VERTEX-TRANSITIVE GRAPHS WHICH ARE NOT CAYLEY GRAPHS, I

BRENDAN D. McKAY and CHERYL E. PRAEGER

(Received 4 July, 1990; revised 10 June 1991)

Communicated by Louis Caccetta

Abstract

The Petersen graph on 10 vertices is the smallest example of a vertex-transitive graph which is not a Cayley graph. We consider the problem of determining the orders of such graphs. In this, the first of a series of papers, we present a sequence of constructions which solve the problem for many orders. In particular, such graphs exist for all orders divisible by a fourth power, and all even orders which are divisible by a square.

1991 Mathematics subject classification (Amer. Math. Soc.): primary 05 C 25 ; secondary 20 B 25.

1. Introduction

Unless otherwise indicated, our graph-theoretic terminology will follow [3], and our group-theoretic terminology will follow [18].

If Γ is a graph, then $V \Gamma, E \Gamma$ and $\operatorname{Aut}(\Gamma)$ will denote its vertex-set, its edgeset, and its automorphism group, respectively. The cardinality of $V \Gamma$ is called the order of Γ, and Γ is called vertex-transitive if the action of $\operatorname{Aut}(\Gamma)$ on $V \Gamma$ is transitive.

For a group G and a subset $C \subset G$ such that $1_{G} \notin C$ and $C^{-1}=C$, the Cayley graph of G relative to $C, \operatorname{Cay}(G, C)$, is defined as follows. The vertexset of $\operatorname{Cay}(G, C)$ is G, and two vertices $g, h \in G$ are adjacent in $\operatorname{Cay}(G, C)$ if and only if $g h^{-1} \in C$. It is easy to see that $\operatorname{Cay}(G, C)$ admits a copy of (c) 1994 Australian Mathematical Society 0263-6115/94 \$A2.00 + 0.00

n	t_{n}	u_{n}	n	t_{n}	u_{n}	n	t_{n}	u_{n}
1	1	-	10	22	2	19	60	-
2	2	-	11	8	-	20	1214	82
3	2	-	12	74	-	21	240	-
4	4	-	13	14	-	22	816	-
5	3	-	14	56	-	23	188	-
6	8	-	15	48	4	24	15506	112
7	4	-	16	286	8	25	464	-
8	14	-	17	36	-	26	4236	132
9	9	-	18	380	4	27	1434	-

Table 1. The numbers of vertex-transitive graphs.
G acting regularly (by right multiplication) as a group of automorphisms, and so every Cayley graph is vertex-transitive. Conversely, every vertex-transitive graph which admits a regular group of automorphisms is (isomorphic to) a Cayley-graph of that group. However, there are vertex-transitive graphs which are not Cayley graphs, the smallest example being the well-known Petersen graph. Such a graph will be called a non-Cayley vertex-transitive graph, and its order will be called a non-Cayley number. Let $N C$ be the set of all non-Cayley numbers.

In Table 1, we list, for $n \leq 26$, the total number t_{n} of vertex-transitive graphs of order n and the number u_{n} of vertex-transitive graphs of order n which are not Cayley graphs. These numbers are taken from [12, 13, 16, 17]. It seems that, for small orders at least, the great majority of vertex-transitive graphs are Cayley graphs. We expect this trend to continue to larger orders, but do not know how to prove it.

The problem of determining $N C$ was posed by Marušič [8]. Since the union of finitely many copies of a vertex-transitive graph Γ is a Cayley graph if and only if Γ is a Cayley graph, we see that any multiple of a member of $N C$ is also in $N C$. Thus, it will suffice to find those members of $N C$ whose non-trivial divisors are not members of $N C$. The most important previous results on this problem can be summarised as follows.

Theorem 1. Let p and q be distinct primes. Then
(a) $p, p^{2}, p^{3} \notin N C$,
(b) $2 p \in N C$ if and only if $p \equiv 1(\bmod 4)$,
(c) $p q \in N C$ if $p \equiv 1\left(\bmod q^{2}\right)$,
(d) $\binom{m}{r} \in N C$ if $r \geq 2$ and $m \geq 2 r+1$, except possibly if $r=2$ and m is a prime power of the form $4 k+3$.
(e) $12,21 \notin N C$, and
(f) $15,16,18,20,24,28,56,84,102 \in N C$.

