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Abstract

Engineering design has proven to be a rich context for applying artificial intelligence (AI)
methods, but a categorization of such methods applied in AI-based design research works
seems to be lacking. This paper presents a focused literature review of AI-based methods
mapped to the different stages of the engineering design process and describes how these
methods assist the design process. We surveyed 108 AI-based engineering design papers
from peer-reviewed journals and conference proceedings and mapped their contribution to
five stages of the engineering design process. We categorized seven AI-based methods in
our dataset. Our literature study indicated that most AI-based design research works are tar-
geted at the conceptual and preliminary design stages. Given the open-ended, ambiguous
nature of these early stages, these results are unexpected. We conjecture that this is likely a
result of several factors, including the iterative nature of design tasks in these stages, the avail-
ability of open design data repositories, and the inclination to use AI for processing compu-
tationally intensive tasks, like those in these stages. Our study also indicated that these
methods support designers by synthesizing and/or analyzing design data, concepts, and mod-
els in the design stages. This literature review aims to provide readers with an informative
mapping of different AI tools to engineering design stages and to potentially motivate
engineers, design researchers, and students to understand the current state-of-the-art and
identify opportunities for applying AI applications in engineering design.

Introduction

Artificial intelligence (AI) technology is transforming the way engineering designers work,
enabling new work models in many aspects of engineering design and manufacturing indus-
tries. The advent of digitalization and the Industry 4.0 phenomenon (Lasi et al 2014) has
resulted in a substantial increase in AI applications and data to develop new AI-based methods
(Lee et al 2018; Marion and Fixson 2020; Roh et al 2021). New digital tools and sensors gen-
erate massive data sources and repositories that become readily available for AI solutions (Lee
et al 2018; Marion and Fixson 2020; Roh et al 2021). Such AI-based applications and data have
also found a way into the field of engineering design, making it an important platform for the
development and application of AI in this digital economy (Lee et al 2018; Marion and Fixson
2020; Roh et al 2021). Knowledge of AI, machine learning, and data science have been effec-
tively implemented to develop tools and frameworks that support engineers in their design
tasks. AI-based methods, especially machine learning, have been utilized for rapid design
data learning and processing (Sim and Duffy 1998; Saridakis and Dentsoras 2008). These
advances in digital tools have led computers to effectively automate several engineering design
tasks that were traditionally performed by humans. As such, the growth in AI capabilities coin-
cides with a digital transformation in the engineering design industry.

The availability of engineering design data and the development of state-of-the-art
AI-based methods have, together, led to the emergence of diverse literature focused on the
application of AI-based methods for analyzing or automating different engineering design
tasks. If one took all these developments at face value, one might conclude that we are on
the cusp of fully automated AI engineering design. But the broader literature on AI capabilities
makes it clear that this simply is not true (Frank et al 2019). Considering this shift in how and
what work humans and AI do in the engineering design process, it is important to reflect on
the current prevalence and applications of AI in the field of engineering design. As engineering
design is a complex process that includes multiple design tasks to be carefully and sequentially
processed, we require a stage-by-stage categorization of the design process, followed by a map-
ping of AI-based methods to appropriate design stages. This mapping of AI methods across
different design stages could potentially be important for designers and researchers to assess,
select and then effectively implement appropriate AI-based methods for tasks in specific
design stages in their research.
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Previous literature studies on engineering design and AI have
discussed function modeling related to AI (Erden et al 2008), the
impact of Industry 4.0 on the product design process (Pereira
Pessôa and Jauregui Becker 2020), design requirements elicitation
(Cheligeer et al 2022), and the AI methods used in the data-
driven design-by-analogy process (Jiang et al 2022). In addition,
certain literature studies focus on applications of specific
AI-based methods such as soft computing techniques (Saridakis
and Dentsoras 2008), deep learning-based generative models
(Regenwetter et al 2022), and natural language processing (NLP)
(Siddharth et al 2022) toward engineering design. However, a
study pertaining to the focus of state-of-the-art AI methods in
the stages of the engineering design process and how these
methods support these design stages is lacking.

To address this gap, we present a focused literature review that
classifies the applications of AI solutions to the engineering
design process. Through our literature review study, we address
the following key research questions:

RQ-1: Which AI-based methods are commonly applied in each
engineering design stage?

RQ-2: Why are AI-based methods prevalent in certain engineer-
ing design stages?

RQ-3: How do AI-based methods support designers in each engi-
neering design stage?

By addressing these objectives, our stage-by-stage categoriza-
tion of the AI-based design literature offers insights regarding
the nature of the AI-based methods that focus on specific stages
of the engineering design process and why researchers may
have focused the application of certain AI methods on these spe-
cific stages. Our study highlights seven AI-based methods, which
are agent-based modeling, deep learning, machine learning, NLP,
network theory, probabilistic modeling, and optimization algo-
rithms, that are mapped to the engineering design stages and
describe which AI-based methods are commonly used in each
stage. An understanding of the distribution of AI-based research
works could illuminate high-value opportunities for design
researchers to explore if AI-based methods could support the
design tasks in the under-served stages.

The rest of the paper is organized as follows. In the section
“Background”, we present a background focusing on the engineer-
ing design process and the importance of AI in engineering
design. In the section “Methodology for this literature review”,
we present the methods used in this work to conduct a focused
literature review followed by a classification of the AI-based
design literature in different stages of the engineering design pro-
cess. Finally, we present our findings and discuss how these find-
ings address the three research questions in the section “Findings
and discussion”. In the section “Conclusion”, we present our con-
clusion and future directions.

Background

The engineering design process

Design is, fundamentally, one of the most important aspects of
engineering and is the primary way in which engineers contribute
to society (Dym et al 2005; Daly et al 2012). The engineering
design process requires a combination of knowledge and skills
of humans, including fundamental subject matter expertise (in
physics, chemistry, computation, optimization, etc.) as well as

problem-solving and creativity. The role that humans play in
this process has been the focus of significant research, in particu-
lar with regards to topics such as creativity (Hsiao and Chou
2004), empathy (Kouprie and Visser 2009; Zhou et al 2021),
intuition (Durling 1999; Taura and Nagai 2017), experience
(Cross 2004; Atman et al 2007), and collaboration (McComb
et al 2015, 2017). Furthermore, engineering design is a complex
process (Kossiakoff et al 2011; Ulrich and Eppinger 2012). It con-
sists of multiple stages, each containing a variety of unique tasks
that advance the design toward a completed system. These tasks
require specialized skills and knowledge gained through years of
study or work – often exceeding the experience of a single designer.
Lastly, the design process is rarely linear: a design might iterate
through a number of these stages before progressing forward.
Acknowledging this complexity, Dym et al (2013) summarized
this process into five stages which are apt for our literature analysis.
We review these five stages as follows:

1) Problem Definition: The design objectives, constraints, func-
tions, and other information are identified during the problem
definition stage to establish a list of customer, client, or
end-user requirements. Designers rely on empathy to under-
stand the customer’s requirements, existing product reviews,
and responses, which help the designers translate them to
design parameters and requirements (Kouprie and Visser
2009). In this way, a detailed and precise list of requirements,
statements, objectives, constraints, and functions obtained in
this stage are input to the subsequent conceptual design stage.

2) Conceptual Design: In this stage, the requirements obtained
from the previous stage are translated into engineering design
specifications used to benchmark potential designs. Designers
harness their creativity and intuition gained from their experi-
ence in the conceptual design stage to assist ideation process to
generate novel design alternatives (Parmee and Bonham 2000;
Badke-Schaub and Eris 2014; Sarkar and Chakrabarti 2014).
Through this ideation process, multiple design alternatives
are generated according to the engineering design specifica-
tions that suitably satisfy customer’s requirements, objectives,
constraints, and desired functions. These multiple design con-
cepts are input to the next design stage for modeling, evalu-
ation, and analysis.

