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The effect of discrete roughness elements on the development and breakdown of stationary
crossflow instability on a swept wing is explored. Receptivity to various element
heights and chordwise locations is explored using a combination of experimental and
theoretical tools. Forcing configurations, determined based on linear stability predictions,
are manufactured and applied on the wing in a low turbulence facility. Measurements
are performed using infrared thermography, quantifying the transition front location,
and planar particle image velocimetry, providing a reconstruction of stationary crossflow
instabilities and their associated growth. Measurements are corroborated with simulations
based on nonlinear parabolised stability equations. Results confirm the efficacy of discrete
roughness elements in introducing and conditioning stationary crossflow instabilities.
Primary instability amplitudes and resulting laminar-turbulent transition location are found
to strongly depend on both roughness amplitude and chordwise location. The Reynolds
number based on element height is found to satisfactorily approximate the initial forcing
amplitude, revealing the importance of local velocity effects in non-zero-pressure gradient
flows. Direct estimation of initial perturbation amplitudes from nonlinear simulations
suggests the existence of pertinent flow mechanisms in the element vicinity, active in
conditioning the onset of modal instabilities. Dedicated velocimetry planes, elucidate
the development of a momentum deficit wake which rapidly decays downstream of the
element followed by mild growth, representing the first experimental evidence of transient
behaviour in swept wing boundary layers. The outcome of this work identifies a strong
scalability of the transition dynamics to roughness amplitude and location, warranting the
upscaling of roughness elements to more accessible, measurable and spatially resolved
configurations in future experiments.
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1. Introduction

The inviscid instability mechanism dominating laminar-turbulent transition of swept wing
boundary layers (BL) in the region of a favourable pressure gradient is the so-called
crossflow instability (CFI) (Mack 1984; Arnal & Casalis 2000; Saric, Reed & White 2003).
Primary stationary instabilities induce a spanwise momentum modulation, distorting the
boundary layer and introducing strong spanwise and wall-normal velocity shears. These
are highly susceptible to secondary instability mechanisms of a Kelvin–Helmholtz nature
(Malik et al. 1999; Wassermann & Kloker 2002; Bonfigli & Kloker 2007; Serpieri
& Kotsonis 2016), which undergo explosive growth ultimately leading to turbulence
transition.

One of the most challenging aspects of CFI investigations is the characterization of
the receptivity process (Morkovin 1969). Early experiments outline the strong sensitivity
of both stationary and travelling CFI to surface roughness and free-stream turbulence
(Bippes 1999; Radeztsky, Reibert & Saric 1999; Kurian, Fransson & Alfredsson 2011).
In particular, in low turbulence environments, such as free flight (Tu/U∞ < 0.15 %),
stationary crossflow vortices are found to dominate BL stability and transition. Moreover,
one of the relevant flow features resulting from receptivity is mode selection, which for
stationary CFI mostly depends on the wing surface roughness (Bippes 1999; White et al.
2001; Downs & White 2013). Stationary crossflow vortices manifest on the wing surface as
a set of streaky structures almost aligned with the free-stream velocity, which ultimately
lead to transition through a jagged stationary front (Müller & Bippes 1989; Dagenhart
& Saric 1999). To enhance the spanwise uniformity of the boundary layer and developing
instabilities, many experimental and numerical works apply an artificial forcing in the form
of discrete roughness elements (DRE), periodically distributed along the wing span in the
vicinity of the leading edge (Reibert et al. 1996; Saric, Carrillo & Reibert 1998; Serpieri &
Kotsonis 2016). The inter-spacing (i.e. spanwise wavelength) and height of these elements
are fundamental towards conditioning the instabilities wavelength and initial amplitude,
although a predicting relation between the array geometry and CFI onset still has to be
found.

Despite the large body of experimental receptivity studies conducted to date, an
estimation of the instability initial amplitudes ensuing from receptivity to Tu and roughness
is still missing. To gain these insights, the investigation of the very initial phases of
receptivity linked to the development of the near-DRE flow and the dominant flow
structures is necessary, albeit extremely challenging. Due to the small scales of the flow
phenomena involved, this flow region is hardly measurable experimentally. As an example,
the measurements reported in the present work are performed on a swept wing model of
more than 1 m chord and span developing a boundary layer with δ99 � 1 mm at 10 %
of the chord, already downstream of the relevant receptivity region (Serpieri & Kotsonis
2015, 2016). Furthermore, the numerous parameters contributing to the receptivity process
and their inter-dependencies along with the different flow scales involved complicate the
development of numerical prediction tools. Of the many studies inspecting roughness
receptivity of three-dimensional (3-D) BL, only few numerical simulations are dedicated
to the roughness elements near-DRE flow features. Among these, Kurz & Kloker (2014,
2015) outline a not linear dependence of the ensuing CFI amplitude on the roughness
parameters, particularly height. The direct numerical simulations (DNS) by Kurz &
Kloker (2016) details the roughness elements near-DRE flow features and their dominant
instability mechanisms for both two- and three-dimensional BL. From their results, an
overall similarity of the dominant near-DRE flow mechanisms is observed: in both cases
a complex vortical system composed of two sets of horseshoe vortices develops around
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the element. Analogous near-DRE flow features for roughness elements in two-dimensional
(2-D) BL are found in previous numerical works, such as Rizzetta & Visbal (2007),
Denissen & White (2008) and Doolittle, Drews & Goldstein (2014). An extensive analysis
of the near-DRE flow stability is carried out by Loiseau et al. (2014), investigating a
2-D flat plate flow configuration experimentally measured by Fransson et al. (2005).
The work by Kurz & Kloker (2016) additionally characterizes the flow in the far-wake
region, identifying significant differences between the 2-D and 3-D cases: in the former
the flow evolves symmetrically aft of the element, while in the latter only the horseshoe
legs co-rotating with the crossflow vortices are sustained, the others decaying shortly
after. Their presence leads to a spanwise modulation of the velocity and momentum
redistribution, hence, a low-speed hump forms immediately aft of the elements and fades
downstream. The work by Kurz & Kloker (2016) represents a significant breakthrough in
the investigation of near-DRE flow, although a clear relation allowing for the estimation of
the initial amplitude of the ensuing CFI instabilities is not yet available.

A survey of past experimental and numerical works on receptivity of CFI reveals two
unresolved challenges, which in turn have motivated and shaped the present work. The first
is an incomplete understanding of the relation between roughness amplitude and location
and the development of CFI and BL transition. Past work has focused either on global
transition location correlations or localized measurements, typically using HWA under
limited parameter ranges. Additionally, past studies made use of simplified metrics for
the representation of the initial forcing amplitude such as height-based Reynolds number
(Rek) or height to boundary layer thickness ratio. However, these metrics are often used
only as an indication of supercritical behaviour (flow tripping), while it is still unclear
whether they can correctly represent the initial forcing amplitude of DREs (Reibert et al.
1996; Kurian et al. 2011; Kurz & Kloker 2016). The present study aims at combining
local and global transition and flow measurements, to better understand the main flow
mechanisms dominating receptivity of stationary CFI to roughness arrays. Such a study
aims also at establishing whether height-based metrics can be used to predict the initial
forcing perturbation amplitude of a given roughness array configuration. Despite the
minimal attention received throughout the literature, the location of the forcing arrays is
one of the main parameters in this work, as it inherently governs the complex relationships
between relative disturbances amplitude, local BL scales, pressure gradient and overall
flow stability.