Part (a) is proved in [9]. A non-Cayley vertex-transitive graph of order $2 p, p \equiv 1(\bmod 4)$, was constructed in [4]. On the other hand, it was shown in [2] that all vertex-transitive graphs of order $2 p, p \equiv 3(\bmod 4)$, are Cayley graphs, provided that the only simply primitive permutation groups of degree $2 p$ are A_{5} and S_{5} of degree 10 . This fact about primitive groups was verified in [6] using the finite simple group classification, thus proving part (b). Parts (c) and (d) were proved in [1] and [5] respectively by constructions of non-Cayley vertex-transitive graphs of the relevant orders. (The other exceptional cases given in [5] are covered by part (f).) The results of parts (e) and (f) are reported in $[7,12,13,14,17]$.

In the paper [9], a construction was proposed for a non-Cayley vertextransitive graph of order $p^{k}, k \geq 4$. However, we believe that the construction as given is invalid, yielding a Cayley graph in at least some cases (for example, when $p^{k}=3^{4}$). In Section 5 we will give a correct construction for such graphs of order p^{4}.

Our paper contains constructions of four families of non-Cayley vertextransitive graphs: besides the p^{4} construction, we produce such graphs of orders $p^{2} q$ for certain primes p and q, and of orders $8 m$ and $2 m^{2}$ for most m. The implications of our constructions for the membership of $N C$ can be summarised as follows:

THEOREM 2.

(a) $m^{4} \in N C$ for all $m \geq 2$.
(b) $p^{2} q \in N C$ if $p \geq 2$ and $q \geq 3$ are distinct primes with q not dividing $p^{2}-1$.
(c) For each $m \geq 7,2 m \in N C$ except possibly if m is the product of distinct primes of the form $4 k+3$.
(d) $k^{2} m^{2} \in N C$ for all $k, m \geq 2$.

Part (a) follows from Theorem 1 (f) if m is even and will be proved in Theorem 6 for odd m. Part (b) will be proved in Theorem 3. Suppose that $m \geq 7$. If m is even, then $2 m \in N C$ by parts (a) and (b) above and Theorem $1(\mathrm{f})$. Also if m is divisible by a prime of the form $4 k+1$, then $2 m \in N C$ by Theorem 1(b),
while if m is divisible by the square of a prime, then $2 m \in N C$ by Theorems 3 and 5. Part (d) is a corollary of parts (a) and (b).

The $8 m$ construction given in theorem 4 is not actually needed for the proof of Theorem 2. We have included it because the construction is significantly different from our other constructions.

For integers r and s, we write $r \mid s$ if r is a divisor of s. For an integer $m>0, \mathbb{Z}_{m}$ denotes the ring of integers modulo m, S_{m} denotes the symmetric group on m letters, and D_{m} denotes the dihedral group of order m.

In the second paper of this series, we will present some additional constructions of graphs with orders of the form $p^{k} q$ for distinct primes p and q. We will also complete the classification, begun in $[10,11,14]$, of all non-Cayley vertextransitive graphs of order $p q$, by computing the full automorphism groups of all these graphs. In [10], it is shown that such a graph is either metacirculant or belongs to a family of graphs admitting $S L(2, p-1)$ as a group of automorphisms, where p is a Fermat prime and q divides $p-2$. The possible orders for the first family are determined in [1], whilst the second family is further investigated in [11]. The complete classification for the vertex-primitive case was done in [14].

2. Construction one

Let p and q be distinct primes with $q \geq 3$. We investigate the graph $C=C(p, q, 2)$ defined in [15], where

$$
\begin{aligned}
V C & =\mathbb{Z}_{p} \times \mathbb{Z}_{p} \times \mathbb{Z}_{q} \quad \text { and } \\
E C & =\left\{(x, y, k)(z, x, k+1) \mid x, y, z \in \mathbb{Z}_{p}, k \in \mathbb{Z}_{q}\right\}
\end{aligned}
$$