3) Preliminary Design: In this stage, the alternate design concepts
are modeled by estimating the design requirements’ size and
major attributes. Designers utilize computer-aided design
(CAD) software for modeling the design concepts for effective
visualization. Through such CAD-enabled features and visua-
lizations, designers are able to harness their creativity to gen-
erate design models (Robertson et al 2007; Chang et al 2016).
These models are tested and evaluated based on the perfor-
mance and function requirements of the customer. This pro-
cess mainly leverages computational tools such as CAD and
simulation software for quick and effective analysis of the
design concepts. After the analysis, designers use their
decision-making skills to select the proper designs suitable
to the requirements.

4) Detailed Design: In this stage, from the evaluations in the pre-
vious stage, the selected design is articulated in a detailed man-
ner. To optimize the design, the designers use the procedures
expressed in specific rules, formulas, and algorithms found in
design codes, handbooks, databases, and catalogues. Using
their decision-making skills and methods (Arroyo et al
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2015), the designers finalize an apt design with relevant details
to be communicated in the next stage.

5) Design Communication: In this final stage of the engineering
design process, the final design with its details is documented
and communicated in the form of reports, drawings, manufac-
turing specifications, and prototypes. Designers leverage their
creative thinking to design prototypes and rely on empathy to
effectively communicate the prototypes and final designs to
customers and stakeholders (Fonseca et al 2009; Lim et al
2012; Wang and Liou 2018; Lee and Park 2021). The entire
design process is also documented since it may prove beneficial
for future reference. The design communication process can
also help obtain feedback from customers and stakeholders to
modify the design further and provide their final approval.

Artificial intelligence algorithms and the design process

While the goal of engineering design work remains constant over
time, the nature of engineering work is transforming, driven
partly by the increased availability of data and various AI algo-
rithms. Machine learning, deep learning, and NLP are some of
the most widely used AI-based methods for processing and inter-
preting myriad data types, including applications ranging from
product recommendation (Sharma et al 2021), machine vision
(Golnabi and Asadpour 2007), and language translation
(Hirschberg and Manning 2015), respectively. Classical machine
learning is the most commonly used tool for large-scale data pro-
cessing and learning features and patterns in data through statis-
tical analysis (Jordan and Mitchell 2015). Classical machine
learning algorithms such as decision trees, naïve-Bayes, support
vector machines, K-nearest neighbors, and regression methods
have been useful for effectively classifying, predicting, and cluster-
ing data (Russell and Norvig 2010). Deep learning, a subset of
machine learning algorithms, leverages artificial neural networks
to process, interpret and even generate data expressed in images,
3D models, and videos (Deng and Yu 2013; Lecun et al 2015).
Compared to the classic machine learning algorithms, deep learn-
ing algorithms require fewer human interventions and can auto-
matically learn and extract features from large-scale data,
providing results with high accuracy and hence suitability for
complex data processing such as machine vision, audio process-
ing, and generative models. NLP involves text-based data, brid-
ging the gap between “computer” language and “human”
language through knowledge representation to access, store, and
analyze information expressed in a natural language
(Chowdhury 2003; Hirschberg and Manning 2015). NLP has
been used with machine learning or deep learning algorithms
for applications such as chatbots, sentiment analysis, autocorrect,
and machine translation (Hirschberg and Manning 2015).

Although these three methods are widely used, other AI-based
methods, such as agent-based modeling, network/graph theory,
probabilistic methods, and optimization algorithms, are also
being utilized for tasks involving data processing, automation,
and optimization. Agent-based modeling involves the develop-
ment of a computational agent or agents along with an environ-
ment where the agent or multiple agents interact with the
environment to achieve certain outcomes (Crooks and
Heppenstall 2012). Network/graph theory involves the study of
interactions or relations between discrete objects represented in
the form of graphs (Borgatti and Halgin 2011; West 2001).
Probabilistic methods, which include Hidden Markov models
(Eddy 2004), Bayesian frameworks (MacKay 1992), and
Gaussian models (Schulz et al 2018), are used to estimate the like-
lihood of events/states based using probability theory and statisti-
cal modeling of available data. Optimization algorithms, such as
genetic algorithm, Bayesian optimization, and multiscale topology
optimization, are used to achieve the best solution iteratively
within given constraints (Arora 2015).

Since the advent of Industry 4.0, myriad industries have begun
incorporating AI tools to expedite data processing and decision-
making for complex tasks (Li et al 2017; Lee et al 2018). With
the shift to digital tools, sensors, and big data accessible through
cyber-physical systems, vast amounts of design knowledge, pre-
vious product designs, customer reviews, and manufacturing cap-
abilities are available to assist design engineers in accelerating the
product design process (Marion and Fixson 2020). The availabil-
ity of rich and diverse design data in open repositories has led to
the emergence of literature reflecting novel AI applications in each
stage of the engineering design process (Johri 2020). As such, a
literature study highlighting different AI methodologies mapped
to the five engineering design stages could motivate researchers,
engineers, and engineering aspirants to recognize the potential
of utilizing AI-based methods. Moreover, such motivation could
further inspire the development of new methodologies to synthe-
size or analyze designs on the different stages of the engineering
design process.

Methodology for this literature review

We conducted a literature review of 108 research works that used
AI-based methods and tools in the engineering design process.
This literature review was done in a focused manner (Huelin
et al 2015) to identify and understand the trend of AI-based
methods in different stages of engineering design. This section
describes how we obtained and assessed the literature pertaining
to AI-based methods across different stages of the engineering
design process. The overview of the literature review methodology
is depicted in Figure 1 and described in the following subsections.

Figure 1. Framework used for literature search and review.
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Obtaining search words for the literature review

The engineering design stages described by Dym et al summa-
rized the engineering design process (Dym et al 2013) into five
stages, namely: (1) Problem Definition, (2) Conceptual Design,
(3) Preliminary Design, (4) Detailed Design, and (5) Design
Communication. Based on these definitions and the authors’
expertise in engineering design, a group of search words was com-
piled that represented the aspects of the engineering design pro-
cess and would assist in the literature search. Next, five
AI-based search words were selected that broadly represent the
field of AI. The two sets of search words that represented engi-
neering design and AI are listed in Table 1.

Searching the literature

Using combinations of the engineering design search words with
AI search words in Table 1, the literature was searched through
Google Scholar and the University of Toronto Libraries with con-
solidated access to databases such as Scopus, IEEE Xplore, Science
Direct, and Web of Science. Only peer-reviewed research papers
from conference proceedings or journals were considered for
this literature review. The research papers obtained through this
search underwent a manual assessment, which involved scrutiniz-
ing the abstracts and methods section of the research papers, to
select those that accurately represented applications of AI-based
methods in engineering design. Below are the exclusion criteria
for manual scrutinization:

1) Papers with the absence of a concrete AI-based method for
processing design tasks;

2) Papers from non-peer-reviewed publications;
3) Papers that review AI-based methods in fields other than engi-

neering design;
4) Papers that used AI-based methods in the engineering design

context for supplementary design aspects, such as evaluating
the designer’s experience or communication, rather than pro-
cessing design tasks.

The 108 papers considered for this literature study comprised
research works published in peer-reviewed journals and confer-
ence proceedings such as the American Society of Mechanical
Engineers (ASME), Journal of Mechanical Design, Artificial
Intelligence in Design and Manufacturing (AI EDAM), ASME
International Design Engineering Technical Conference
(IDETC) proceedings, and others, and were observed to be
dated from 1998 to 2022. The list of these 108 papers is provided

in Appendix 1. These 108 papers can be considered a representa-
tive sample of AI-based design research, as they cover a wide
range of AI applications in design tasks across the engineering
design process and provide an in-depth understanding of how
and why these AI-based methods are applied in these stages.