The second challenge is of a more practical nature and stems from the disparate scales
governing the problem. More specifically, the detailed analysis of the evolving instabilities,
in relation to amplitude and location of roughness elements conducted in this study, can
provide effective scaling principles. Such scaling can give the possibility of reproducing
the swept wing leading-edge flow features through an up-scaled forcing configuration
more tractable in terms of experimental observability. In particular, the investigation of an
up-scaled configuration would improve the experimental resolution of the near-DRE flow
field, essential to clarify the relation between roughness and CFI onset, leading to a more
complete understanding of receptivity and of the aforementioned conflicting outcomes in
using DREs as a transition control technique.

2. Methodology

2.1. Wing model and wind tunnel facility
The presented measurements are performed in the low-speed low turbulence wind tunnel
(LTT), an atmospheric closed loop tunnel located at the TU Delft. All acquisitions
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Parameter Λ AR b cX c λT S Rq

Value 45◦ 1.01 1.25 m 1.27 m 0.9 m 1 1.58 m2 0.20 μm

Table 1. Geometric parameters of M3J swept wing model (Serpieri & Kotsonis 2015).
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Figure 1. (a) Plot of M3J airfoil geometry, averaged experimental pressure distribution and pressure gradient
at α = −3.36◦, RecX = 2.17 × 106. (b) Plot of Neff curves for λz = 8 mm mode from LPSE solution initialized
at different chordwise stations. Shaded regions describe λz interval between 7 and 9 mm.

are performed at a chosen angle of attack α = −3.36◦ and Reynolds number RecX =
2.17 × 106, computed in the free-stream direction. At these conditions, Tu is sufficiently
low (Tu/U∞ � 0.025 %, Serpieri 2018) to let stationary crossflow waves dominate the
stability and transition scenario (e.g. Bippes 1999; Downs & White 2013).

The employed wind tunnel model is an in-house designed, constant-chord swept
wing (M3J, table 1), extensively described in Serpieri & Kotsonis (2015). The wing is
purposely designed and widely used to investigate the physics of primary and secondary
crossflow instabilities and laminar flow control techniques (e.g. Serpieri & Kotsonis
2016; Rius-Vidales et al. 2018). This geometry features a favourable pressure gradient
up to x/c � 0.65, figure 1(a), leading to the formation of a spanwise invariant boundary
layer with laminar-to-turbulent transition process dominated by stationary crossflow
instabilities. Due to the high sensitivity of CFI to surface roughness, the model surface
is carefully polished ensuring a low and uniform roughness level (Rq = 0.2 μm, Serpieri
& Kotsonis 2015).

The model is equipped with two rows of chordwise distributed pressure taps which
measure the pressure distribution on the wing pressure side. Two different coordinate
reference systems can be defined for this wing model: one is integral to the wind tunnel
floor, with spatial components given by X, Y , Z and velocity components U, V , W; the
second one has its z-axis aligned to the leading edge with spatial components x, y, z and
velocity u, v, w.

2.2. Linear and nonlinear numerical stability simulation
The study of receptivity to roughness amplitude and location necessitates a prediction of
the instabilities growth and initial amplitudes in regions of the boundary layer which are
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inaccessible to measurements. As such, the experimental measurements in this work are
complemented by a stability simulation computed through an in-house developed routine
(Westerbeek 2020) solving both linear and nonlinear parabolised stability equations (PSE,
Bertolotti, Herbert & Spalart 1992; Simen 1992; Hanifi, Schmid & Henningson 1996;
Herbert 1997). This approach has been widely applied to analyse the stability of 3-D BL
developing on swept wings (Bertolotti 1996; Haynes & Reed 2000; Tempelmann et al.
2012).

Stability solutions are computed for a reference base flow which is a steady and
incompressible solution of the two-and-a-half-dimensional BL equations (based on
spanwise invariance assumptions). The followed procedure, based on the experimentally
acquired free-stream flow characteristics and pressure distribution, is fully described in
Serpieri (2018).

The linear parabolized stability equations (LPSE) analysis is used to facilitate the
experiment design by identifying the wavelength of the most unstable stationary crossflow
modes and the spatial region of growth. The stability solution is initialized by using
a local eigenvalue solution of the perturbation equations, and is then computed for a
series of stationary modes with given spanwise wavelengths λz and angular frequency
ω = 0. The streamwise wavenumber α is complex with the imaginary part describing the
mode growth, while the spanwise wavenumber β = 2π/λz is real. The spatial growth rate
(i.e. imaginary part of α) is corrected for the residual growth in the spanwise component of
the PSE shape function, to enable reliable comparison to the experimental measurements
(Herbert 1993; Haynes & Reed 2000). The amplification N-factor of a mode is defined by
integrating the corrected spatial growth rate αi along the wing surface not accounting for
curvature effects. Therefore, the mode amplitude can be described as Aw(x̄) = A0 eN(x̄).
In the remainder of this work, the N-factor is computed relatively to an initial amplitude
A0 at the DRE array location, following the effective N-factor (Neff ) definition by Saric
et al. (2019). The Neff evolution computed for a set of wavelengths shows that the λz =
λ1 = 8 mm mode corresponds to the most amplified mode, as also observed by previous
experiments at similar conditions (Serpieri & Kotsonis 2016; Rius-Vidales et al. 2018).
Based on these preliminary predictions, the DRE arrays elements inter-spacing is chosen to
coincide with the most unstable wavelength λ1. Moreover, within the linear approximation,
this mode continuously grows between its onset at x/c � 0.03 and x/c = 0.65. The
monotonic growth range for this mode provides a first-order estimate for the DRE location
investigated in this study. Arrays are located between x/c = 0.02 and x/c = 0.35, with a
step of x/c = 0.025 close to the leading edge and x/c = 0.05 downstream.

An additional important parameter in receptivity studies is the local pressure gradient at
the forcing (i.e. receptivity) location. While it is unrealistic to fully control the value of the
pressure gradient on a wing geometry, during this study as little chordwise variations as
possible are desired. Moreover, by conducting PSE simulations initialized at the various
DRE locations used in the experiments, the effect of the local pressure gradient can
be accounted for in the predicted growth curves. The results reported in figure 1(b)
confirm that the λ1 mode is either the dominant one or among the most unstable ones
in all considered cases. Furthermore, the overall trend and value of the N factor curves
suggests the local pressure gradient is only mildly influencing the stability of the boundary
layer, justifying the direct comparison among the measured configurations. Nonetheless,
the more relevant variations of the pressure gradient in the vicinity of the leading edge
(i.e. x/c < 0.15) may affect the near-DRE wake development, which is not modelled by
the numerical solver (figure 1a).

While the LPSE serves as an efficient tool for the prediction of the most unstable mode,
the limitations of linear theory prevent an estimation of the later stages of instability
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growth, particularly in the case of stationary crossflow instabilities which produce strong
nonlinear effects through their inductive action on the laminar base flow. To account
for these effects, a full nonlinear parabolized stability equations (NPSE) solution for
the stationary CFI is computed for each tested forcing configuration, estimating the
instability amplitudes and shape functions from the DRE location to the downstream end
of the particle image velocimetry (PIV) domain at x/c = 0.36. Each solution computes
the development of the dominant mode λ1, six stationary harmonics (λi = λ1/i) and the
mean flow distortion. The solution is initialized with the base flow and λ1 mode only,
while higher harmonics are automatically generated via nonlinear forcing as their expected
normalised amplitude exceeds the threshold of 10−9. Additionally, preliminary tests have
shown that both phase and amplitude of initialization of higher harmonics at the DRE
location has a negligible effect on the overall stability solution.