It was shown in [15, Theorem 2.13] that the automorphism group of C is $A=\left\langle\rho, \eta, \sigma=\sigma\left(\sigma_{0}, \sigma_{1}, \ldots, \sigma_{q-1}\right) \mid \sigma_{0}, \sigma_{1}, \ldots, \sigma_{q-1} \in S_{p}\right\rangle=S_{p} \mathrm{wr} D_{2 q}$, where

$$
\begin{aligned}
& (x, y, k)^{\rho}=(x, y, k+1) \\
& (x, y, k)^{\eta}=(y, x,-k), \text { and } \\
& (x, y, k)^{\sigma}=\left(x^{\sigma_{k}}, y^{\sigma_{k-1}}, k\right)
\end{aligned}
$$

for all $(x, y, k) \in V C$. Since A acts transitively on $V C$, we see that C is vertex-transitive.

For $k \in \mathbb{Z}_{q}$, define $B_{k}=\left\{(x, y, k) \mid x, y \in \mathbb{Z}_{p}\right\}$, and let $B=\left\{B_{0}, B_{1}, \ldots, B_{q-1}\right\}$. It is clear that B is a block system preserved by A. We shall determine precisely
when C is a Cayley graph. To do this we need the information in the following two lemmas.

Lemma 1. Any element of A of order q which induces the same permutation of B as ρ does is conjugate to ρ in A.

Proof. Such an element has the form $\rho \sigma$ for some $\sigma=\sigma\left(\sigma_{0}, \sigma_{1}, \ldots, \sigma_{q-1}\right)$. Since $(\rho \sigma)^{q}=1$, we have $\sigma_{0} \sigma_{1} \ldots \sigma_{q-1}=1$. Now define $\tau_{0}=1$ and $\tau_{k}=$ $\sigma_{0} \sigma_{1} \ldots \sigma_{k-1}$ for $k \geq 1$. Then $\rho \sigma=\rho^{\sigma\left(\tau_{0} \ldots, r_{q-1}\right)}$.

Lemma 2. A matrix $X=X(u, v)$ over $G F(p)$ of the form

$$
\left(\begin{array}{ll}
u & v \\
1 & 0
\end{array}\right)
$$

such that $X^{q}=1$, exists if and only if $q \mid p^{2}-1$.
Proof. Since $|G L(2, p)|=p(p-1)\left(p^{2}-1\right)$, it is clear that X cannot exist unless $q \mid p^{2}-1$.

Suppose then that $q \mid p^{2}-1$, and let z be a primitive q-th root of 1 in $G F\left(p^{2}\right)$. Set $u=z+z^{-1}$. If $q \mid p-1$ then $z^{p}=z$, while if $q \mid p+1$ then $z^{p}=z^{-1}$, and hence $u^{p}=z^{p}+z^{-p}=u$, so $u \in G F(p)$. Now consider $X=X(u,-1)$. Since X has characteristic polynomial $f(\lambda)=\lambda^{2}-u \lambda+1=(\lambda-z)\left(\lambda-z^{-1}\right)$, the polynomial $f(\lambda)$ is a divisor of $\lambda^{q}-1$ and so $X^{q}=1$. [Thanks to Peter Montgomery, Michael Larsen, Victor Miller and Carl Riehm].

THEOREM 3. Let p and q be distinct primes with $q \geq 3$. Then $C=C(p, q, 2)$ is vertex-transitive, and C is a Cayley graph if and only if $q \mid p^{2}-1$. Thus $p^{2} q \in N C$ if q does not divide $p^{2}-1$.

Proof. Suppose that q does not divide $p^{2}-1$. If A has a regular subgroup R then R has a unique Sylow q-subgroup Q of order q, by Sylow's Theorem. Since $Q \unlhd R$, the subgraphs of C induced on the orbits of Q must all be isomorphic. However it follows from Lemma 1 that Q is generated by some conjugate of ρ, and some orbits of $\langle\rho\rangle$ contain no edges while others induce a cycle of length q. This contradiction proves that C is a non-Cayley graph in this case.

