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Abstract

The profinite completion of the fundamental group of a closed, orientable 3-manifold
determines the Kneser–Milnor decomposition. If M is irreducible, then the profinite
completion determines the Jaco–Shalen–Johannson decomposition of M .

When trying to distinguish two compact 3-manifolds M,N , in practice the easiest method is
often to compute some finite quotients of their fundamental groups, and notice that there is a
finite group Q which is a quotient of π1M , say, but not of π1N . It would be very useful, both
theoretically and in practice, to know that this method always works. The set of finite quotients
of a group Γ is encoded by the profinite completion Γ̂ (the inverse limit of the system of finite
quotient groups), and so one is naturally led to the following question.

Question 0.1. Let M be a compact, orientable 3-manifold. To what extent is π1M determined
by its profinite completion?

In particular, if M is determined among all compact, orientable 3-manifolds by π̂1M , then M
is said to be profinitely rigid. If there are at most finitely many compact, orientable 3-manifolds N

with π̂1M ∼= π̂1N , then M is said to have finite genus. More precise versions of Question 0.1 ask
which 3-manifolds are profinitely rigid, which have finite genus and whether various properties

of M are determined by π̂1M .

The results of this paper show that the profinite completion π̂1M determines both the
Kneser–Milnor and the Jaco–Shalen–Johannson (JSJ) decompositions of M . This complements

our previous results showing that π̂1M determines the geometry of M [WZ17]. The first theorem
concerns the Kneser–Milnor decomposition.

Theorem A. Let M,N be closed, orientable 3-manifolds with Kneser–Milnor decompositions

M ∼= M1# · · ·#Mm#r(S1×S2) and N ∼= N1# · · ·#Nn#s(S1×S2). If π̂1M ∼= π̂1N then m = n,

r = s, and, up to re-indexing, the image of π̂1M i is conjugate to π̂1N i for each i.

In particular, π̂1M determines whether or not M is irreducible. While this work was in
progress we discovered that a similar result has also been proved in the pro-p setting by Wilkes,
using l2-cohomology [Wil17a, Proposition 6.2.4]. Our proof is different, using the continuous
cohomology of the profinite completion, and naturally generalizes to our next theorem, which
shows that the profinite completion determines the JSJ decomposition of M .

Theorem B. Let M and N be closed, orientable, irreducible 3-manifolds, and suppose π̂1M ∼=
π̂1N . Then the underlying graphs of the JSJ decompositions of π1M,π1N are isomorphic, and
corresponding vertex groups have isomorphic profinite completions.
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Profinite detection of 3-manifold decompositions

See Theorem 4.3 for a more precise statement, phrased in terms of profinite Bass–Serre
trees. Partial results along the lines of Theorem B have also been obtained by Wilkes [Wil17a,
Theorem I].

In [WZ17, Theorem 8.4], it was shown that the profinite completion of the fundamental
group of a closed, orientable 3-manifold M determines the geometry of M . As an immediate
consequence of Theorem B, we can extend this result to the case with toral boundary. Recall
that H denotes the closure of a subgroup H in the profinite completion G.

Corollary C. Let M,N be compact, orientable, irreducible 3-manifolds with non-empty toral
boundaries; let {P1, . . . , Pm} and {Q1, . . . , Qn} be conjugacy representatives for the boundary

subgroups of π1M and π1N , respectively. Suppose that π̂1M ∼= π̂1N , that m = n, and that the
isomorphism takes P i to Qi for each i. If M is geometric then N is also geometric, with the same
geometry. In particular, M is Seifert fibred if and only if N is Seifert fibred.

Proof. Let D be the double of M and E be the double of N . Note that π̂1D ∼= π̂1E, and also
that the isomorphism respects the profinite completions of the boundary subgroups of π1M and
π1N . The result follows from the observation that the geometry of M is reflected in properties
of the double D.