For the present study, the NPSE results have been matched to the experimental
measurements in the following manner. A dataset is generated for all considered DRE
locations in the form of families of NPSE solutions computed within a range of initial
amplitudes (A0). The matched NPSE solution is chosen as the one that minimizes the
squared differences between numerical and experimental amplitudes and shape functions
of the λ1 mode over the entire PIV domain (along the chord range x/c = 0.25–0.36).
Individual planes are given an equal weight in the least mean squares minimisation.
The initial instability amplitude is then computed by tracing its upstream development,
following the NPSE amplitude curve up to the DRE location. Throughout this work,
A0 is defined as the equivalent amplitude at xDRE/c that, within the framework of
modal instability evolution, gives a downstream development of CFI comparable to
the experimentally measured flow field. The comparison between NPSE results and
experimental measurements is further discussed in § 3.

2.3. Spanwise periodic DRE
To investigate the influence of both DRE location and amplitude on the evolution of
stationary CFI and ensuing transition, the range of the elements’ geometrical parameters
is defined. In particular, the height range to be measured can be identified through a purely
geometrical scaling by extracting two pertinent boundary layer parameters. Namely, the
ratio between the elements height (k) and the boundary layer height at the elements’
chordwise position (k/δ∗ with δ∗ being the BL displacement thickness, e.g. Schrader,
Brandt & Henningson 2009), accounts for both element amplitude and location. This
can be accompanied by the roughness Reynolds number Rek = k × |u(k)|/ν (Gregory &
Walker 1956; Reibert et al. 1996; Kurz & Kloker 2016), where |u(k)| is the local boundary
layer velocity at the element height k and ν the kinematic viscosity. Nonetheless, many
research studies have clearly shown that the receptivity to roughness is linear only for very
small elements (Schrader et al. 2009; Hunt & Saric 2011; Tempelmann et al. 2012). Based
on these considerations, the aforementioned characteristic lengths (especially k/δ∗) are
only used as a first approximation of the relative DRE amplitude.

In experimental investigations of CFI, the DRE array is chosen to be located in the
vicinity of the first neutral point of the forced mode, usually close to the leading edge
(Bippes 1999; Radeztsky et al. 1999; Serpieri & Kotsonis 2016). Specifically, for the
presently used swept wing model and free-stream conditions, past investigations made
use of an array of roughness elements with k � 0.1 mm located at x/c � 0.02 (Serpieri
& Kotsonis 2016; Rius-Vidales & Kotsonis 2020). This forcing condition establishes a
nominal development for stationary crossflow instabilities, representing a reference case
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Case λ (mm) λ/λ1 D (mm) k (mm) k/D

k1 8 1 1.772 ± 0.017 0.1147 ± 0.0023 0.083
k2 8 1 1.732 ± 0.008 0.2179 ± 0.0031 0.126
k3 8 1 1.767 ± 0.004 0.3292 ± 0.0009 0.186
k4 8 1 1.721 ± 0.009 0.4374 ± 0.0035 0.261

Table 2. Geometric parameters of DRE arrays.

50 100 150

Rek

k/δ∗

200 250 300

0.30

0.25

0.20

0.15

0.125

x D
RE

/c

0.10

0.075

0.05

0.02

0

0.5

1.0

1.5 k1

k2

k3

k4

Figure 2. Geometrical parameters computed from numerical boundary layer solutions for the measured
forcing configurations. Colourmap based on xDRE/c, symbols based on element height.

for the present study. To achieve comparable DRE-BL scaling keeping k/δ∗ and Rek
values similar to the nominal case, elements with heights between 0.1 mm–0.4 mm are
considered. Hence, throughout this investigation arrays of cylindrical elements with a fixed
λ1 inter-spacing and diameter D but variable heights k are applied at the previously defined
range of chord locations.

The DRE elements are manufactured in-house by laser cutting of a 100 μm thickness
self-adhesive black PVC foil. The higher elements are obtained by pasting multiple layers
of foil on top of each other prior to the cutting procedure. Each element is designed to be
cylindrical, however, practical limits of the manufacturing process entail slight deviations
in their actual shape. To fully characterize the tested roughness elements, a statistical
study is performed. A set of two arrays of 70 elements per tested height are scanned
through a scanCONTROL 30xx profilometer operating with a semiconductor laser having
a 405 nm wavelength and 1.5 μm reference resolution. The extracted values for the
elements wavelengths, diameters and heights are reported in table 2. In the remainder
of this work the four heights are referenced simply as k1, k2, k3 and k4. The corresponding
values for the geometrical scaling parameters k/δ∗ and Rek are reported in figure 2.

2.4. Measurement techniques and data reduction

2.4.1. Infrared thermography
Infrared (IR) thermographic imaging is a non-intrusive measurement technique acquiring
wall surface temperatures by collecting the IR radiation emitted by a body (e.g. Bippes
1999; Dagenhart & Saric 1999; Serpieri 2018). Following the Reynolds analogy, the
measured surface temperature differences provide a distinction between laminar and
turbulent flow regions, allowing for the identification of the transitional BL modulation
due to the primary stationary CFI and for the localization of the transition front.
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During the wind tunnel measurements an Optris PI640 IR camera (75 mK thermal
sensitivity, 640 × 480 px un-cooled sensor, 7.5–13 μm spectral range) is mounted outside
the test section. A portion of the model pressure side centred at x/c = 0.23 and midspan
is imaged with spatial resolution �0.85 mm px−1. While acquiring the IR data halogen
lamps (3 × 400 W and 2 × 500 W) irradiate the model, thus enhancing the thermal
contrast between laminar and turbulent regions. The camera acquires 80 images at a
frequency of 4 Hz to perform stationary thermography experiments: the independent
snapshots are averaged to lower the uncorrelated sensor noise.

After acquisition, the IR images are spatially transformed to a wing-fitted domain
and post-processed with an in-house developed routine based on the differential infrared
thermography (DIT) approach (Raffel et al. 2015; Rius-Vidales et al. 2018). The transition
front location is identified by calculating the maximum gradient of the acquired image
(Rius-Vidales et al. 2018), and performing a linear fit of the identified spanwise transition
locations controlled through 95 % confidence bands.

2.4.2. Planar PIV
Planar PIV acquisitions provide a local description of the flow chordwise evolution,
highlighting the effects of forcing amplitude and location on the steady disturbances.
Throughout this work, the wall-normal direction is non-dimensionalized as y/δ̂∗ with
δ̂∗ � 0.64 mm being the experimental displacement thickness of the natural boundary
layer (i.e. no DRE) at x/c = 0.25. The PIV domain, centred at the wing midspan extending
for z/λ1 = 5 and y/δ̂∗ � 6, describes the BL development in the z–y plane through w̄
and v̄, time-averaged velocity components in the spanwise and wall-normal directions,
respectively.