Suppose instead that $q \mid p^{2}-1$. Let X by a matrix satisfying the conditions of Lemma 2 and let $\alpha \in S_{p}$ be the permutation ($01 \ldots p-1$). For $x, y \in \mathbb{Z}_{p}$ and $k \geq 0$ define

$$
\binom{a_{k}(x, y)}{b_{k}(x, y)}=X^{k}\binom{x}{y}
$$

Then $H=\left\{\sigma\left(\alpha^{a_{0}(x, y)}, \alpha^{a_{1}(x, y)}, \ldots, \alpha^{a_{q-1}(x, y)}\right) \mid x, y, \in \mathbb{Z}_{p}\right\}$ is a subgroup of A which fixes B blockwise and acts faithfully and regularly on each block. Moreover, $H^{\rho}=H$, so $\langle H, \rho\rangle$ is a regular subgroup of A.

3. Construction two

Let $m \geq 2$. Define the graphs $L=L(8 m)$ of order $8 m$ thus:

$$
\begin{aligned}
& V L=\left\{x_{i}, y_{i} \mid i \in \mathbb{Z}_{4 m}\right\} \quad \text { and } \\
& E L=\left\{x_{i} x_{i+1}, y_{i} y_{i+1} \mid i \in \mathbb{Z}_{4 m}\right\} \\
& \qquad \cup\left\{x_{i} y_{j} \mid i \equiv j \equiv 0(\bmod 4) \quad \text { or } i \equiv j \equiv 3(\bmod 4)\right. \\
& \left.\quad \text { or } i \equiv 1, j \equiv 2(\bmod 4) \quad \text { or } i \equiv 2, j \equiv 1(\bmod 4) ; i, j \in \mathbb{Z}_{4 m}\right\}
\end{aligned}
$$

It is easy to verify that the permutations γ and δ of $V L$, defined by

$$
\begin{aligned}
\gamma & =\left(x_{0} y_{0}\right)\left(x_{1} y_{1}\right) \ldots\left(x_{4 m-1} y_{4 m-1}\right) \quad \text { and } \\
\delta & =\left(x_{0} x_{2} x_{4} \ldots x_{4 m-2}\right)\left(x_{1} x_{3} x_{5} \ldots x_{4 m-1}\right)\left(y_{0} y_{1}\right)\left(y_{2} y_{4 m-1}\right) \ldots\left(y_{2 m} y_{2 m+1}\right)
\end{aligned}
$$

are automorphisms of L. Moreover, $\langle\gamma, \delta\rangle$ is transitive, so L is vertex-transitive.
Lemma 3. $B=\left\{\left\{x_{0}, x_{1}, \ldots, x_{4 m-1}\right\},\left\{y_{0}, y_{1}, \ldots, y_{4 m-1}\right\}\right\}$ is a block system for $\operatorname{Aut}(L)$.

PROOF. The claim is easily verified directly for $m=2$, so suppose $m>2$. Consider the subgraph L^{\prime} of L induced by those edges of L which lie in m or fewer 4-gons. A simple count shows that these are exactly those edges which join two x-vertices or two y-vertices. Hence the components of L^{\prime} are the elements of B, which proves the lemma.

THEOREM 4. Let $m \geq 2$. Then $L(8 m)$ is vertex-transitive but not a Cayley graph. Thus $8 m \in N C$ for $m \geq 2$.

PROOF. Suppose that $\operatorname{Aut}(L)$ contains a regular subgroup R. Then R has a subgroup of order $4 m$ which fixes the two blocks of B setwise and acts regularly on each of them. Moreover, the subgraph of L induced by each of these blocks is a $4 m$-gon, and so R contains an element of the form ($x_{0} x_{2} \ldots x_{4 m-2}$) $\left(x_{1} x_{3} \ldots x_{4 m-1}\right)\left(y_{0} y_{2} \ldots y_{4 m-2}\right)^{k}\left(y_{1} y_{3} \ldots y_{4 m-1}\right)^{k}$, for some k with $(2 m, k)=1$.

However, each permutation of this form maps the edge $x_{0} y_{0}$ onto the non-edge $x_{2} y_{2 k}$. (Note that $2 k \equiv 2(\bmod 4)$). This contradiction proves that L is a nonCayley graph.

