the factor group G/GF = (AGF /GF )(BGF /GF )
is factorised; in particular,

(AGF /GF ) ∩ (BGF /GF ) ≤ L/GF .

Set X = X(GF ), the factoriser of GF in G = AB. Then GF < X = AGF ∩ BGF ≤ L and

L = (L ∩ AGF )(L ∩ BGF ) = (L ∩ A)GF (L ∩ B) ⊆ (L ∩ A)X(L ∩ B)
= (L ∩ A)(X ∩ A)(X ∩ B)(L ∩ B) = (L ∩ A)(L ∩ B) ⊆ L,

that is, L = (L ∩ A)(L ∩ B).
If L were a proper subgroup of G, then by the minimal choice of G the F -radical

of L would be factorised with respect to the factorisation L = (L ∩ A)(L ∩ B). But
A ∩ B ≤ X ≤ L, and so A ∩ B = (L ∩ A) ∩ (L ∩ B) ≤ LF . Then GF = LF would also be
factorised with respect to G = AB, a contradiction.

Consequently, L = G and G/GF is an F -group, that is,

G/GF = Oπ(G/GF ) × Oπ′(G/GF ).

Since A = Aπ × Aπ′ and B = Bπ × Bπ′ and G is π-separable, we deduce by Lemma 2.3
that AπBπ is a Hall π-subgroup of G, and Aπ′Bπ′ is a Hall π′-subgroup of G. It follows
that AπBπGF = AπBπOπ′(G) and Aπ′Bπ′GF = Aπ′Bπ′Oπ(G) are normal subgroups in G.
Now, applying Corollary 3.4,

X = (A ∩ BGF )GF = (B ∩ AGF )GF = (A ∩ BGF )(B ∩ AGF )

is an F -group, that is, X = Xπ × Xπ′ .
Let σ ∈ {π, π′}. Since GF = Oπ(G) × Oπ′(G) ≤ X, we deduce in particular that

[Xσ,Oσ′(G)] = 1. Since G is π-separable, Xσ is contained in some Hall σ-subgroup
of G. But every Hall σ-subgroup of G has the form (AσBσ)t for some t ∈ Oσ′(G), as
AσBσOσ′(G) EG, so it contains Xσ. Hence Xσ ≤ Oσ(G). Consequently, X = GF , the
final contradiction. �
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The next example shows that the above result is not true if G is not a π-separable
group.

Example 3.9. Let N = L2(26) and let φ be the Frobenius automorphism of N and
ψ = φ2, which is an automorphism of N of order 3. Consider G = [N]〈ψ〉 the natural
semidirect product of N with 〈ψ〉. We note that |G| = 26 · 34 · 5 · 7 · 13 and also that
CG(ψ) � L2(22). Set π = {2, 3, 7, 13}.

The group G can be factorised as G = AB, where A = NG(G2) is a π-group,
B = NG(G13) = Bπ × Bπ′ � ([C13]C3) ×C5 is π-decomposable and |A ∩ B| = 3. Hence,
if F is the class of all π-decomposable groups, the F -radical of G is GF = 1, and it is
not factorised.

Theorem 3.11 below provides a stronger version of Corollary 3.4 for a trifactorised
group where two of the factors are π-decomposable and the third factor is a subnormal
subgroup. We will need the following preliminary result. For any formation F and
any group X, we denote by XF the F -residual of X.

Lemma 3.10. Let F be a Fitting formation. If the group G = HK is the product of two
subnormal subgroups H and K, then GF = HF KF .

Proof. We argue by induction on dH + dK , where dX denotes the subnormal defect of
X in G for each X ∈ {H,K}, that is, the smallest nonnegative integer dX such that there
exists a series X = X0 C X1 C · · · C XdX = G of subgroups of G. If H and K are normal
subgroups of G (dH + dK ≤ 2), the result follows by [6, II, Lemma 2.12]. Without loss
of generality assume that H is not normal in G and let H < Ĥ C G. We observe that
Ĥ = H(Ĥ ∩ K), so, by the inductive hypothesis, GF = ĤF KF and ĤF = HF (Ĥ ∩ K)F .
Since F is closed under taking subnormal subgroups, it follows that (Ĥ ∩ K)F ≤ KF ,
and so GF = HF KF . �

Theorem 3.11. Let π be a set of primes. Let the group G = AB = AC = BC be the
product of three subgroups A, B and C, where A = Aπ × Aπ′ and B = Bπ × Bπ′ are
π-decomposable groups and C is a subnormal subgroup of G. If F is the class of all
π-decomposable groups, then GF = CF .