The laser and cameras are mounted on an automated traversing system located on top
of the test section, granting unison shifts with a step accuracy of 15 μm. Optical access to
the model is gained through a Plexiglas window cut in the upper wall of the wind tunnel
test section. The laser unit is a Quantel Evergreen Nd:YAG dual cavity laser (200 mJ
pulse energy at λ = 532 nm), whose beam is manipulated through suitable optics in
a sheet aligned to the y–z plane, thus, inclined at 45◦ to the free-stream direction. To
capture a statistically significant number of stationary crossflow vortices, two LaVision
imager cameras (sCMOS, 2560 × 2160 px, 16-bit, 6.5 μm pixel pitch) are arranged in
a side-by-side orientation. To compensate for the large working distance between the
cameras and the imaging plane (�1.4 m), an optical arrangement with 800 mm focal lens
and numerical aperture f# = 8 is applied, leading to a magnification ratio of 126 px mm−1

which resolves the boundary layer up to the wall vicinity (y/δ̂∗ = 0.018 and w̄/W∞ =
3.5 %). The traversing system allows for shifting the imaging plane to different chord
locations while maintaining the alignment and focus of the cameras and the laser. With this
configuration, planes between 25 and 36 % of the chord are collected with an inter-spacing
of 1 % of chord and a laser thickness of approximately 1 mm. Flow seeding is obtained
by dispersing �0.5 μm droplets of a water-glycol mixture in the wind tunnel through a
SAFEX fog generator.

For each plane, 1000 image pairs are acquired at a frequency of 15 Hz and time interval
of 5 μs, corresponding to a free-stream particle displacement of almost 11 pixels. Each
image pair is processed in LaVision Davis 10 through a multi pass cross-correlation with
final interrogation window of 12 px × 12 px and 50 % overlap, resulting in a final vector
spacing of approximately 47 μm. The correlated velocity fields are then averaged and
stitched through a Matlab routine delivering the time-averaged velocity components and
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Figure 3. Infrared fields for (a) natural (i.e. no DRE) transition case; (b) forced transition case Rek = 24.
Flow comes from the left; the leading edge (blue line); DRE array location (yellow line); constant X/cX
lines (-.).

identifying the wall location as the maximum light reflection region in the raw particle
images.

With further processing of the velocity fields, the boundary layer mean velocity profiles
(w̄z) are obtained by averaging the w̄ velocity signal along the z direction. The disturbance
evolution profile in the wall-normal direction (〈w̄〉z) is instead computed as the root mean
square (r.m.s.) of the velocity signal along z at each fixed y-coordinate (e.g. Reibert et al.
1996; Hunt & Saric 2011; Tempelmann et al. 2012). Information on the dominant mode
and its harmonics can be retrieved through a spatial Fourier analysis: at each y-coordinate
the spanwise velocity signal is transformed in the spatial frequency domain (FFTz(w̄)),
providing the spectra and the individual modes chordwise development. Moreover, the
crossflow vortices amplitude can be estimated for each acquired plane by integrating the
disturbance profiles along y up to the local δ99 (as suggested by Reibert et al. 1996; Downs
& White 2013), providing an estimation of the modes’ chordwise growth and evolution
(§ 3.3). The time-averaged displacement field uncertainty is estimated using the correlation
statistics method (Wieneke 2015), identifying an average uncertainty of 0.05 %W∞ in the
free stream and 0.10 %W∞ in the BL region.

3. Steady perturbations characteristics

The following section is dedicated to the onset and evolution of crossflow disturbances
as identified by IR and PIV measurements. An overview of the flow receptivity to the
roughness arrays is reported, analysing the extracted transition fronts and the CFI growth.

3.1. Transition behaviour as a function of forcing amplitude and location
The IR visualization for the natural transition case (no DRE forcing) is reported in
figure 3(a). The homogeneous temperature distribution suggests that the developing
boundary layer is laminar throughout the imaged domain. Moreover, the characteristic
light-dark streaks alternation typical of IR acquisition of CFI dominated BL (Dagenhart
& Saric 1999) is largely absent in this visualization due to the weakness of the developing
instabilities. A more deterministic flow scenario focused on a single monochromatic mode
is obtained by applying a DRE array on the wing, as shown in the Rek = 24 case reported
in figure 3(b). The conditioned BL is characterized by a well-developed stationary CFI,
visible as a streak alternation in the IR field, leading to the formation of the typical
sawtooth transition front. Extending this analysis to the set of acquired IR images, the
relative transition front location (xTR/c − xDRE/c) is estimated for all forced configurations
considered, as reported in figure 4.
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Figure 4. Transition locations xTR/c − xDRE/c vs Rek. Colourmap based on xDRE/c, symbols based on
element height. Cases with transition laying below the horizontal dashed line are super-critical (i.e. causing
flow tripping).

The set of collected data identifies two main functional relations governing transition
location, namely an increase (decrease) in element height and/or a decrease (increase)
in streamwise location lead to an advancement (postponement) of laminar to turbulent
transition. The employed metrics are not sufficient to deterministically predict the
transition location. Nonetheless, despite the pronounced scatter observed in figure 4, Rek
qualitatively correlates to transition location. In particular, a critical behaviour is identified
for forcing configurations with Rek � 190, while arrays with higher Rek demonstrate a
super-critical behaviour, causing transition shortly after the array location (0 � xTR/c −
xDRE/c � 0.07, Reibert et al. 1996; Kurz & Kloker 2016). These tripping configurations
are neglected in the remainder of this work.

Considering these observations, it becomes evident that modifications of the
crossflow-induced transition location due to DRE location and amplitude can not be
simply approximated based on the local BL and geometrical scaling parameters of the
roughness. Several factors can influence this behaviour, such as local pressure gradient,
local boundary layer stability and near-DRE flow development. These effects can be
responsible for modifying the effective initial perturbation amplitude introduced by the
DRE and, thus, produce the observed spread in transition location. These amplitude
modifications can then be associated to complex alterations of the flow and of the
instabilities development induced by the specific forcing configuration applied, as can be
further assessed considering the collected PIV data and performed stability analysis.

3.2. Mean flow development
Prior to the description of steady perturbations, the development of the time- and
spanwise-averaged velocity fields within the PIV measurement domain is outlined. In
particular, the present study investigates a wide range of chord locations for the DRE
arrays application, namely from x/c = 0.02 to 0.35 for which a LPSE solution accounting
for the local pressure gradient is computed (figure 1). To confirm that comparable stability
conditions pertain the experimental boundary layer, the naturally growing BL (i.e. no
forcing applied) measured through PIV is compared with the numerical solution on
which stability is solved. Figure 5(b) collects the numerical and experimental BL velocity
profiles estimated at x/c = 0.35, ensuring a good match is achieved as further shown
by the chordwise evolution of the BL geometrical parameters (figure 5c). Finally, to
assess that the natural BL features are repeatable throughout the different forcing cases

939 A33-10

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

22
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.220


Receptivity of crossflow instability to discrete roughness

0.5 1.00

1

2

3

4

5

0.2 0.4 0.60

1

2

δ 
(m

m
)

3

δ99

δ∗

θ

0.5

x/c
1.00

1

2

3

4

5 x/c = 0.29 x/c = 0.35

(b)(a) (c)

w̄z/W∞w̄z/W∞

y/δ̂∗

Figure 5. (a) Plot of w̄z from numerical solution (solid line), PIV for natural transition (-◦) and PIV for Rek =
64 (with xDRE/c = 0.3, �). (b) Plot of w̄z from numerical solution (solid line), from PIV for natural transition
(�) and PIV for Rek = 24 (×). Only 1 in 3 marks are shown in the y direction. (c) Boundary layer integral
parameters from numerical w̄ (full lines) and from PIV (symbols).

considered, the wz velocity profiles for the natural transition case and for the forcing
case featuring arrays placed at xDRE/c = 0.30 (Rek = 64) are compared (figure 5a). The
reported w̄z profiles for this downstream forcing (for which no DRE is applied at the
leading edge) develop as the natural one upstream of the array location. Hence, the base
flow repeatability allows for a systematic comparison of the flow modifications introduced
by the different forcing configurations.