Indeed, if M is Seifert fibred then so is D. In this case, if M is homeomorphic to an interval
bundle over the torus then D has Euclidean geometry; otherwise, M and D both have H2 × R
geometry. Finally, M is hyperbolic if and only if D has non-trivial JSJ decomposition, and
the boundary tori of M are the only JSJ tori of D. Combining these facts with Theorem B
and [WZ17, Theorem 8.4], the result follows. 2

In light of Theorem B, the next step in addressing Question 0.1 is to consider the pieces of
the JSJ decomposition. The Seifert fibred case has been resolved by Wilkes [Wil17b], building
on work of Hempel [Hem14]: Seifert fibred 3-manifolds are not profinitely rigid, but do have
finite genus, and Wilkes was able to give a complete description of when two such 3-manifold
groups have isomorphic profinite completions; he was subsequently able to extend this to a
complete answer to Question 0.1 for graph manifolds [Wil18a, Theorem 10.9]. In that paper,
Sol-manifolds were not included in the class of graph manifolds. Nevertheless, Sol-manifolds are
also well understood: they are not profinitely rigid [Fun13], but do have finite genus [GPS80].
A definitive treatment of the case of Sol-manifolds would be a valuable addition to the literature.

The case of hyperbolic 3-manifolds remains an important open problem. The complement
of the figure-eight knot was shown to be profinitely rigid by Boileau and Friedl [BF15] and
by Bridson and Reid [BR15]; see also [BCR16] for analogous results for Fuchsian groups
and [BRW17] for once-punctured-torus bundles.

Both [BF15, BR15], as well as [BRW17], rely on results showing that fibredness is a
profinite invariant in certain contexts. This has recently been proved in full generality by
Jaikin-Zapirain [Jai17]. Ueki also recently showed that the profinite completion of a knot group
determines the Alexander polynomial of the knot [Uek18].

The results of this paper are proved by considering profinite Poincaré duality groups. The
main difficulty in the above theorems is to show that profinite completions of 3-manifold groups
do not admit unexpected splittings which are not induced by splittings of the underlying group.
It is well known that non-splitting theorems for discrete Poincaré duality groups follow from the
Mayer–Vietoris sequence. As a result of the work of Agol, Wise and others on the virtual Haken
conjecture [Ago13, Wis12], 3-manifold groups are known to be good in the sense of Serre, meaning
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that the cohomology of the profinite completion is isomorphic to the ordinary cohomology (with
coefficients in finite modules). Furthermore, a version of the Mayer–Vietoris sequence is known
for efficient decompositions of profinite completions. The main idea of the proofs of Theorems A
and B is to prove the analogues for profinite completions of the non-splitting theorems from the
discrete case.

1. Preliminaries on profinite groups

1.1 Profinite trees
A graph Γ is a disjoint union E(Γ)∪ V (Γ) of sets, with two maps d0, d1 : Γ → V (Γ) that are the
identity on the set of vertices V (Γ). For an element e of the set of edges E(Γ), d0(e) is called the
initial and d1(e) the terminal vertex of e.

Definition 1.1. A profinite graph Γ is a graph such that:

(i) Γ is a profinite space (i.e. an inverse limit of finite discrete spaces);

(ii) V (Γ) is closed; and

(iii) the maps d0 and d1 are continuous.

Note that E(Γ) is not necessary closed.

A morphism α : Γ −→ ∆ of profinite graphs is a continuous map with αdi = diα for i = 0, 1.
By [ZM88, Proposition 1.7] or [Rib17, Proposition 2.1.4] every profinite graph Γ is an inverse

limit of finite quotient graphs of Γ.
For a profinite space X that is the inverse limit of finite discrete spaces Xj , [[ẐX]] is defined

to be the inverse limit of [ẐXj ], where [ẐXj ] is the free Ẑ-module with basis Xj . For a pointed

profinite space (X, ∗) that is the inverse limit of pointed finite discrete spaces (Xj , ∗), [[Ẑ(X, ∗)]]
is the inverse limit of [Ẑ(Xj , ∗)], where [Ẑ(Xj , ∗)] is the free Ẑ-module with basis Xj\{∗} [RZ10,
ch. 5.2].