4. Construction three

Let $m \geq 3$ be an integer. Define the graph $T=T\left(2 m^{2}\right)$ of order $2 m^{2}$ as follows:

$$
\begin{aligned}
& V T=\mathbb{Z}_{m} \times \mathbb{Z}_{m} \times \mathbb{Z}_{2} \quad \text { and } \\
& E T=E_{1} \cup E_{2} \cup E_{3},
\end{aligned}
$$

where

$$
\begin{aligned}
E_{1}= & \left\{(x, y, 0)(x+1, y, 0),(x, y, 1)(x, y+1,1) \mid x, y \in \mathbb{Z}_{m}\right\} \\
E_{2}= & \left\{(x, y, 0)(x+1, y-1,0),(x, y, 1)(x+1, y+1,1) \mid x, y \in \mathbb{Z}_{m}\right\} \quad \text { and } \\
E_{3}= & \{(x, y, 0)(x-1, y-1,1),(x, y, 0)(x-1, y+1,1) \\
& \left.(x, y, 0)(x+1, y-1,1),(x, y, 0)(x+1, y+1,1) \mid x, y \in \mathbb{Z}_{m}\right\}
\end{aligned}
$$

It is easy to verify that the permutations α, β and γ defined by

$$
\begin{aligned}
& (x, y, k)^{\alpha}=(x+1, y, k) \\
& (x, y, k)^{\beta}=(x, y+1, k), \quad \text { and } \\
& (x, y, k)^{\gamma}=(-y, x, k+1)
\end{aligned}
$$

for all $(x, y, k) \in V T$, are automorphisms of T. Let $A=\langle\alpha, \beta, \gamma\rangle$ and, for $k \in \mathbb{Z}_{2}$, define $B_{k}=\left\{(x, y, k) \mid x, y \in \mathbb{Z}_{m}\right\}$. Then A has order $4 m^{2}$, is transitive on $V T$, and has $\left\{B_{0}, B_{1}\right\}$ as a block system.

Lemma 4. If $m=3$ or $m \geq 5$, then $\operatorname{Aut}\left(T\left(2 m^{2}\right)\right)=A$.
PROOF. The graph $T(18)$ appears in [12] as R147, and explicit computation there showed that $\operatorname{Aut}(T(18))=A$. Now consider $m \geq 5$. For distinct vertices $v, w \in V T$, define $f(v, w)$ to be the number of paths of length 3 from v to w in T. By direct enumeration of the possibilities, we find that

$$
f(v, w)= \begin{cases}6 & \text { if } v w \in E_{1} \\ 8 & \text { if } v w \in E_{2} \\ 7 & \text { if } v w \in E_{3}\end{cases}
$$

and so $\operatorname{Aut}(T)$ fixes the sets E_{1}, E_{2} and E_{3} setwise. The subgraph of T with edge-set $E_{1} \cup E_{2}$ has components with vertex-sets B_{0} and B_{1}, and so $\left\{B_{0}, B_{1}\right\}$ is a block system for $\operatorname{Aut}(T)$. Let G be the setwise stabiliser of B_{0} in $\operatorname{Aut}(T)$.

From each $(x, y, 0)$, the only vertex that can be reached in two distinct ways by taking an edge in E_{2} followed by an edge in E_{3} is $(x, y, 1)$. Therefore, G acts faithfully on B_{0}. The subgraph induced by B_{0} consists of a cartesian product of two polygons, with m disjoint m-gons of edges from E_{1} orthogonal to m disjoint m-gons of edges from E_{2}. The full automorphism group of such an edge-coloured graph is isomorphic to $D_{2 m} \times D_{2 m}$. Thus $G \leq D_{2 m} \times D_{2 m}$ and $|A \cap G|=2 m^{2}$. Hence, if G_{0} is the stabiliser of $(0,0,0)$, then G_{0}, in its action on B_{0}, is a subgroup of $\langle g, h\rangle$, where $(x, y, 0)^{g}=(-x-2 y, y, 0)$ and $(x, y, 0)^{h}=$ $(x+2 y,-y, 0)$ for every x, y. However, $f((1,0,0),(1,-1,0))=6$ whilst $f((1,0,0),(-1,1,0))=3$, so $h \notin G_{0}$. On the other hand $\gamma^{2} \in G_{0}$ acts on B_{0} in the same way that $g h$ does, and it follows that $G_{0}=\left\{1, \gamma^{2}\right\}$, whence $G=\left\langle\alpha, \beta, \gamma^{2}\right\rangle$ and $\operatorname{Aut}(T)=A$.