The w̄ velocity contours acquired at x/c = 0.25, 0.30 and 0.35 for three representative
forcing cases with Rek in the critical range are reported in figure 6. The mean boundary
layer velocity distribution w̄z for the Rek = 24 case is also reported in figure 5(b). In
contrast to the clean case, the forced BL velocity profiles feature an inflection point
(already present at x/c = 0.25) and undergo further distortion moving downstream,
indicating nonlinearities are strongly affecting the forced scenario. This poses a limit for
linear approaches to stability theory, warranting nonlinear extensions computed through
NPSE solutions, as further discussed in § 3.3. Moreover, the forced boundary layer is
thicker than the corresponding clean case and achieves a higher slope close to the wall,
corresponding to an increased local skin friction coefficient. These modifications can
be related to the onset of turbulent motions introduced by the strong instabilities and
nonlinearities characterizing the flow. These features also reflect in the development of
the PIV disturbance profiles, as supported by the modes’ growth and evolution analysed in
the next section.

3.3. Stationary crossflow instabilities growth
As described in § 2.4.2, a Fourier spatial decomposition procedure is applied to all
collected PIV planes, characterizing the modes’ evolution along the chord for each forcing
case. The resulting spatial spectra is reported in figure 7(a) for the representative forcing
configuration Rek = 24. As expected, the dominant peaks correspond to mode λ1 and its
harmonics (λ2 and λ3), all growing along the wing chord.

Within the spatial Fourier domain each mode can be independently extracted and
analysed. Hence, through an inverse Fourier transform the time-averaged velocity fields
w̄Ri can be reconstructed as only composed by a chosen truncated ensemble of modes
of interest i. Figure 7(b–c) shows the r.m.s. disturbance profiles 〈w̄〉z computed for the
reference forcing case from the w̄ PIV fields. This is compared with the disturbance profiles
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Figure 6. Contours of w̄ velocity fields acquired for (a–c) Rek = 18; (d–f ) Rek = 24; (g–i) Rek = 155.
Particle image velocimetry plane location: (a,d,g) x/c = 0.25; (b,e,h) x/c = 0.30; (c, f,i) x/c = 0.35.
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Figure 7. (a) Fourier spectra in the spanwise wavelength domain and experimental disturbance profiles at (b)
x/c = 0.25; (c) x/c = 0.35 for Rek = 24. Plot of 〈w̄〉z from PIV (–), from two Fourier reconstructed profiles
〈w̄R1 〉z (�) and 〈w̄R1,2,3 〉z (∗) and NPSE result (-.). Only 1 in 3 marks are shown along y. Experimental δ99 (- -).

extracted from two fast Fourier transform (FFT) reconstructed fields: w̄R1 including only
the λ1 mode and w̄R1,2,3 additionally accounting for λ2 and λ3 harmonics. Despite small
discrepancies in their maximum amplitude, the three disturbance profiles have similar
shape, growing along the chord and featuring a secondary local maximum related to
nonlinear interactions. The mild amplitude differences reduce as more modes are included
in the FFT flow reconstruction, even if the λ1 mode is already capturing all of the
main flow features. The λ1 mode shape function extracted from the NPSE solution at
the corresponding chord locations shows a satisfactory matching behaviour, despite mild
over-prediction of mode growth by the numerical solution. Similar discrepancies are also
observed by Haynes & Reed (2000), and can be attributed to the small differences between
the experimental and numerical base flow and to the actual wing curvature.

For a more quantitative analysis, the instability amplitude and growth are estimated
following the integral amplitude approach proposed by Downs & White (2013).
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Figure 8. Integral perturbation amplitude along x from (a–c) w̄R1 fields and (d–f ) w̄R2 fields. Columns refer
to a fixed k, matching NPSE solution (- - lines), NPSE solution sensitivity (shaded regions), NPSE initial
amplitude estimations (full markers). Data relative to x/c locations downstream of the transition point are
excluded from the plot.

Having confirmed the λ1 mode gives the main contribution to the disturbance amplitude
and its development, for the remainder of this work, the amplitudes estimations presented
are extracted from the w̄R1 and w̄R2 reconstructed flow fields unless otherwise specified.
This procedure is akin to the amplitude estimation from the computed NPSE solutions,
allowing for a direct comparison of the numerical and experimental results. Moreover,
propagating the PIV uncertainty error in the amplitude calculation, the error range
pertaining the extracted amplitude values can be estimated, reaching a mean value of
±1 %. Repeating the amplitude estimation procedure for the acquired cases the Aint curves
reported in figure 8 are obtained, showing the effect of different forcing configurations on
the generated disturbances evolution.

In the most upstream forcing configurations, the instabilities grow throughout the
domain up to a saturation amplitude level. In agreement with previous studies
(Reibert et al. 1996; Haynes & Reed 2000; White et al. 2001) for this subset of
cases the forced primary structures reach saturation at comparable amplitude values
(Aint,saturation � 0.06W∞), independent of the forcing amplitude and location. These cases
are accompanied by the growth of the λ2 mode, which also saturates for the more upstream
configurations. However, forcing at more downstream chord locations as well as with
higher DRE arrays, leads to lower saturation amplitudes. This different behaviour can
be attributed to several reasons, among which the breadth of the parameter range involved
which may lead to variations in the receptivity process. Moreover, cases with Rek � 24, 90,
160 respectively for the three different heights considered, are as well affected by the early
amplitude saturation and subsequent decay. Such behaviour is indicative of the later stages
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Figure 9. Particle image velocimetry and NPSE λ1 mode (a) N-factor and (d) amplitude curves for Rek =
24 (◦) and Rek = 18 (∗) with xDRE/c (-.-), A0 (×). (b–e) Shape functions of the λ1 and (c–f ) λ2 mode at
x/c = 0.30 for the NPSE (full line), LPSE (- -) and Fourier shape functions from experimental data (symbols).
Experimental δ99 (horizontal - -), NPSE matching sensitivity (shadowed areas).

of transition and onset of turbulence, which essentially breaks the spanwise coherence of
the structures. Instead, with a further downstream shift (i.e. Rek � 18, 70, 150) arrays of
all considered heights induce instabilities that grow along the whole PIV domain without
reaching saturation, accompanied by a negligible or absent development of the λ2 mode.

Most of the measured upstream forcing configurations are characterized by
well-developed λ2 modes, indicating the boundary layer flow is affected by nonlinearities.
Therefore, for each of these cases, an NPSE stability solution is computed (§ 2.2). The
numerical amplitudes computed from NPSE solutions are reported for all the tested cases
in figure 8. Figure 9 instead, shows the specific comparison between NPSE, LPSE and PIV
computed amplitudes, N-factor and shape functions evolution for an upstream (Rek = 24)
and a downstream (Rek = 18) forcing configuration. Overall, mild amplitude differences
are observed in figures 8 and 9, mostly attributed to mild base flow discrepancies,
possibly enhanced downstream of the roughness element due to the complex physics of
the near-DRE flow region (as discussed in § 4). Additionally, the actual wing curvature as
well as the experimental uncertainty on the roughness height and exact chord location can
also contribute to the observed differences. More significant discrepancies characterise
the Rek � 160 cases. The pronounced discrepancies between experimental and numerical
results at higher Rek reveal possible effects near the DRE which are not modelled by the
NPSE approach. Among others these can include unsteadiness in the wake (e.g. vortex
shedding) and non-modal effects in the stationary vortex system, as further discussed in
§ 4.