For a profinite graph Γ, define the pointed space (E∗(Γ), ∗) as Γ/V (Γ) with the image of
V (Γ) as a distinguished point ∗, and denote the image of e ∈ E(Γ) by ē.

Definition 1.2. A profinite tree Γ is a profinite graph such that the sequence

0 → [[Ẑ(E∗(Γ), ∗)]] δ
→ [[ẐV (Γ)]]

ε
→ Ẑ → 0

is exact, where δ(ē) = d1(e)− d0(e) for every e ∈ E(Γ) and ε(v) = 1 for every v ∈ V (Γ).

If v and w are elements of a profinite tree T , we denote by [v, w] the smallest profinite subtree
of T containing v and w and call it a geodesic (cf. [ZM88, 1.19] or [Rib17, Proposition 2.4.9]).

By definition a profinite group G acts on a profinite graph Γ if we have a continuous action
of G on the profinite space Γ that commutes with the maps d0 and d1.

We shall need the following lemma; its proof is contained in the first eight lines of the proof
of [Zal90, Lemma 2.3].

Lemma 1.3. Suppose that a profinite group G acts on a profinite tree T and does not fix any
vertex. Then there exists an open normal subgroup U of G that is not generated by its vertex
stabilizers.
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When we say that G is a finite graph of profinite groups we mean that G contains the data

of the underlying finite graph, the edge profinite groups, the vertex profinite groups and the

attaching continuous maps. More precisely, let ∆ be a connected finite graph. The data of a

graph of profinite groups (G,∆) over ∆ consists of a profinite group G(m) for each m ∈ ∆, and

continuous monomorphisms ∂i : G(e) −→ G(di(e)) for each edge e ∈ E(∆).
The definition of the profinite fundamental group of a connected profinite graph of profinite

groups is quite involved (see [ZM89] or [Rib17, ch. 6]). However, the profinite fundamental group
Π1(G,Γ) of a finite graph of finitely generated profinite groups (G,Γ) can be defined as the
profinite completion of the abstract (usual) fundamental group Πabs

1 (G,Γ) (using here the fact
that every subgroup of finite index in a finitely generated profinite group is open [NS07, Theorem
1.1]). The fundamental profinite group Π1(G,Γ) has the following presentation:

Π1(G,Γ) = 〈 G(v), te | rel(G(v)), ∂1(g) = ∂0(g)te , g ∈ G(e), te = 1 for e ∈ T 〉, (1)

where T is a maximal subtree of Γ and ∂0 : G(e) −→ G(d0(e)), ∂1 : G(e) −→ G(d1(e)) are

monomorphisms.

In contrast to the abstract case, the vertex groups of (G,Γ) do not always embed in Π1(G,Γ).

If they do embed, (G,Γ) is called injective. If (G,Γ) is not injective the edge and vertex groups

can be replaced by their images in Π1(G,Γ), and after this replacement (G,Γ) becomes injective

(see [Rib17, § 6.4]).

The profinite fundamental group Π1(G,Γ) acts on the standard profinite tree T (defined

analogously to the abstract Bass–Serre tree) associated to it, with vertex and edge stabilizers

being conjugates of vertex and edge groups, and such that Π1(G,Γ)\T = Γ [ZM88, Proposition

3.8] or [Rib17, Theorem 6.3.5]. In particular, this applies to the cases of an amalgamated free

product G = G1 qH G2 (Γ is an edge with two vertices) and an HNN extension G = G1qH (Γ

is a loop); if (G,Γ) is injective and, in the case of an amalgamated free product, G1 6= H 6= G2,

we say that G splits over H.

Example 1.4. If G = π1(G,Γ) is the fundamental group of a finite graph of (abstract) groups

then one has the induced graph of profinite completions of edge and vertex groups (Ĝ,Γ) and a

natural homomorphism G = π1(G,Γ) −→ Π1(Ĝ,Γ). It is an embedding if π1(G,Γ) is residually

finite. In this case Π1(Ĝ,Γ) is simply the profinite completion Ĝ. Moreover, if the edge groups

G(e) are separable in G then the standard tree TG naturally embeds in the standard profinite

tree T̂G (see [Cot13, Proposition 2.5]). In particular, this is the case if edge groups are finitely

generated and G is subgroup separable.