Mapping the literature to the engineering design stages

The 108 papers were thoroughly reviewed and mapped to the
engineering design stages based on their respective methodologies
and research objectives. The purpose of mapping the research
works to the engineering design stages was to assess the major
areas of the engineering design process where AI methods are
focused and possible research gaps to be explored. We analyzed
each paper to assess the stage, or stages, of the engineering process
in which the particular AI-based method was used. First, we cate-
gorized the engineering design task that the AI-based method tar-
geted. Then, we matched this engineering design task to the
definitions of the engineering design stages (highlighted in the
section “The engineering design process”) and categorized that
paper accordingly.

Summarizing the AI-based research works in engineering
design stages

After mapping the 108 papers to the respective engineering design
stages, we extracted and summarized the following information
for each paper:

• The AI-based method used in the paper.
• The purpose of applying the AI-based method in the paper.

Reviewing the papers, we observed seven AI-based methods
used to process design tasks. We list these seven AI-based
methods as follows:

1) Agent-based modeling
2) Deep learning
3) Machine learning
4) Network/graph theory
5) NLP
6) Optimization algorithms
7) Probabilistic methods

In addition, we also observed the purpose of applying
AI-based methods in each paper and, with that information, sum-
marized how these methods support designers in each design
stage. By summarizing this information, we highlight and discuss
the findings corresponding to RQ-1, RQ-2, and RQ-3 in the fol-
lowing section.

Findings and discussion

The growth of digitalization and AI-based methods has naturally
motivated designers to apply such methods toward improving the
design tasks throughout the process. However, the engineering
design process is complex and includes several unique tasks to
be meticulously planned and processed across different stages.
Hence, it is important to explore the different AI-based methods
through stage-wise categorization of the engineering design pro-
cess and understand how these methods support designers in
each stage. Such AI-based methods mapped to respective design

Table 1. Lists of search words used for the literature review

Category of the
search words Search words used for the literature review

Engineering Design customer requirements, function requirements,
problem definition, conceptual design, design
functions, design constraints, generative design,
design evaluation, design analysis, design
specifications, computer-aided design, detailed
design, design optimization, design
communication, design representation, design
prototypes

Artificial Intelligence artificial intelligence, machine learning, natural
language processing, data-driven, deep learning
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stages will potentially guide us to understand, select, and then
effectively implement appropriate AI-based methods for appro-
priate tasks in specific stages in the design process. In addition,
understanding the prevalence of AI-based methods though the
design stage-wise categorization can provide high-value opportu-
nities for design researchers to focus their efforts on the under-
served stages and assess if AI-based methods can be suitably
implemented to improve the design tasks in those stages.

Through a stage-by-stage view of the engineering design pro-
cess, our study describes how AI tools are applied for tasks involv-
ing specific stages of the overall design process. We observe a
distribution of AI-based methods across the design stages,
which we conjecture to be attributed to the nature of design
tasks involved in these stages and the availability of design data
repositories that make it ideal for applying data-driven AI
methods. As a further contribution, we present which specific
AI methods are most often implemented in each design stage
and the reason for their applications.

In this section, we present and discuss our findings corre-
sponding to the three research objectives stated in the section
“Introduction”. First, we summarize the AI-based methods used
in each of the five stages and highlight some key works to address
RQ-1. Next, we address RQ-2 by discussing the observed preva-
lence of certain AI-based methods in different design stages.
Finally, we highlight how the applications of these AI-based
methods support designers in each stage, answering RQ-3.

Mapping AI-based methods to the engineering design stages

We address RQ-1 by highlighting the results of the literature
review mapped to the five engineering design stages, as depicted
in Figure 2. Of the 108 papers considered in this literature review,
97 papers were observed as directly related to only one of the five
engineering design stages and 16 papers mapped to three transi-
tions between engineering design stages. We observe that most of
the papers reviewed in this literature study are concentrated in the
middle stages, that is, preliminary design (32) and conceptual
design stages (28), followed by problem definition (17), detailed
design (13), and lastly, design communication stage (2). In

comparison, 16 papers were mapped to three transition engineer-
ing design stages, that is, problem definition–conceptual design
(7), conceptual design–preliminary design (5), and preliminary
design–detailed design (4).

After mapping the 108 papers to their respective engineering
design stages, we categorized them into seven AI-based methods,
as shown in Table 2. Furthermore, we summarized the purpose
for which the AI-based methods were applied in each paper and
supported their respective engineering design stage/stages. We also
provide a stage-wise distribution of the papers according to the
AI-based method employed within the respective papers in Table 3.

From Table 3, we can observe that deep learning is the most
commonly used AI-based method across the design stages, fol-
lowed by machine learning and NLP. Next, we highlight our find-
ings on the AI-based methods commonly used in each
engineering design stage, thereby addressing RQ-1. In addition,
we give examples of AI-based methods in each stage and summar-
ize their applications in each of the five engineering design stages.

AI in problem definition
As discussed in the section “Obtaining search words for the litera-
ture review”, during problem definition, the customer require-
ments are identified and clarified into a detailed and
interpretable list of design objectives, constraints, functions, and
other information for producing design concepts. This stage
mostly involves data in a textual or natural language format.
The research works mapped to this stage of the engineering
design process often used NLP tools to translate the requirements
into the required data for the conceptual design stage (15 out of
17 papers). Second, we also observed that four machine learning
methods had been used in customer reviews, ratings, and design
requirements analyses (Suryadi and Kim 2019; Hein et al 2021;
Lin and Kim 2021; Saidani et al 2021). Further, two deep learning
methods were used along with NLP for design-requirement-
extraction through semantic analysis (Wu et al 2022) and auto-
matic extraction of functional requirements (Akay et al 2021);
two network theory methods for requirements-identification
(Sen and Summers 2013) and customer segmentation (Park and
Kim 2021); and one probabilistic method that used Latent

Figure 2. Number of papers in literature review mapped to the five engineering design stages.
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Dirichlet allocation (LDA) to identify and generate latent topic for
managing design requirements (Chen et al 2021).

Linking the problem definition stage to the conceptual design
stage, Kop and Mayr (1998) have introduced an intermediate
stage called conceptual predesign to provide an effective transition
between user requirements and conceptual design. In this inter-
mediate stage, Kop and Mayr (1998) used NLP techniques to
automate the process of generating the predesign scheme from
the users’ requirements expressed in natural language, thereby
providing an effective interface between users and designers.

AI in conceptual design
The conceptual design stage focuses on analyzing, ideating, and
generating design concepts based on the design information
from the problem definition stage. From Tables 2 and 3, we

observe that many papers (28 out of 108 papers) in our sample
focus on this stage of the engineering design process and each
of the seven types of AI-based methods observed in this study
is observed to be applied in this stage. In the conceptual design
stage, researchers often used NLP (8 out of 28 papers) and deep
learning (11 out of 28 papers) to translate design requirements
to specifications, ideate designs and generate alternative design
concepts for further analysis. In addition to these methods, we
observed: three agent-based modeling methods applied to facili-
tate ideation (Maier et al 2020), to transfer design strategies
from human to computer (Raina, Cagan et al 2019), and to gen-
erate concepts from standard grammatic representations and
abstract designer heuristics (Puentes et al 2018); three machine
learning methods for recommending design features (Yao et al
2017), evaluating design features (Vasantha et al 2022), and

Table 2. Summary of AI methods and their purpose corresponding to the engineering design stages (Refer to Appendix 1 for mapping of codes to papers)

Engineering design stage The purpose of applying AI-based method in the
design stages