Notwithstanding mild topological differences, the NPSE correctly predicts the
instability saturation amplitude (Aint,saturation � 0.057W∞, Amax,saturation � 0.157W∞ in
agreement with Reibert et al. 1996). The λ2 harmonic and its evolution are also properly
described, despite enhanced amplitude differences for the more upstream configurations
considered, related to the primary amplitude discrepancies. To verify the sensitivity of the
NPSE matching to the initial amplitude estimate, the area between the matching NPSE
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Figure 10. Initial instability amplitude (A0) from NPSE against Rek. Dashed line is a linear fit of the A0 data
(A0,fit). Colourmap based on xDRE/c, symbols based on element height.

solution and two equivalent solutions initiated with A0 × (1 ± 0.1) is shown as a shaded
region in figure 8. In addition, the experimental amplitude uncertainties given by the PIV
correlation have been found to be smaller, thus contained also in the shaded region.

The overall instability behaviour is well modelled by the NPSE (as already shown
by Haynes & Reed 2000). Therefore, the upstream portion of the numerical solution
can be exploited to extract an estimation of the perturbation initial amplitude A0. This
is computed as the equivalent amplitude a modal CFI should posses at the xDRE/c
location in order to give a downstream development of the flow field comparable to
the experimental measurement. This is particularly instructive given the inability of
experimental measurement techniques to resolve such mild effects. It must be noted that
all NPSE simulations are initiated only with the λ1 mode and as such A0 refers to the
latter. The A0 extracted for the two cases of figure 9(d) are represented by the red ×
markers, while the ensemble estimates for the various tested heights and chord locations
are reported in figure 10.

The observed A0 curves immediately confirm that the receptivity process is not
linearly dependent on the considered parameters. Nonetheless, Rek appears to correlate
surprisingly well to the estimated initial amplitude, possibly due to the inherent
information used by this metric which includes the local velocity or momentum of the
incoming flow. Despite not giving a complete description of the single forcing cases
behaviour, the simple least-squares linear data fit (A0,fit = 6.2 × 10−5Rek) reported in
figure 10 appears to capture the main A0 differences given by modifications of the
DRE amplitude. A global estimation of the fit accuracy is described by the coefficient
of determination (R2 = 0.97), indicating the fit is capturing up to 97 % of the data
variance. More detailed considerations can be carried out considering the A0-linear fit
local residuals (�A0 = A0 − A0,fit), which appear to be relatively higher for the smaller
elements. In particular, for k1, the residuals estimation reaches a maximum of �A0 �
0.5A0 in contrast to the �A0 � 0.25A0 for Rek > 70. Additionally, for each of the
three considered element amplitudes, higher deviations from the linear fit pertain to the
more upstream configurations reported, which experience stronger local pressure gradient
variations and possible local effects not properly modelled by the NPSE approach. This
behaviour is in agreement with previous investigations stating that in the vicinity of the
dominant mode neutral point, linear receptivity is only expected for DRE amplitudes
much smaller than those of the present study (Schrader et al. 2009; Kurian et al. 2011;
Tempelmann et al. 2012). The more downstream cases, however, are less affected by
the local flow field characteristics (i.e. pressure gradient and local effects), falling closer
to the linear fit approximation for the Rek − A0 relation. This behaviour validates the
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possibility of up-scaling the upstream configurations to further investigate the near-DRE
flow phenomena, and reflects the monotonic behaviour of transition location with Rek
observed from the IR measurements (figure 4).

Notwithstanding geometrical parameters, the direct solution of nonlinear stability theory
appears to capture best the overall increase of initial amplitude corresponding to the
three considered heights simply based on downstream measurements. Yet, the initial
amplitude values are not linearly dependent on k, as the relative increase between
estimated amplitudes is not representative of the proportional increase in DRE height
(Tempelmann et al. 2012, table 2). In addition, the DRE location also appears to affect
the initial amplitude estimation, showing an initial increase in A0 followed by a slow
decrease as more downstream application locations are considered. However, DREs of
higher amplitude placed at identical xDRE/c (thus, identical pressure gradient) lead to
stronger differences between the NPSE and experimental amplitudes evolution (figure 8).
The observed trends significantly differ from the results obtained by Tempelmann et al.
(2012) for smaller roughness heights (i.e. �10 % of the local δ∗) that led to a linear
receptivity process. This different correlation between A0 and the elements’ location
further suggests that the DRE amplitude is the dominant parameter for the receptivity of
the cases considered in this work. Multiple error sources can be affecting the A0 behaviour,
including measurement uncertainties and modelling errors in the NPSE approach which,
for example, does not account for the effect of the local pressure gradient on the near
flow dynamics and consequently on A0. In fact, a good match between numerical and
experimental amplitude is obtained to 1 % of chord downstream of the array location, as
shown by the full marks of figure 8. However, by comparing the amplitude values closer
to the element (i.e. 0.3 % downstream of the element, figure 13) differences between the
experimental and the NPSE values can be observed, confirming modal stability theory
does not accurately model the instability growth immediately aft of the roughness array.
These observations further justify the identified A0 behaviour, stressing the importance of
the near-DRE flow dynamics for the onset and later evolution of stationary CFI.

In conclusion, the investigation of the stationary disturbances led to the description
of the downstream development of the primary mode and its harmonics. Moreover,
complementing NPSE simulations allows for the estimation of the initial instability
amplitude represented by A0. As expected, the reported values show a strong dependency
of the instability onset on the forcing amplitude being, however, only mildly affected by
the forcing location. Yet, the defined geometrical parameters are not capable of completely
describing the underlying receptivity relations. This can be traced back to the flow field
dynamics in the immediate vicinity of the DRE, which can be affected by the local pressure
gradient and potentially include non-modal and transient growth features similar to what
was identified in 2-D flows by White, Rice & Ergin (2005) and Reshotko (2001). The A0
estimation directly from NPSE appears to support this hypothesis, therefore, a further step
towards the analysis of the relation between the DRE element and the initial instability
amplitude can be guided by the near-DRE flow investigation reported in § 4.

4. Near-DRE flow development

Of the results reported so far, only the A0 estimation brings interesting insights on
the initial phases of receptivity. However, despite observing a dependency on the
forcing amplitude and location, the A0 modifications appear to be mostly affected by
the near-element flow dynamics, characterized by flow phenomena that can hardly
be parametrized. Nonetheless, to better understand the initial receptivity phases, the last
part of this work is dedicated to a more in-depth investigation of the flow evolution in the
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Figure 11. (a–c) Time-averaged spanwise w̄ velocity contours and (d–f ) perturbation velocity fields (w̄ − w̄z)
acquired for Rek = 145 in the array vicinity. Superimposed contours of w̄ (full lines, 5 levels from 0 to 1).
Dashed rectangle represents the roughness shape and location.

roughness elements vicinity. For arrays applied between x/c = 0.25–0.30, additional PIV
planes are collected with a step �0.16 % chord starting 0.3 % downstream of the DRE
location to avoid light reflections.