Proof. We may assume that π is a set of odd primes.
First notice that the class F of all π-decomposable groups is a Fitting formation.

Suppose the result is not true and let G be a group of minimal order among the groups
X having two π-decomposable subgroups H and K and a subnormal subgroup L such
that G = HK = HL = KL and GF , LF .

Then there exist two π-decomposable subgroups A and B of G and a subnormal
subgroup C of G such that G = AB = AC = BC and GF , CF . We choose C with |C|
maximal. We split the proof into the following steps.

Step 1. GF = CF N for every minimal normal subgroup N of G, CF C GF and
CoreG(CF ) = 1.
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Let N be a minimal normal subgroup of G. Since (G/N)F = GF N/N, the minimal
choice of G implies that GF N = CF N. Moreover, CF ≤ GF which implies that
GF = CF (GF ∩ N). Since GF , CF , it follows that GF ∩ N = N and so N ≤ GF .
Then GF = CF N and also CoreG(CF ) = 1. Moreover, since CF is a subnormal
subgroup of G, N normalises CF (see [6, A, Lemma 14.3]), which implies that
CF C GF .

Step 2. If there are two different minimal normal subgroups, then they are abelian.
Assume that N1, N2 are minimal normal subgroups, N1 , N2. By Step 1, GF =

CF N1 = CF N2. Since [N1, N2] = 1, we deduce that N′i ≤ CF for i = 1, 2. Since
CoreG(CF ) = 1 it follows that N1 and N2 are abelian.

Step 3. GF = Oπ(G) × Oπ′(G) ≤ C.
Suppose C is a proper subgroup of CGF . Since G = AB = A(CGF ) = B(CGF ),

CGF is a subnormal subgroup of G and |C| < |CGF |, it follows by the maximality of C
that GF = (CGF )F . By Lemma 3.10, GF = CF , a contradiction. Therefore C = CGF
and so GF ≤ C.

Step 4. GF = Oπ(G) ×Oπ′(G) , 1. Moreover, if σ ∈ {π, π′} such that Oσ(G) , 1, then
Oσ′(G) = 1.

Assume that Oπ(G) = 1 and Oπ′(G) = 1. We know that AπBπ is a subgroup of G
by Theorem 1.1. Then Lemma 2.2 implies that [AG

π , BG
π ] = 1. Consequently, from

this fact together with Step 2, we deduce that, if Aπ , 1 and Bπ , 1, then there is an
abelian minimal normal subgroup, and so a normal p-subgroup, for a prime p, which
is a contradiction. Therefore, we may assume without loss of generality that Aπ = 1
and Bπ , 1. Since G = AB = AC = BC, by order arguments it follows that Bπ ≤ C.
Moreover, Bπ C B and G = BC, which implies, by Lemma 2.1, that BG

π ≤ C. Then
there is a minimal normal subgroup N of G contained in C, and GF = CF N ≤ C.
Hence GF /CF � N/(N ∩CF ) ∈ F . Now N is a nonabelian minimal normal subgroup,
and so it is a direct product of copies of a nonabelian simple group. But N ∩ CF is
a direct product of simple components of N, because it is a normal subgroup of N.
It follows that N is a π′-group, and so N ≤ Oπ′(G) = 1, a contradiction. Therefore,
GF = Oπ(G) × Oπ′(G) , 1.

The last statement follows because GF /CF � N/(N ∩ CF ) for every minimal
normal subgroup N of G.

Step 5. GF ≤ Oσ(G). If there is a minimal normal subgroup which is an elementary
abelian p-group for a prime p, then GF has the same properties. Moreover, G is
σ-separable (and σ′-separable).

Let N be a minimal normal subgroup of G, N ≤ Oσ(G). Since GF = CF N, we see
that GF /CF � N/(N ∩ CF ). Then Oσ(GF ) ≤ CoreG(CF ) = 1, which implies that GF

is a σ-group. If there is a minimal normal subgroup which is an elementary abelian
p-group for a prime p, analogous arguments prove that GF has the same properties.
Moreover, it follows now that G is σ-separable, as is G/GF .
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Step 6. G = GσGσ′ , GF ≤ Gσ EG, GFGσ′ EG, GF = (GFGσ′)F .

This follows by Step 5 and Lemma 3.10.