AI-based method used
Agent-based modeling (ABM),
Deep learning (DL), Machine learning (ML),
Network/Graph theory (NGT),
Natural language processing (NLP),
Optimization algorithms (OA)
Probabilistic methods (PM)

# Papers

Problem Definition Customer review analysis: P1, P5, P6, P8, P9, P12,
P13, P14, P17
Design requirement analysis: P2, P3, P4, P10, P15,
P16
User requirements analysis: P7, P11

DL – P11, P16
ML – P1, P2, P12, P14
NGT – P10, P13
NLP – P1, P2, P3, P4, P5, P6, P7, P8, P9, P11, P13,
P14, P15, P16, P17
PM – P15

17

Problem Definition–Conceptual
Design

Consumer space–design space mapping: P18, P19,
P20, P21, P22, P23, P24

DL – P22
ML – P18, P19, P24
NLP – P20, P21, P23

7

Conceptual Design Design data analysis: P28, P31, P32, P34, P35, P37,
P37, P41, P44, P50, P52
Design Ideation: P25, P26, P27, P29, P30, P42, P48,
P49
Concept generation: P33, P36, P39, P40, P44, P46,
P47, P51
Conceptual modeling: P45

ABM – P26, P34, P44
DL – P31, P32, P33, P40, P43, P46, P47, P48, P49,
P50, P52
ML – P37, P41, P52
NGT – P35, P42
NLP – P25, P26, P27, P28, P29, P30, P38, P45
OA – P47
PM – P34, P52

28

Conceptual Design–Preliminary
Design

Design generation + evaluation: P55, P56, P57
Generate/Obtain design alternatives: P53, P54

ABM – P56
DL – P54, P57
ML – P55
NLP – P53

5

Preliminary Design Design synthesis (or generative design): P61, P62,
P64, P70, P77, P78, P79, P81, P82, P83, P85
Design evaluation/analysis: P58, P59, P60, P65,
P66, P67, P68, P69, P71, P73, P74, P79, P86, P88, P89
Design synthesis + analysis: P63, P72, P75, P80,
P84, P87

DL – P58, P62, P63, P64, P67, P70, P72, P73, P75,
P77, P78, P80, P81, P82, P83, P84, P85, P88, P89
ML – P59, P60, P65, P66, P68, P69, P70, P74, P79,
P84, P87
NGT– P88
NLP – P71, P76
OA – P61
PM – P86, P87

32

Preliminary Design–Detailed
Design

Design synthesis + optimization: P90, P91, P92, P93 DL – P91, P92, P93
ML – P90
PM – P90

4

Detailed Design Design knowledge utilization: P102
Design optimization: P94, P95, P96, P97, P98, P99,
P100, P101, P103, P104, P105, P106

DL – P95, P100, P102, P106
ML – P94, P96, P97, P98, P101, P103, P105
OA – P94, P96, P104, P105
PM – P99

13

Detailed Design–Design
Communication

– – 0

Design Communication Aesthetics: P107, P108 DL – P108
OA – P107

2
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clustering designs with common structures (Vasantha et al 2021);
two probabilistic methods applied jointly with agent-based mod-
eling for transfer learning (Raina, Cagan et al 2019) and Bayesian
networks and N-grams for feature evaluation (Vasantha et al
2022); two network/graph theory methods for analyzing design
functions (Song et al 2018) and for providing design stimuli for
effective design ideation (Luo et al 2021); one topology optimiza-
tion algorithm for aiding concept generation (Fujita et al 2021);
and two new automation frameworks for reusing common fea-
tures in 3D CAD models (Vasantha et al 2021) and automating
concept generation from high-level functional description of the
product (Kurtoglu et al 2010). We also observed certain works
that leverage AI-based methods for the collective generation of
design alternatives, generally done in the conceptual design
stage and subsequent modeling or evaluation processed in the
preliminary design stage. For example, Lee et al (2022) used a
deep generative framework in the conceptual design to generate
2D tire tread patterns per required tire performance. In another
example, Jeon et al (2016) effectively used NLP to extract concepts
from design concepts, followed by retrieving CAD model corre-
sponding to the design concepts.

AI in preliminary design
Most AI-based works in this literature review (32 out of 108
papers) are focused on the preliminary design stage for the engi-
neering design process, as indicated in Figure 2. As previously dis-
cussed, this stage includes design generation and evaluation. We
observed that most of the research works mapped to this stage uti-
lized machine learning (11 out of 32 papers) and deep learning
(19 out of 32 papers) algorithms as their AI-based methodologies.
In this stage, most machine learning algorithms have been used
for design evaluation, whereas most deep learning algorithms
have been used for design generation. We further elaborate on
these applications and the potential reason why researchers
have focused their AI on this design stage in the section
“Conclusion”. In addition to such works, we observed that: two
papers have applied NLP for processing texts to model generation
(Friedrich et al 2011) and topic extraction for subsequent design
performance prediction (Ball and Lewis 2020); two papers have
used probabilistic modeling for generating aerodynamic designs
(Ghosh et al 2021) and evaluating the environmental impact of
designs (Ferrero et al 2021); one paper used network theory-based

surrogate modeling for evaluating trusses (Whalen and Mueller
2022); and one paper used the Jaya algorithm as the optimization
method for generating a set optimal number of design solutions
(Khan and Awan 2018).

In the Preliminary Design–Detailed Design transition stage, we
observe that AI-based methods (Oh et al 2019; Xiong et al 2019;
Zhang et al 2019; Kallioras and Lagaros 2020) are used for design
synthesis (Preliminary Design) followed by design optimization
(Detailed Design), as indicated in Table 2.

AI in detailed design
The primary purpose of the detailed design stage is to conduct
design optimizations for obtaining a final design solution suitable
to user requirements. Our literature review revealed that researchers
mainly used machine learning and deep learning algorithms for
design optimization in this phase. In addition to these, we also
observed: four optimization methods, which used a multi-objective
genetic algorithm for optimal material selection (Zhou et al 2009)
and simulation-based optimization (Owoyele et al 2021), Gaussian
process regression for topology optimization (Najmon et al 2021),
and Bayesian optimization for improving geometric parameters
(Coulter et al 2022); one probabilistic method involving multiscale
Gaussian process for multi-physics simulation-based optimization
(Sarkar et al 2019); and one novel framework for modeling detailed
design knowledge using a structural-behavior-function (SBF)
model and a genetic programming approach (Chen et al 2013).

AI in design communication
The design communication stages involve the documentation of
the design in the form of reports and manufacturing specifica-
tions, along with the creation of prototypes to effectively commu-
nicate the design with stakeholders, customers, and production
teams. This limited literature includes research works that use
machine learning for aesthetic feedback (Tsai et al 2007) and
deep learning-based holistic styling analysis for generating differ-
ent appearances/styles for a design (Ranscombe et al 2017).

The prevalence of AI algorithms across engineering
design stages

We address RQ-2 by assessing the prevalence of AI methodolo-
gies in different stages of the engineering design process. Our

Table 3. Stage-wise distribution of the AI papers according to the AI-based methods applied in them

Engineering design stage

AI-based methods

ABM DL ML NGT NLP PM OA

Problem Definition – 2 4 2 15 1 –

Problem Definition–Conceptual Design – 1 3 – 3 – –

Conceptual Design 3 11 3 2 8 2 1

Conceptual Design–Preliminary Design 1 2 1 – 1 – –

Preliminary Design – 19 11 1 2 2 1

Preliminary Design–Detailed Design – 3 1 – – 1 –

Detailed Design – 4 7 – – 1 4

Detailed Design–Design Communication – – – – – – –

Design Communication – 1 – – – – 1

Total 4 43 29 5 29 7 6
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main finding is that work on AI-based methods is not uniformly
distributed across stages of the engineering design process. As dis-
played in Figure 2, we observe that most AI-based papers focus on
the conceptual and preliminary design stages. In contrast, we
observe fewer AI-based research papers in the design communica-
tion and transition between stages. We offer four reasons for this,
based on the strengths of AI tools and propensities of design-AI
researchers: (1) a natural inclination for targeting computational
support toward the effort-intensive and iterative design tasks in
the conceptual and preliminary design stages, (2) access to easily
available open repositories containing design data on the concep-
tual and preliminary design stages, (3) a perceived lack of
AI-compatible computationally intensive tasks in design commu-
nication stage, and (4) a tendency of design researchers to focus
on processing designs tasks in one particular design stage effec-
tively rather than across multiple stages. We elaborate on these
potential reasons and present insights behind the observed distri-
bution of AI-based research works across the five design stages.