The time-averaged spanwise w̄ velocity contours for forcing at Rek = 145 (xDRE/c =
0.25, k3) are reported in figure 11 along with the corresponding perturbation fields
(estimated as w̄(z, y) − w̄z( y)). This forcing case is chosen as the representative
configuration throughout this section as it features the larger element considered (i.e. k3),
thus, the developing flow features are most observable and less subject to noise issues.
The average velocity fields reveal a boundary layer almost unaffected by CFI, in fact no
flow modulation is yet present in the base flow. However, a momentum deficit region is
developing directly in the wake of the element surrounded by higher speed flow possibly
due to a momentum redistribution effect induced by the roughness element itself (Kurz
& Kloker 2016). Already visible in the plane closest to the DRE (at x/c = 0.253) this
low-speed hump forms immediately downstream each of the elements present in the
PIV domain and rapidly decays between x/c = 0.253–0.26. Downstream (x/c = 0.27) the
disturbance field evolves into a weak but uniform high-speed low-speed region alternation
typical of stationary CFI (e.g. Bippes 1999). The topology of the flow modulation is
very similar to corresponding cases of weak upstream forcing such as Rek = 18 shown in
figure 6. These observations reconcile well with the DNS results by Kurz & Kloker (2016).
More specifically, they identified two pairs of horseshoe vortices developing around the
roughness elements: an outer pair propagating from the element sides, most likely due
to the element-induced spanwise shear, and an inner pair originating aft of the element
due to wall-normal ejection of flow. In a 3-D boundary layer for both pairs, only the leg
co-rotating with the BL crossflow is sustained and develops along the chord, while the
counter-rotating legs are suppressed shortly after the elements location. The emergence of
these vortices drives a momentum redistribution process which results in the formation
of a low-speed hump in the wake of the elements due to low-momentum flow upwelling.

939 A33-17

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

22
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.220


G. Zoppini, S. Westerbeek, D. Ragni and M. Kotsonis

0 1/3 1/2 1 3/2 2

0.02

0.04

0.06

0.08

0.252

0.255

0.259

0.27

0.29

0.35

x/c

0.26 0.28 0.3
0

1/3
1/2

1

3/2

2

0.01

0.02

0.04

λz /λ1 x/c

λ
z/
λ

1

m
ax

(F
F

T
z(

w̄
))

/W
∞

m
ax

(F
F

T
z(

w̄
))

/W
∞

(a) (b)

Figure 12. (a) Fourier spectra in the spanwise wavelength domain and (b) spectra amplitudes in the x–λz
plane for Rek = 145.

Despite the different flow features characterizing a 2-D or 3-D boundary layer, Kurz &
Kloker (2016) observed that the near-DRE flow characteristics are comparable for the two
cases. In fact, flow features and evolution comparable to what is observed in the present
work, are reported in the work by Ergin & White (2006), an experimental investigation on
the flow past a roughness element in a 2-D boundary layer.

A spanwise Fourier decomposition is applied to these near-DRE fields and the
corresponding spectra are reported in figure 12 for case Rek = 145. Differently from the
upstream forcing case (figure 7a), the spectra of the present case identify a high energy
spectral content involving the dominant mode λ1 and numerous harmonics. This is mainly
attributed to the highly concentrated region of velocity deficit in the wake of the elements,
which are otherwise located in an undisturbed spanwise invariant flow. In terms of spatial
spectra, the DRE wake essentially acts as a pseudo-pulse, effectively containing all spatial
frequencies. The diameter of the DRE (�1.7 mm) is nevertheless finite and only four
times less than the elements inter-spacing. As such, the spectral energy is not equally
distributed and decays with higher harmonics. For the results presented in figure 12, more
than 35 % of the spectral energy is contained in the first five harmonics. However, it
must be noted that the identified spectral components do not necessarily correspond to
natural modal instabilities in the flow, rather they can be seen as modal representations
of the near-DRE wake in Fourier space. As such, the perturbation amplitude computed
following the integral approach includes all the complex flow features corresponding to
the near-DRE flow development. Integral amplitudes extracted from the w̄ velocity fields
and from the w̄R1 field are reported in figure 13.

The amplitude development extracted from the time-averaged PIV fields displays a very
mild total disturbance growth followed by a significant decay associated to the velocity
deficit evolution, and a subsequent growth due to the flow modulation development,
figure 13(a). As also confirmed by the reported spectra, the downstream flow modulation
is dominated by the λ1 mode and despite overall smaller amplitudes it reflects the
crossflow characteristics and growth process previously discussed for cases of more
upstream located arrays (figure 6). Interestingly, the amplitude curves of the presented
cases are characterized by comparable trends and amplitudes in the element vicinity. The
change of height or chord locations of these arrays leave the initial decay and subsequent
growth almost unaltered, suggesting that the near-DRE flow region is mostly influenced
by the flow blockage caused by the element itself rather than the overall flow stability.
Unfortunately, the current set-up does not permit to directly compute experimental
instability amplitudes for arrays located in regions affected by stronger variation of the
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Figure 13. Integral amplitude along x in the array vicinity from (a) w̄, (b) w̄R1 . Integral amplitudes from the
NPSE solution at x/c = 0.253 (full markers).

pressure gradient as these are located closer to the leading edge, where the boundary layer
is extremely thin. However, the observed near-DRE flow similarity is in agreement with
the results of the numerical computations conducted by Kurz & Kloker (2014) on a more
upstream forcing configuration, and sets an important starting point for the scalability of
the examined configurations.

The similarity among forcing cases is additionally evident on the amplitude curves
extracted from the w̄R1 fields (figure 13b). It must be emphasised that the identified
Fourier modes do not necessarily represent the naturally developing wake instabilities.
Nonetheless, they provide a valid modal description of the wake flow field which delivers
interesting insights in the relative flow dynamics. In particular, for the three presented
configurations, the λ1 mode shows a continuous decay from the DRE location to 1 % of
chord downstream, indicating that the initial amplitude growth observed in figure 13(a)
may be linked to the behaviour of higher harmonics. To further address this consideration,
hereafter we present a more detailed analysis of the individual Fourier modes’ behaviour
for case Rek = 145. Figure 14 includes the estimation of the total perturbation integral
amplitude Aint(w̄), as well as the integral amplitude of the first six harmonics of the
dominant mode λ1 extracted from the Fourier spectra. Additionally, Aint(w̄R1−6) is the
integral amplitude computed from a truncated Fourier reconstructed flow field including
only the six reported modes. Despite the mild amplitude differences between Aint(w̄) and
Aint(w̄R1−6), both amplitude trends show a mild growth followed by rapid decay in the
element vicinity. However, both the λ1 and λ2 modes are decaying aft of the roughness
element, and only start to grow downstream of x/c = 0.26, where the NPSE-experimental
amplitude match indicates that the instability growth is following an exponential trend. On
the other hand, in the element vicinity (i.e. x/c < 0.26) Fourier modes λ3, λ4, λ5 and λ6
all show mild growth followed by rapid decay. These flow features match well with the
results presented by White et al. (2005), who identified non-modal mechanisms and, in
particular, transient growth as a fundamental feature of the near-DRE wake development
for a non-swept flow. The individual modes behaviour described in figure 14 as well as the
observed mild Aint(w̄) growth, appear to reflect the characteristics of a transient growth
process (e.g. Landahl 1980; Schmid & Henningson 2001) possibly driven by the behaviour
of individual Fourier components comparable to those identified by White et al. (2005).

Previous works by Corbett & Bottaro (2001) and Breuer & Kuraishi (1994) show
that flow fields developing aft of a cylindrical element can produce a transient growth
mechanism that can lead to rapid initial growth of crossflow instabilities, enhancing
their downstream development which then follows an exponential growth process.
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Figure 14. Integral amplitude along x in the array vicinity for forcing case k3, Rek = 145 from w̄, w̄R1 , w̄R2 ,
w̄R3 , w̄R4 , w̄R5 , w̄R6 flow fields and from the Fourier reconstructed flow field w̄R1−6 . Amplitude of matching
NPSE solution (-.). The y-axis is plotted with a logarithmic scale to ease visualization.