THEOREM 5. If $m=3$ or $m \geq 5$, then $T=T\left(2 m^{2}\right)$ is vertex-transitive but not a Cayley graph. Thus $2 m^{2} \in N C$ if $m=3$ or $m \geq 5$.

Proof. By Lemma 4, $\operatorname{Aut}(T)=A$. Since $\left\{B_{0}, B_{1}\right\}$ is a block system for A, it is a block system for any regular subgroup $R \leq A$. Now, as γ^{2} fixes $(0,0,0)$, and R is regular, $\gamma^{2} \notin R$. But, as R has index 2 in A, R must contain the square of every element of A and hence $\gamma^{2} \in R$, which is a contradiction. Thus T is not a Cayley graph.

5. Construction four

Let p be an odd prime, and define $a=p+1$. Note that a has multiplicative order p in $\mathbb{Z}_{p^{2}}$ and multiplicative order p^{2} in $\mathbb{Z}_{p^{3}}$.

Let $U=\mathbb{Z}_{p} \times \mathbb{Z}_{p^{2}}$. Define the permutations α and β of U by $(i, j)^{\alpha}=(i, j+1)$ and $(i, j)^{\beta}=(i+1, a j)$ for $(i, j) \in U$, and define $H=\langle\alpha, \beta\rangle$. The proof of the following lemma follows on noting that $\alpha^{p^{2}}=\beta^{p}=1$ and $\alpha^{\beta}=\alpha^{p+1}$.

LEMMA 5. The group H is regular on U. Also, the elements of H with order p are exactly those of the form β^{t} for $1 \leq t \leq p-1$ or $\alpha^{u p} \beta^{t}$ for $1 \leq u \leq p-1$ and $0 \leq t \leq p-1$.

Next, we define a Cayley graph F of H which will be used in our construction of a graph of order p^{4}. Define

$$
\begin{aligned}
& V F=U, \quad \text { and } \\
& E F=E_{1} \cup E_{2} \cup E_{3},
\end{aligned}
$$

with

$$
\begin{aligned}
& E_{1}=\left\{(i, j)\left(i, j^{\prime}\right) \mid(i, j),(i, j) \in U, j \neq j^{\prime}\right\}, \\
& E_{2}=\{(i, j)(i+1, j) \mid(i, j), \in U\}, \quad \text { and } \\
& E_{3}=\left\{(i, j)\left(i+1, j+a^{i}\right) \mid(i, j) \in U\right\} .
\end{aligned}
$$

Lemma 6. $\operatorname{Aut}(F)=H$.
Proof. It is easy to see that $H \leq \operatorname{Aut}(F)$.
The graph F contains exactly p cliques $J_{0}, J_{1}, \ldots, J_{p-1}$ of order p^{2}, where $J_{i}=\left\{(i, j) \mid j \in \mathbb{Z}_{p^{2}}\right\}$ for $i \in \mathbb{Z}_{p}$. The edges they contain are exactly those in E_{1}. We observe that the only subset of $\left\{1, a, a^{2}, \ldots, a^{p-1}\right\}$ which sums to a multiple of p^{2} is the empty subset. Therefore, the only cycles of length p in F which meet all the above p^{2}-cliques are those formed by the edges in E_{2}. We conclude that the edge-sets E_{1}, E_{2} and E_{3} are fixed setwise by $\operatorname{Aut}(F)$.

Suppose that $\operatorname{Aut}(F) \neq H$. Then there is an automorphism g of prime order which fixes $(0,0)$ but moves some vertex adjacent to $(0,0)$. Now, g fixes J_{0} setwise, and either fixes J_{1} and J_{p-1} setwise or interchanges them. If g fixes J_{1} setwise, then g induces an automorphism of the subgraph consisting of the edges between J_{0} and J_{1}. However, this subgraph is a $2 p^{2}$-cycle with edges alternately in E_{2} and E_{3}, and such an edge-coloured graph has no non-trivial automorphism which fixes a vertex, and hence g fixes $J_{0} \cup J_{1}$ pointwise. A similar argument shows that g fixes J_{p-1} pointwise also, which is a contradiction. Alternatively, suppose that g has order 2 and interchanges J_{1} and J_{p-1}. If we take $2 k$ steps along the edges between J_{0} and J_{1}, starting at vertex $(0,0)$ and using an edge from E_{3} first, we finish at vertex $(0, k)$. The same procedure between J_{0} and J_{p-1} takes us to vertex $(0, k(p-1))$. Hence g acts on J_{0} as $(0, j)^{g}=(0,(p-1) j)$, for all j, contradicting the assumption that g has order 2 .