We observed that most AI-based methods focus on conceptual
and preliminary design stages. This echoes Luo’s (2022) taxon-
omy of data-driven approaches in the design space of the data-
driven innovation process, as evidenced by the prevalence of gen-
erative design-based deep learning and supervised machine learn-
ing methods for design generation and evaluation in these stages.
One reason for this finding is the attractive promise of data-driven
AI algorithms as assistants for designers in quick and effective,
effort-intensive, iterative design tasks such as ideating, generating,
and evaluating design concepts and models. Traditionally, these
stages rely on the designer’s knowledge, experience, creativity,
and decision-making skills to iteratively process, generate, and
evaluate multiple design concepts to achieve a creative and inno-
vative solution. Despite recent advances in AI, computational sys-
tems are far from accurately replicating a designer’s creativity and
heuristics. So, it was surprising to observe the application of most
AI-based methods in these stages. However, on closer inspection
of these AI-based research works, we observed that AI algorithms
mainly support designers by automating or analyzing certain
design tasks within these stages. Such AI-enabled automation or
analysis of design tasks provides quick and effective computation
support to designers, who can then focus their creative and
decision-making skills toward generating novel design concepts
and models. In addition, AI algorithms backed by computation-
ally powerful processors can provide rapid processing and analysis
of design data for quick iterations, thereby contributing to
improved design process efficiency. Thus, we observe most
AI-based research works that effectively assist designers in saving
time and effort toward the tasks in the conceptual and prelimi-
nary design stages.

Another possible reason for most AI-based methods being
applied in the conceptual and preliminary design stages can be
the availability of open repositories containing design data for
analysis and design generation. As observed from Table 2, the
majority of the AI-based methods used in these stages are NLP,
machine learning, and deep learning algorithms. The develop-
ment and application of NLP methods are highly dependent on
the availability of textual data. On the other hand, machine learn-
ing and deep learning algorithms applied in these stages have
used supervised learning models such as neural networks, support
vector machines, and decision trees, which require large-scale data
for effective training and testing of the models. Furthermore,
unsupervised learning methods such as clustering require
large-scale data use to establish relevant patterns and relations

between different design variables. As such, the availability of
open repositories for developing AI-based methods is crucial to
analyze textual data, training supervised learning models for effec-
tive prediction and classification, and establishing patterns using
unsupervised learning methods. Such availability of design data
in open repositories could be why most AI-based research
works, such as NLP, deep learning, and machine learning, are
focused on the conceptual design and the preliminary stages
(Dym et al 2013).

Further, the results indicate fewer AI-based contributions in
the design communication stage compared to other stages. In
fact, it can be observed that no papers implement an AI-based
methodology to streamline design communication with its pre-
ceding stages effectively. Once the final design is selected in the
detailed design stage, designers document the entire process
and create prototypes to communicate the final design to the cus-
tomers and stakeholders. Most design tasks in the previous stages,
such as requirements analysis, design generation, evaluation, and
optimization, are highly iterative and data-intensive. In contrast,
researchers may have perceived the design communication stage
involving design documentation and communication as less com-
putationally compatible than the tasks involved in the previous
stages. Hence, researchers may have opted to focus the develop-
ment of AI algorithms on the computationally intensive stages
(that is, from problem definition to detailed design) for rapid pro-
cessing and evaluation of designs. In addition, all the data used as
inputs or obtained as outputs in the design stages, such as design
requirements, design concepts, 2D sketches, or 3D models, are
readily available in digital formats such as text files, CAD files,
images, and video recordings. This data, obtained throughout
the design process, can be easily compiled, requiring less compu-
tation effort for final documentation. Thus, the lack of computa-
tionally intensive tasks involved in the Detailed Design–Design
Communication transition stage and the design communication
stage could be a reason for the lack of AI methods implemented
in these stages.

Lastly, the application of AI algorithms to design is a relatively
new endeavor. As such, automating tasks within a stage might be
a more obvious target than those between stages. From Table 2, we
also observe that certain AI-based research works focus on three
transition stages: problem definition–conceptual design, concep-
tual design–preliminary design, and preliminary design–detailed
design. Such AI-based research works are observed to support
designers in processing and completing the design tasks across
two engineering design stages together. Compared to the papers
mapped to a single design stage, we observe fewer papers mapped
to the transition between stages. The overall design process is
complex, iterative, and sequential, such that the inputs of certain
design tasks can be highly dependent on the output of its preced-
ing stage; for example, design concepts and attributes generated in
the conceptual design stage are used to develop and evaluate 3D
CAD models in the preliminary design stage. Thus, designers
must have focused their efforts on effectively automating such
complex tasks and thereby used AI algorithms to focus on one
stage rather than the transitions.

The insights gathered from this literature regarding the preva-
lence of AI algorithms applied across the different stages of the
engineering design process highlight high-value opportunities
for researchers to develop and implement AI methods toward
the under-served design stages. As indicated before, design data
in various formats, processed throughout the design process, is
easily accessible for building an automated documentation
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method. Such a method could highlight potential opportunities
for the applications of text-based AI methods leveraging NLP
and deep learning techniques for effectively recording, document-
ing, and captioning the designs and prototypes throughout the
design process. Furthermore, the lack of AI focus in the transition
stages could indicate a potential gap for researchers to explore and
apply more AI solutions that provide effective design processing
across multiple design stages with the potential goal of improving
design process efficiency and effectiveness.

AI’s support to human designers

Here, we address RQ-3 by describing how AI methods support
designers in each stage of the engineering design process. Our
analysis showed that AI algorithms support designers’ abilities
across the design process: understanding the design problem
and requirements, generating design concepts and models, select-
ing the best option, and assisting designers in prototyping their
selection. In each case, designers relied on AI’s ability to effi-
ciently process large amounts of data. We summarize the designer
and AI contributions to the engineering design stages in Table 4
and expand on them below.

First, AI algorithms can process large amounts of data contain-
ing user reviews and requirements to extract useful design infor-
mation to help designers understand the problem. In the problem
definition stage, as customer reviews or requirements data are
often available in a textual or natural language format, most
research works used NLP techniques to process or analyze
them. NLP techniques (Chowdhury 2003; Hirschberg and
Manning 2015) have proven to be effective in encoding and pro-
cessing large-scale textual data to perform operations such as text
mining (Tucker and Kim 2011; Zhang et al 2021), semantic anal-
ysis (Wu et al 2022), sentiment analysis (Suryadi and Kim 2019),
topic extraction (Ayoub et al 2019), and text summarization (Hou
et al 2019). These analyses can be beneficial for understanding the
key customer and design requirements and can, therefore, assist
human designers translating such requirements to apt design
parameters such as form, function, and aesthetics.