This transient growth process is typically governing the linear superposition of
non-orthogonal modes (e.g. Corbett & Bottaro 2001; Levin & Henningson 2003; Lucas
2014), thus, it would relate the amplitude growth observed in the element wake to
the presence of non-modal flow interactions. More specifically, the vectorial sum of
individually decaying non-orthogonal solutions to the stability problem can lead to
transient growth. However, these eigensolutions appear at the same spanwise wavelength
and frequency. As such, the decoupling of modal (i.e. exponential) and non-modal
(i.e. algebraic) growth effects is not possible by means of a Fourier decomposition.
Non-modal interactions are not accounted for in the NPSE solver, however, together with
the local pressure gradient they could significantly affect the near-DRE wake development,
further justifying the A0 behaviour observed in figure 10. Additionally, the initial boost
in amplitude of higher harmonics of the primary stationary mode given by a transient
growth mechanism can lead to the formation of strong shear layers in the DRE wake.
These can in turn induce unsteady wake instabilities (such as vortex shedding or shear
layer instabilities of sinuous or varicose nature) that can affect the CFI initial amplitude,
growth rate and transition location (Breuer & Kuraishi 1994; Lucas 2014; Loiseau et al.
2014). In particular, in the Rek = 145 forcing case presented in figure 14 the effect of the
transient mechanism on the primary wavelength (i.e. λ1) is visible in the initial decay. The
latter cannot be modelled by NPSE, as is evident from the different evolution of Aint(w̄R1)

and the integral amplitude computed from the NPSE solution, i.e. ANPSE(w̄R1). The NPSE
amplitude evolution is in fact purely exponential, thus resulting in an underestimation of
the λ1 mode A0. This consideration explains the observed numerical and experimental
amplitude differences registered in figure 13(b), where the NPSE initial amplitude is
underestimated for all the reported cases if compared with the experimental values. The
result in figure 14 is possibly the first experimental observation of transient growth in a
swept wing boundary layer. Nevertheless, the region in which the perturbation amplitude
initially grows while individual modes are decaying is extremely short (less than 1 %
chord). This spans merely three PIV measurement planes rendering the spatial resolution
insufficient to identify one of the signature features of transient growth which is algebraic
amplitude evolution. The elucidation of such mechanisms is currently the subject of
dedicated ongoing investigations by the authors.
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In conclusion, for the limited number of cases investigated in this study, the
application of DRE in a region affected by linearly developing natural crossflow is still
successfully conditioning the downstream CFI development. Moreover, the pre-existing
CFI modulation appears to have negligible effects on the near-DRE flow features which
present comparable amplitude and behaviour independently of the forcing chord location,
as also observed by Kurz & Kloker (2014). Therefore, the withstanding relation between
roughness elements and crossflow onset may be more complex than a simple two elements
interaction, involving a chain of effects moving from the elements to the near-DRE
flow and consequently to the onset of the CFI. The identified near-DRE behaviour can
potentially be linked to a transient growth process which affects the BL flow providing
the proper initial conditions to the modal crossflow instabilities development (e.g. Corbett
& Bottaro 2001). Considering the narrow parameter range examined and the insufficient
spatial resolution for the current work this remains a hypothesis. However, its potentially
pertinent role in the complete definition of the receptivity process justifies further detailed
investigations dedicated to the near-DRE flow field. These investigations can be simplified
by the observed repeatability of the near-DRE wake characteristics demonstrated in this
work, allowing for this type of measurement at more downstream and experimentally more
accessible chord locations.

5. Conclusions

The presented experimental investigations explore the overall effect of DRE amplitude and
chord location on the development and breakdown of stationary CFI. Roughness arrays
are manufactured with a fixed element inter-spacing corresponding to the wavelength of
the dominant crossflow mode (λ1 according to LPSE), in order to force a deterministic
flow scenario focused on a single monochromatic mode. The forcing arrays are applied
on the wing surface at various chord locations, while four different element heights are
considered spanning a broad range of k/δ∗ � 0.15–2.4 and Rek � 15–280.

The global inspection of transition performed through IR thermography relates the
forcing configuration to the observed transition modifications. An increase (decrease)
in element height and/or a decrease (increase) in DRE streamwise location lead to an
advancement (postponement) of laminar to turbulent transition. Reflecting the transition
front modifications, configurations characterized by higher Rek introduce instabilities with
higher amplitudes which rapidly grow along the chord up to saturation and turbulence
onset.

Nonlinear development of primary instabilities is numerically modelled by solving
NPSE through an in-house developed solver. A good match is found between the
experimental and numerical development of the instabilities as they progress in the
boundary layer, including the extracted instabilities amplitude and saturation amplitudes.
As such, the upstream initialisation of the numerical solution provides an estimation
of the equivalent instability initial amplitude (A0) at the DRE array location leading
to comparable downstream development of CFI. The collected A0 values indicate the
forcing amplitude is the main parameter influencing the initial instability amplitudes.
The direct estimation of A0 using NPSE appears to capture the overall influence of
the forcing elements sufficiently well, while still revealing pertinent differences from a
universal scaling law. In particular, the inherent relations between forcing configuration
and the initial instability amplitudes as well as the transition locations are not following a
simply linear trend. Nonetheless, Rek performs relatively well in capturing both transition
modifications and estimation of the initial perturbation amplitude stemming from a given
DRE configuration. However, the residual data scatter suggests more complex and possibly
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non-modal mechanisms, likely influenced by the local pressure gradient and not captured
by the NPSE, are active in the element vicinity.

The final part of this work presents an investigation of the near-DRE flow development
for a limited set of cases. In the velocity fields a momentum deficit region is identified
behind the element and is observed to decay further downstream, where a boundary
layer modulation corresponding to a stationary crossflow mode (with λ1 wavelength)
emerges (Kurz & Kloker 2016). These flow features are reflected by the reported
amplitude estimations. Additionally, DRE arrays are applied in a region affected by the
development of weak (i.e. still linear) natural crossflow disturbances, conditioning the
CFI evolution also in this configuration. This confirms the near-DRE flow is mostly
influenced by the blockage effect of the element rather than the local flow stability,
further reconciling the inability of NPSE back projections in fully capturing the initial
amplitude (A0). Furthermore, this observation opens new possibilities for up-scaling of the
considered forcing configurations, which would simplify the experimental investigation of
the near-DRE flow features. Moreover, preliminary evidence of transient growth behaviour
can be identified in the DRE wake, based on spanwise spectral analysis. However, the
few cases considered and the low spatial resolution achieved require further dedicated
investigations to confirm this hypothesis.

From the reported results it appears that the inherent relation between roughness
elements and CFI onset is more complex than a simple two elements interaction. A chain
of effects relating the physical elements to their near-DRE flow features and consequently
to the onset of the CFI is revealed, effectively making the near-DRE flow development an
intermediate and important receptivity step. This step is eventually responsible in setting
the initial conditions for the modal CFI development. Considering their pertinent role
in the complete definition of the receptivity process, near-DRE dynamics will be the
subject of future investigations. These investigations can be simplified by the revealed
repeatability of the flow characteristics, enabling such measurements at more downstream
and experimentally more accessible chord locations.
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