Now let $W=\mathbb{Z}_{p} \times \mathbb{Z}_{p^{3}}$, and define the graph $M=M\left(p^{4}\right)$ of order p^{4} as follows:

$$
V M=W, \quad \text { and }
$$

$$
\begin{aligned}
& E M=\left\{(i, j)(i, j+p k),(i, j)(i+1, j),(i, j)\left(i+1, j+p a^{i}\right)\right. \\
& \left.(i, j)\left(i+1, j+a^{r p+i}\right) \mid(i, j) \in W, k \in \mathbb{Z}_{p^{2}}, r \in \mathbb{Z}_{p}\right\}
\end{aligned}
$$

THEOREM 6. If p is an odd prime, then $M=M\left(p^{4}\right)$ is vertex-transitive but not a Cayley graph. Thus $p^{4} \in N C$ for all odd primes p.

Proof. Define the permutations γ, δ of W by $(i, j)^{\gamma}=(i, j+1)$ and $(i, j)^{\delta}=$ $(i+1, a j)$ for $(i, j) \in W$. It is easily verified that $\langle\gamma, \delta\rangle \leq \operatorname{Aut}(M)$, and so M is vertex-transitive. (This group is the same as that used by Marušič in [9]).

The graph M contains exactly $p^{2} p^{2}$-cliques, namely $J_{i, r}=\{(i, r+p k) \mid$ $\left.k \in \mathbb{Z}_{p^{2}}\right\}$ for $i, r \in \mathbb{Z}_{p}$. These must form a block system for $\operatorname{Aut}(M)$. Two such cliques, $J_{i, r}$ and $J_{i^{\prime}, r^{\prime}}$, are joined by $2 p^{2}$ edges if $\left|i-i^{\prime}\right|=1$ and $r=r^{\prime}$, by p^{3} edges if $i^{\prime}-i=r^{\prime}-r= \pm 1$, and by no edges otherwise. Therefore, $\left\{B_{0}, B_{1}, \ldots, B_{p-1}\right\}$ is also a block system for $\operatorname{Aut}(M)$, where $B_{r}=J_{0, r} \cup J_{1, r} \cup$ $\ldots \cup J_{p-1, r}$ for $r \in \mathbb{Z}_{p}$. The mapping $\phi_{r}: B_{r} \rightarrow U$ defined by $(i, p j+r) \phi_{r}=$ (i, j) is an isomorphism from $\left\langle B_{r}\right\rangle$ to F. By Lemma 6, the group induced by $\operatorname{Aut}(M)$ on B_{r} is $H_{r}=\left\langle\alpha_{r}, \beta_{r}\right\rangle$, where $\alpha_{r}=\phi_{r} \alpha \phi_{r}^{-1}$ and $\beta_{r}=\phi_{r} \beta \phi_{r}^{-1}$.

Suppose $R \leq \operatorname{Aut}(M)$ is regular, and let $g \in R$ take vertex (0,0) to vertex $(1,0)$. Now R acts regularly on the set $\left\{B_{0}, \ldots, B_{p-1}\right\}$ and so g fixes $B_{0}, B_{1}, \ldots, B_{p-1}$ setwise. Thus we can write $g=g_{0} g_{1} \ldots g_{p-1}$, where $g_{r} \in H_{r}$ for $r \in \mathbb{Z}_{p}$. We know that H_{0} is regular on B_{0} and so $g_{0}=\beta_{0}$ and g must have order p. By Lemma 5 , we have $g_{1}=\alpha_{1}^{u p} \beta_{1}^{t}$ for some u, t. Since g_{0} takes $(0,0)$ to $(1,0), g_{1}$ must take W_{0} onto W_{1}, where W_{i} is the neighbourhood of $(i, 0)$ in B_{1}. Thus, in the graph $F, \alpha^{u p} \beta^{t}$ must take $W_{0} \phi_{1}$ onto $W_{1} \phi_{1}$. However, $\alpha^{u p} \beta^{t}$ takes $W_{0} \phi_{1}$ onto $\left\{\left(1+t, p a^{t}(r+u)\right) \mid r \in \mathbb{Z}_{p}\right\}$, whilst $W_{1} \phi_{1}=\left\{(2, r p+1) \mid r \in \mathbb{Z}_{p}\right\}$. These two sets are not the same for any u and t, so there is no such element g in R.