Second, AI algorithms can effectively analyze large-scale data
to assist designers with design ideation and concept generation.
In the conceptual design stage, designers utilize their knowledge
and data to generate design concepts according to the require-
ments and constraints. As described earlier, this process is highly
iterative in which the designers use their creativity, experience,

and intuition to develop novel and creative design concepts.
From our literature review results, researchers employed deep
learning and NLP methods in this phase. Deep learning tech-
niques such as neural networks and autoencoders have been effec-
tive in generating and analyzing large-scale data (Deng and Yu
2013; Lecun et al 2015). Hence, deep learning methods are used
in the conceptual design stage for tasks such as predicting func-
tion from design forms (Dering and Tucker 2017), testing design
repository attributes (Williams et al 2019), design synthesis for
exploration (Chaudhari et al 2021), and generating design con-
cepts (Lopez et al 2018; Fujita et al 2021; Nurizada and Purwar
2021). Similar to the previous stage, design data is often available
in textual format, which makes it apt for researchers to apply NLP
methods for supporting the design ideation process toward con-
cept generation (Chen et al 2019; He et al 2019; Liu et al 2020;
Sarica et al 2020). In this literature, researchers employed NLP-
based methodologies for analyzing text for Kansei Engineering
and design automation (Chiu and Lin 2018), design function
processing (Yamamoto et al 2009), and semantic processing for
retrieving CAD models from design documents (Jeon et al
2016). Additionally, Lee et al (2017) have used machine learning
techniques and NLP to explore and categorize potential design
solutions for bioinspired conceptual design. Further, Wang et al
(2018) used NLP with deep learning techniques to effectively
map customer requirements and design parameters from online
product review data. This way, deep learning and NLP methods
can assist designers in effective design data analysis, ideation pro-
cess, and even concept generation.

Third, AI algorithms can effectively assist designers with auto-
mating the design-model generation and subsequent evaluation as
per the design’s requirements. In the preliminary design stage,
design models are generated from the concepts, which are then
evaluated to select the best designs. We observe most research
works in this literature use deep learning methods for design gen-
eration and machine learning methods for design evaluations.
Deep learning algorithms such as generative adversarial networks
(GANs) (Goodfellow et al 2020) and autoencoders (Bank et al
2020) can effectively be used to encode the data in which they
are trained and generate new data, and hence are applied to gen-
erate designs in 2D (Quan et al 2018; Raina, McComb et al 2019),
3D (Khan and Awan 2018; Shu et al 2020), and point cloud
(Achlioptas et al 2018; Krahe et al 2020) formats. With such cap-
abilities, GANs have also been leveraged for data-driven genera-
tive design models (Li et al 2021), synthesizing designs with

Table 4. Contribution of human designer and AI in each stage of the engineering design process

Engineering design
stage Human designer’s contributiona AI supportb

Problem Definition Understanding the customer needs/requirements and translating them
to design parameters and requirements

Processing and mining large-scale customer reviews and
requirements and design requirements

Conceptual Design Ideation and generation of novel design concepts/ideas Analyzing design data to facilitate design ideation and
automatic generation of concepts

Preliminary Design Modeling design concepts and selecting designs based on evaluations Automating design generation and evaluating designs

Detailed Design Referring to the design codes, handbooks, and databases for optimizing
designs and selecting/finalizing the best design

Optimizing designs

Design
Communication

Documenting, prototyping, and communicating the final design Documentation and aesthetics

aThis column represents the human designer’s contribution to the design process (as discussed in the section “Background”).
bThis column represents the AI support to the design process as observed from the 108 papers in this literature study.
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interpart dependencies (Chen and Fuge 2019), generating 3D
designs for physics-based simulations (Zhang et al 2019), and
generate designs based on class, characteristics, and dimensions
conditions (Krahe et al 2020). Such effective utilization of
GANs has also been applied to generating designs for topological
optimization of designs conducted in the subsequent detailed
stage (Oh et al 2019; Kallioras and Lagaros 2020). Since most of
the data in the preliminary design stage are represented in the
form of an image or 3D design model, researchers have leveraged
deep learning algorithms to predict a design’s performance based
on an image (Khanolkar et al 2020) and a 3D model (McComb
2019), and predict energy for a given building design (Geyer
and Singaravel 2018). Similarly, machine learning methods such
as neural networks, decision trees, K-nearest neighbors, and sup-
port vector machines can perform quick and accurate evaluations
through regression, classification, or clustering (Mitchell and
Mitchell 1997; Jordan and Mitchell 2015). In such manner,
machine learning algorithms are used for design cost evaluation
(Bodendorf and Franke 2021), design time prediction (Yan and
Xu 2007), predicting energy performance (Geyer and Singaravel
2018), and analyzing CAD geometries (Bickel et al 2020). As
such, deep learning and machine learning algorithms provide
quick and accurate automation to model, process and evaluate
designs and could assist designers in decision-making to select
proper designs.

Similarly, AI algorithms can help designers optimize the
designs and assist in finalizing the solution. In the detailed design
stage, designers use their knowledge and experience to optimize
the designs from the previous stage. In this stage, machine learn-
ing algorithms have been used for applications such as multi-
objective optimization for selecting suitable material for sustain-
able products (Zhou et al 2009), simulation-driven design optimi-
zation of internal combustion engines (Owoyele et al 2021),
design optimization for maximizing the flexibility of design and
minimizing the cost (Bhosekar and Ierapetritou 2020), and
product portfolio design optimization for maximizing company
profit without violating customer product performance expecta-
tions (Tucker and Kim 2009). Similarly, deep learning algorithms
have been used for 3D functional design optimizations (Zhang
et al 2019), design optimization using reinforcement learning
(Yonekura and Hattori 2019), and conducting effective and accu-
rate data-driven decision-making processes for complex product
designs (Lai et al 2021). Such AI methods can assist designers
in processing and optimizing designs, ultimately developing the
best design by utilizing the design knowledge stored in
AI-compatible digital format.

Lastly, AI algorithms can be helpful in assisting designers by
documenting and communicating their final designs effectively.
Once the design is optimized, the designers document their
design and create prototypes for effective presentation and com-
munication with the stakeholders, users, and subsequent manu-
facturing departments in the design communication stage. In
this stage, designers have used AI algorithms for aesthetics and
styling for effective design documentation.

Conclusion

In summary, our focused literature review revealed that engineer-
ing design research has recognized the potential for AI-based
methods to advance this important endeavor. Our literature
review included 108 papers, which represent an apt sample of
research works that leveraged AI-based methods applied toward

design tasks across the five design stages. The AI-based methods,
highlighted in the 108 papers, focused on different design stages
and aimed to improve the engineering design process by automat-
ing or augmenting certain design tasks, such as mapping cus-
tomer reviews to design requirements, generating design models
and concepts, and analyzing designs. Our literature review pro-
vides a stage-by-stage distribution of the 108 AI-based design
research papers by mapping the AI-based method in each paper
to the appropriate engineering design stages based on their
design-based application. We observed that within the 108 papers,
deep learning is the most commonly used among the seven
AI-based methods. Based on the nature of design tasks in differ-
ent stages and the data processing capabilities of neural networks,
deep learning could be seen as a popular AI tool across the engi-
neering design field. In particular, we found that conceptual
design and preliminary design stages, which leverage human crea-
tivity and collaboration, have been the focus of AI-based engi-
neering design research. We also found that fewer AI-based
engineering design works apply to the design communication
and transition stages. In addition, we observed that researchers
used all seven AI-based methods in their respective works in
the conceptual design stage, potentially signaling the wide range
of current AI capabilities and future novel AI-based methods
that could be applied to assist the designers in this stage. In this
literature study, we also observed that the AI-based methods sup-
ported designers in each stage by generating, analyzing, and opti-
mizing design data, concepts, and models.