Step 7. The final contradiction.
If Aσ′ = 1, then we may take Gσ′ = Bσ′ ≤ C, which implies that GFGσ′ ≤ C and

so GF = (GFGσ′)F ≤ CF , a contradiction. Analogously Bσ′ = 1 is not possible.
Consequently Aσ′ , 1, Bσ′ , 1 and Oσ′(G) = 1. Again, by Lemma 2.2, [AG

σ′ , B
G
σ′] = 1,

and together with Step 2, we can consider a minimal normal subgroup N ≤ BG
σ′ which

is abelian. In particular, [AG
σ′ ,N] = 1.

By Lemma 2.3 there exists a Hall σ′-subgroup of C, say Cσ′ , such that Aσ′Cσ′

is a σ′-Hall subgroup of G. Since N is an elementary abelian group and Cσ′ acts
coprimely on N, we can apply Maschke’s theorem (see [6, A, Theorem 11.5]) to
deduce that the Cσ′-invariant subgroup CF ∩ N has a Cσ′-invariant complement in N,
say H. Moreover, since CoreG(CF ) = 1, it follows that H , 1. So GF = CF N = CFH
with CF ∩ H = 1.

Now Cσ′GF /CF ≤ C/CF is an F -group. But Cσ′GF /CF = Cσ′HCF /CF � Cσ′H,
because CF ∩ Cσ′H = 1. This means that Cσ′H is an F -group, and so H centralises
Cσ′ . Since [N, Aσ′] = 1, it follows that H centralises Gσ′ = Aσ′Cσ′ , which is a Hall
σ′-subgroup of G. In particular, H ×Gσ′ ∈ F .

Since GF = CFH is an elementary abelian subgroup by Step 5, again by Maschke’s
theorem, there exists a complement of H in GF , say T , which is Gσ′-invariant. But
then, by Step 6, we see that GF = (GFGσ′)F = (T HGσ′)F ≤ T , which is a proper
subgroup of GF , the final contradiction. �

Remark 3.12. Example 3.6 shows that the statement in Theorem 3.11 does not remain
true if the subgroup C fails to be subnormal.

As a particular case of Theorem 3.11 we recover the following extension of Kegel’s
result quoted in the introduction, which appears in [3].

Corollary 3.13. Let the finite group G = AB = AN = BN be the product of three
subgroups A, B and N, where N is subnormal in G. If A and B are nilpotent, then
the nilpotent residual of G coincides with the nilpotent residual of N. In particular, the
nilpotent residual of N is normal in G.

One might expect that the result of Peterson [1, Theorem 2.5.10] mentioned in
the introduction should generalise to a corresponding positive result by replacing the
class of nilpotent groups by a class of π-decomposable groups for a set of primes
π. The following example shows that this is not the case, even if the factor C is
assumed to be a π-separable normal subgroup and the saturated formation to contain all
π-decomposable groups.

Example 3.14. Let π be a set of primes. Assume that the group G = AB = AC = BC is
the product of three subgroups A, B and C, where A = Aπ × Aπ′ and B = Bπ × Bπ′ are
π-decomposable groups, and C is a π-closed normal subgroup of G. If F is a saturated
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formation containing the class of all π-decomposable groups, the next example shows
that it is not true in general that G ∈ F whenever C ∈ F .

Choose the groups T = 〈t〉 � C7, Y = 〈y〉 � C3, X = 〈x〉 � C2 and consider the
natural action of Y × X � Aut(T ) on T as automorphism group; more precisely,
ty = t2, tx = t−1. Let TYX be the corresponding semidirect product. We consider
now an irreducible and faithful TYX-module V over the field of five elements (see [6,
B, Theorem 10.3]) and form G = VTYX the corresponding semidirect product.

Take π to be the set of all odd primes, so π′ = {2}, A = VTY which is a π-group,
B = YX which is a π-decomposable group, and C = VT X which is a π-closed normal
subgroup of G. We note that G = AB = AC = BC. By [6, IV, Proposition 1.3)], the
class of groups

H = (G | AutG(S ) ∈ (C2,E2′) for all 7-chief factors S of G)

is a formation, where (C2,E2′) denotes the class of groups which either are isomorphic
to C2 or belong to E2′ , the class of groups of odd order.

We now consider F = LF( f ) the saturated formation locally defined by the
formation function f given in the following way:

f (p) =H for every prime p , 2,
f (2) = E2 the class of 2-groups.

It is easy to see that the class of all π-decomposable groups is contained in F .
Moreover, C ∈ F but G < F .
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decomposable soluble groups’, Publ. Mat. 53 (2009), 439–456.

https://doi.org/10.1017/S0004972717001034 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972717001034


228 L. S. Kazarin, A. Martı́nez-Pastor and M. D. Pérez-Ramos [11]
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