Finally, we note that F and W are metacirculant graphs in the terminology of [1]. The parameters are $\left(p, p^{2}, a,\left\{1,2, \ldots, p^{2}-1\right\},\{0,1\}, \emptyset, \emptyset, \ldots, \emptyset\right)$ and $\left(p, p^{3}, a,\left\{p k \mid k \in \mathbb{Z}_{p^{2}}\right\},\left\{0,1, a^{p}, a^{2 p}, \ldots, a^{(p-1) p}, p\right\}, \emptyset, \emptyset, \ldots, \emptyset\right)$, respectively.

References

[1] B. Alspach and T. D. Parsons, 'A construction for vertex-transitive graphs', Canad. J. Math. 34 (1982), 307-318.
[2] B. Alspach and R. J. Sutcliffe, 'Vertex-transitive graphs of order $2 p$ ', Ann. New York Acad. Sci. 319 (1979), 19-27.
[3] M. Behzad and G. Chartrand, Introduction to the theory of graphs (Allyn and Bacon, Boston, 1971).
[4] R. Frucht, J. Graver and M. Watkins, 'The groups of the generalized Petersen graphs', Math. Proc. Cambridge Philos. Soc. 70 (1971), 211-218.
[5] C. D. Godsil, 'More odd graph theory', Discrete Math. 32 (1980), 205-217.
[6] M. W. Liebeck and J. Saxl, 'Primitive permutation groups containing an element of large prime order', J. London Math. Soc. 31 (1985), 237-249.
[7] P. Lorimer, 'Trivalent symmetric graphs of order at most 120', European J. Combin. 5 (1984), 163-171.
[8] D. MaruŠič, 'Cayley properties of vertex symmetric graphs', Ars Combin. 16B (1983), 297-302.
[9] _- 'Vertex-transitive graphs and di-graphs of order p^{k} ', Ann. Discrete Math. 27 (1985), 115-128.
[10] D. Marušič and R. Scapellato, 'Characterising vertex-transitive $p q$-graphs with an imprimitive automorphism subgroup', J. Graph Theory 16 (1992), 375-387.
[11] , 'Imprimitive representations of $S L\left(2,2^{k}\right)$ ', J. Combinatorial Theory (Ser. B) 58 (1993), 46-57.
[12] B. D. McKay, 'Transitive graphs with fewer than twenty vertices', Math. Comp. 33 (1979), 1101-1121 (and microfiche supplement).
[13] B. D. McKay and G. F. Royle, 'The transitive graphs with at most 26 vertices', Ars Combin. 30 (1990), 161-176.
[14] C. E. Praeger and M. Y. Xu, 'Vertex primitive graphs of order a product of two distinct primes', J. Combinatorial Theory (Ser. B), to appear.
[15] -_, 'A characterization of a class of symmetric graphs of twice prime valency', European J. Combin. 10 (1989), 91-102.
[16] G. F. Royle, Constructive enumeration of graphs (Ph.D. Thesis, University of Western Australia, 1987).
[17] G. F. Royle and C. E. Praeger, 'Constructing the vertex-transitive graphs of order 24', J. Symbolic Comput. 8 (1989), 309-326.
[18] H. Wielandt, Finite permutation groups (Academic Press, New York, 1964).

Computer Science Department
Australian National University
ACT 0200
Australia
bdm@cs.anu.edu.au

Department of Mathematics University of Western Australia

Nedlands
WA 6009
Australia
praeger@maths.uwa.edu.au