The stage-by-stage distribution of AI-based research works
could illuminate opportunities for researchers to focus on devel-
oping new AI methods in the under-served stages to see if AI
solutions could apply. Understanding which and how AI-based
methods support designers in specific design tasks in each stage
could inspire researchers to implement similar methods for pro-
cessing certain design tasks in specific stages for their respective
research. Thus, our literature review analysis reveals insights
and opportunities to explore AI applications in other design pro-
cess steps and continue leveraging the work toward human–AI
collaboration in the engineering design stages. Such insights can
help integrate the technical benefits of AI combined with the non-
technical skills of humans to potentially improve the efficiency
and effectiveness of the engineering design process.

This literature review was conducted via a focused search,
where our main contribution was categorizing 108 research
works into the five stages of the engineering design process. As
a next step, a systematic literature review way reveals additional
sources, which we expect to follow the same trends and categories
presented here. Such a systematic literature study could also pre-
sent emerging topics such as multi-modal learning and human–
AI collaboration, which can provide a better understanding of
the state-of-the-art in the engineering design field. As the scope
of this review was limited to the application of AI methods in
the design process, this future work could focus on in-depth anal-
yses of AI-based methods, highlighting their capabilities, limita-
tions, and level of human interaction (or complete human
replacement). Future work could also investigate the literature
that leverages AI to evaluate the designer’s experience and inter-
action during the engineering design process (Behoora and
Tucker 2015; Ferguson et al 2022). Such literature focussing on
the use of AI for enhancing design and designer experience
could further solidify the growing importance of AI in engineer-
ing design and call for the inclusion or expansion of AI education
in engineering design.
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Appendix 1: The following table contains the list of research papers selected for literature review and their mapping to
corresponding to the stages of the engineering design process

Problem Definition (PD), Conceptual Design (CD), Preliminary Design (PDes), Detailed Design (DD), Design Communication (DC)

Paper
ID Paper title Reference

Stage of engineering
design

P1 A Data-Driven Methodology to Construct Customer Choice Sets Using Online Data and Customer
Reviews

Suryadi and Kim (2019) PD

P2 Employing Machine Learning Techniques to Assess Requirement Change Volatility Hein et al (2021) PD

P3 A Natural Language Processing (NLP) Framework for Embedded Systems to Automatically Extract
Verification Aspects from Textual Design Requirements

Anwar et al (2020) PD

P4 Design Transcription: Deep Learning-Based Design Feature Representation Akay and Kim (2020) PD

P5 Mining Customer Product Reviews for Product Development: A Summarization Process Hou et al (2019) PD

P6 Analyzing Customer Needs of Product Ecosystems Using Online Product Reviews Ayoub et al (2019) PD

P7 Research on Mass User Requirements Analysis and Evaluation Method Based on Crowdsourcing
Platform

Niu et al (2021) PD
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(Continued.)

Paper
ID Paper title Reference

Stage of engineering
design

P8 Predicting Emerging Product Design Trend by Mining Publicly Available Customer Review Data Tucker and Kim (2011) PD

P9 Mining Product Innovation Ideas from Online Reviews Zhang et al (2021) PD

P10 Identifying Requirements for Physics-Based Reasoning on Function Structure Graphs Sen and Summers (2013) PD

P11 A Semantic Analysis-Driven Customer Requirements Mining Method for Product Conceptual
Design

Wu et al (2022) PD

P12 Can Machine Learning Tools Support the Identification of Sustainable Design Leads From
Product Reviews? Opportunities and Challenges

Saidani et al (2021) PD

P13 Data-Driven Customer Segmentation Based on Online Review Analysis and Customer Network
Construction

Park and Kim (2021) PD

P14 Investigate the Influence of Online Ratings and Reviews in Purchase Behavior Using Customer
Choice Sets

Lin and Kim (2021) PD

P15 A Topic Modeling Approach to Study Design Requirements Chen et al (2021) PD

P16 Automating Design Requirement Extraction from Text with Deep Learning Akay et al (2021) PD

P17 Online Product Review Analysis to Automate the Extraction of Customer Requirements Mokadam et al (2021) PD

P18 An Integrated Framework for Predicting Consumer Choice through Modeling of Preference and
Product Use Data

(D. D. Ghosh et al (2017) PD–CD

P19 Cyber-Empathic Design: A Data-Driven Framework for Product Design (D. Ghosh et al (2017) PD–CD

P20 Conceptual Predesign – Bridging the Gap between Requirements and Conceptual Design Kop and Mayr (1998) PD–CD

P21 Quantifying Product Favorability and Extracting Notable Product Features Using Large Scale
Social Media Data

Tuarob and Tucker (2015) PD–CD

P22 Mapping Customer Needs to Design Parameters in the Front End of Product Design by Applying
Deep Learning

Wang et al (2018) PD–CD

P23 Utilizing Text Mining and Kansei Engineering to Support Data-Driven Design Automation at
Conceptual Design Stage

Chiu and Lin (2018) PD–CD

P24 Conceptual Design of Product structures Based on WordNet Hierarchy and Association Relation Shi and Peng (2022) PD–CD

P25 Data-Driven Concept Network for Inspiring Designers’ Idea Generation Liu et al (2020) CD

P26 Analyzing the Characteristics of Cognitive-Assistant-Facilitated Ideation Groups Maier et al (2020) CD

P27 Mining and Representing the Concept Space of Existing Ideas for Directed Ideation He et al (2019) CD

P28 A Framework for Automatic TRIZ Level of Invention Estimation of Patents Using Natural
Language Processing, Knowledge-Transfer, and Patent Citation Metrics

Li et al (2012) CD

P29 Idea Generation with Technology Semantic Network Sarica et al (2020) CD

P30 An Artificial Intelligence Based Data-Driven Approach for Design Ideation Chen et al (2019) CD

P31 Design Repository Effectiveness for 3D Convolutional Neural Networks: Application to Additive
Manufacturing

Williams et al (2019) CD

P32 A Convolutional Neural Network Model for Predicting a Product’s Function, Given Its Form Dering and Tucker (2017) CD

P33 Human Validation of Computer Versus Human Generated Design Sketches Lopez et al (2018) CD

P34 Transferring Design Strategies from Human to Computer and across Design Problems Raina, Cagan et al (2019) CD

P35 Data-Driven Platform Design: Patent Data and Function Network Analysis Song et al (2018) CD

P36 Adaptive Inspirational Design Stimuli: Using Design Output to Computationally Search for Stimuli
That Impact Concept Generation

Goucher-Lambert et al
(2020)

CD

P37 Common Design Structures and Substitutable Feature Discovery in CAD Databases Vasantha et al (2021) CD

P38 Thesaurus for Natural-Language-Based Conceptual Design Yamamoto et al (2009) CD

P39 Categorizing Biological Information Based on Function-Morphology for Bioinspired Conceptual
Design

Lee et al (2017) CD

P40 3D Conceptual Design Using Deep Learning Yang et al (2020) CD

P41 A Hybrid Machine Learning Approach for Additive Manufacturing Design Feature
Recommendation

Yao et al (2017) CD
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(Continued.)

Paper
ID Paper title Reference

Stage of engineering
design

P42 Guiding Data-Driven Design Ideation by Knowledge Distance Luo et al (2021) CD

P43 Computational Creativity via Assisted Variational Synthesis of Mechanisms Using Deep
Generative Models

Deshpande and Purwar
(2019)

CD

P44 A Two-Tiered Grammatical Approach for Agent-Based Computational Design Williams et al (2020) CD

P45 Conceptual Modeling from Natural Language Functional Specifications Gangopadhyay (2001) CD

P46 Sketch-Based Mechanism Simulation Using Machine Learning Nurizada and Purwar
(2021)

CD

P47 Design Concept Generation with Variational Deep Embedding over Comprehensive Optimization Fujita et al (2021) CD

P48 Multi-Modal Search for Inspirational Examples in Design Kwon et al (2021) CD

P49 Toward Computer-Aided Visual Analogy Support (CAVAS): Augment Designers Through Deep
Learning

Zhang and Jin (2021) CD

P50 Supporting Designer Learning and Performance in Design Space Exploration: A Goal-Setting
Approach

Chaudhari et al (2021) CD

P51 Aesthetic Design Based on the Analysis of Questionnaire Results Using Deep Learning Techniques Kobayashi et al (2022) CD

P52 Assessment of Predictive Probability Models for Effective Mechanical Design Feature Reuse Vasantha et al (2022) CD

P53 Automatic CAD Model Retrieval Based on Design Documents Using Semantic Processing and Rule
Processing

Jeon et al (2016) CD–PDes

P54 Artificial Intelligence in Architecture: Generating Conceptual Design via Deep Learning As et al (2018) CD–PDes

P55 Automatically Discovering Mechanical Functions From Physical Behaviors via Clustering Chiu et al (2021) CD–PDes

P56 A Framework to Study Human–AI Collaborative Design Space Exploration Viros-I-Martin and Selva
(2021)

CD–PDes

P57 Deep Generative Tread Pattern Design Framework for Efficient Conceptual Design Lee et al (2022) CD–PDes

P58 Explainable Artificial Intelligence for Manufacturing Cost Estimation and Machining Feature
Visualization

Yoo and Kang (2021) PDes

P59 A Machine Learning Approach to Estimate Product Costs in the Early Product Design Phase: A Use
Case from the Automotive Industry

Bodendorf and Franke
(2021)

PDes

P60 An Approach to Estimating Product Design Time Based on Fuzzy v-Support Vector Machine Yan and Xu (2007) PDes

P61 A Generative Design Technique for Exploring Shape Variations Khan and Awan (2018) PDes

P62 3D Design Using Generative Adversarial Networks and Physics-Based Validation Shu et al (2020) PDes

P63 Toward the Rapid Design of Engineered Systems Through Deep Neural Networks McComb (2019) PDes

P64 Learning to Design from Humans: Imitating Human Designers through Deep Learning Raina, McComb et al
(2019)

PDes

P65 Quantifying the Impact of Sustainable Product Design Decisions in the Early Design Phase
through Machine Learning

Wisthoff et al (2016) PDes

P66 Machine Learning-Based Design Concept Evaluation Camburn et al (2020) PDes

P67 Using Deep Image Colorization to Predict Microstructure-Dependent Strain Fields Khanolkar et al (2020) PDes

P68 On the Use of Machine Learning to Defeature CAD Models for Simulation Danglade et al (2014) PDes

P69 Comparing Attribute- and Form-Based Machine Learning Techniques for Component Prediction Williams et al (2020) PDes

P70 Learning Representations and Generative Models for 3D Point Clouds Achlioptas et al (2018) PDes

P71 Predicting Design Performance Utilizing Automated Topic Discovery Ball and Lewis (2020) PDes

P72 Part-Aware Product Design Agent Using Deep Generative Network and Local Linear Embedding Li et al (2021) PDes

P73 Deep-Learning Neural-Network Architectures and Methods: Using Component-Based Models in
Building-Design Energy Prediction

Singaravel et al (2018) PDes

P74 Component-Based Machine Learning for Performance Prediction in Building Design Geyer and Singaravel
(2018)

PDes

P75 Synthesizing Designs with Interpart Dependencies Using Hierarchical Generative Adversarial
Networks

Chen and Fuge (2019) PDes

P76 Process Model Generation from Natural Language Text Friedrich et al (2011) PDes
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(Continued.)

Paper
ID Paper title Reference

Stage of engineering
design

P77 Deep Learning for Automated Product Design Krahe et al (2020) PDes

P78 Product Innovation Design Based on Deep Learning and Kansei Engineering Quan et al (2018) PDes

P79 Comparing CAD Part Models for Geometrical Similarity: A Concept Using Machine Learning
Algorithms

Bickel et al (2020) PDes

P80 Design Form and Function Prediction From a Single Image Edwards et al (2021) PDes

P81 CreativeGAN: Editing Generative Adversarial Networks for Creative Design Synthesis Nobari, Rashad et al
(2021)

PDes

P82 BIKED: A Dataset and Machine Learning Benchmarks for Data-Driven Bicycle Design Regenwetter et al (2021) PDes

P83 Geometry Enhanced Generative Adversarial Networks for Random Heterogeneous Material
Representation

Chen and Liu (2021) PDes

P84 A Framework for Interactive Structural Design Exploration Valdez et al (2021) PDes

P85 Range-GAN: Range-Constrained Generative Adversarial Network for Conditioned Design
Synthesis

Nobari, Chen et al (2021) PDes

P86 A Probabilistic Approach for Estimating the Environmental Impact of Novel Product Concepts Ferrero et al (2021) PDes

P87 Inverse Aerodynamic Design of Gas Turbine Blades Using Probabilistic Machine Learning Ghosh et al (2021) PDes

P88 Toward Reusable Surrogate Models: Graph-Based Transfer Learning on Trusses Whalen and Mueller
(2022)

PDes

P89 Recognition of Free-form Features for Finite Element Meshing Using Deep Learning Takashima and Kanai
(2022)

PDes

P90 Data-Driven Design Space Exploration and Exploitation for Design for Additive Manufacturing Xiong et al (2019) PDes–DD

P91 3D Shape Synthesis for Conceptual Design and Optimization Using Variational Autoencoders Zhang et al (2019) PDes–DD

P92 Deep Generative Design: Integration of Topology Optimization and Generative Models Oh et al (2019) PDes–DD

P93 DzAIℕ: Deep Learning Based Generative Design Kallioras and Lagaros
(2020)

PDes–DD

P94 Multi-Objective Optimization of Material Selection for Sustainable Products: Artificial Neural
Networks and Genetic Algorithm Approach

Zhou et al (2009) DD

P95 Spatial Grammar-Based Recurrent Neural Network for Design Form and Behavior Optimization Stump et al (2019) DD

P96 An Automated Machine Learning-Genetic Algorithm Framework with Active Learning for Design
Optimization

Owoyele et al (2021) DD

P97 Hybrid Teaching–Learning-Based Optimization and Neural Network Algorithm for Engineering
Design Optimization Problems

Zhang et al (2020) DD

P98 Modular Design Optimization Using Machine Learning-Based Flexibility Analysis Bhosekar and
Ierapetritou (2020)

DD

P99 Multifidelity and Multiscale Bayesian Framework for High-Dimensional Engineering Design and
Calibration

Sarkar et al (2019) DD

P100 Framework for Design Optimization Using Deep Reinforcement Learning Yonekura and Hattori
2019)

DD

P101 Data-Driven Decision Tree Classification for Product Portfolio Design Optimization Tucker and Kim (2009) DD

P102 A Data-Driven Decision-Making Approach for Complex Product Design Based on Deep Learning Lai et al (2021) DD

P103 Intelligent Design Prediction Aided by Non-Uniform Parametric Study and Machine Learning in
Feature Based Product Development

Ramnath et al (2021) DD

P104 Multiscale Topology Optimization with Gaussian Process Regression Models Najmon et al (2021) DD

P105 Geometric Design of Hypersonic Vehicles for Optimal Mission Performance using Machine
Learning

Coulter et al (2022) DD

P106 Deep Learning Driven Real-Time Topology Optimisation Based on Initial Stress Learning Yan et al (2022) DD

P107 Computer-Aided Product Color Design with Artificial Intelligence Tsai et al (2007) DC

P108 Data-Driven Styling: Augmenting Intuition in the Product Design Process Using Holistic Styling
Analysis

Ranscombe et al (2017) DC
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