1.2 Profinite Poincaré duality groups

In this section we collect the facts about profinite groups that we will need. The following results

are all profinite analogues of well-known results in the setting of discrete groups. Let Zp denote

the ring of p-adic integers.

Definition 1.5 [SW00]. Let p be a prime. A profinite group G of type p-FP∞ is called a
Poincaré duality group at p of dimension n if cdp(G) = n and

H i(G,Zp[[G]]) = 0 if i 6= n,

Hn(G,Zp[[G]]) ∼= Zp (as abelian groups).

We say that such a group G is a profinite PDn-group at p.
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IfG is a profinite group with cdp(G)<∞ and U is an open subgroup ofG, thenG is a profinite
PDn-group at p if and only if U is a profinite PDn-group at p (see [SW00, Remark 4.2.9]).

The proofs of our main results rely on the following lemma. In the discrete case, the
corresponding result is Strebel’s theorem [Str77]. In the profinite case, this is from [Ser97, Exercise
5(b) on p. 44]. The reader is referred to [RZ10, § 2.3] for the definition of supernatural numbers.

Lemma 1.6. Let G be a profinite PDn group at p and H a closed subgroup of G such that the
supernatural number p∞ divides [G : H]. Then cdp(H) < n.

The following theorem is the profinite analogue of the well-known fact in the discrete setting
that PDn groups cannot split over groups of much smaller cohomological dimension [DD89,
Proposition V.7.4].

Theorem 1.7. Suppose that G is a profinite PDn group at every prime p. If G acts on a profinite
tree T with edge stabilizers of cd(Ge) < n− 1, then G fixes a vertex.

Proof. By [ZM88, paragraph 2.7],

cdG 6 sup{cdGv, cdGe + 1 | v ∈ V (T ), e ∈ E(T )}.

Suppose that G acts on T without fixing a vertex. We now argue that there exists p such that
the supernatural number p∞ divides [G : Gv] for every v ∈ V (Γ), and deduce a contradiction
from Lemma 1.6.

By [Zal90, Lemma 1.5] or [Rib17, Proposition 2.4.12] we may assume that the action of G
on T is irreducible (i.e. does not contain proper G-invariant subtrees). If K is the kernel of
the action then G/K acts faithfully on T . Hence by [Zal90, Proposition 2.10 and Lemma 2.7]
or [Rib17, Theorem 4.2.10] G/K contains a free pro-p subgroup acting freely on T and therefore
so does G, whence p∞ | [G : Gv] as claimed. 2

We will apply these results to discrete groups Γ such that the cohomology of Γ is closely
intertwined with the cohomology of the profinite completion Γ̂. Serre called such groups
‘good’ [Ser97, I.2.6].

Definition 1.8. A discrete group Γ is good (in the sense of Serre) if, for any finite Γ-module
M , the natural map to the profinite completion Γ → Γ̂ induces an isomorphism H∗(Γ,M) ∼=
H∗(Γ̂,M) (where the cohomology of the profinite group Γ̂ is defined using the continuous Hom
functor).

It has been noticed in various places (e.g. [Cav12, AFW15]; cf. [GJZ08]) that 3-manifold
groups are good. For convenience, we record the result here.

Theorem 1.9. If M is a closed 3-manifold then π1M is good.

Proof. Since goodness passes to finite extensions, we may assume thatM is orientable. By [WZ10,
Proposition 4.3] and the usual Kneser–Milnor and JSJ decompositions, it suffices to prove that
Seifert fibred and hyperbolic 3-manifold groups are good. The Seifert fibred case is [WZ10,
Proposition 4.2], and the case of closed hyperbolic 3-manifolds follows from the virtually fibred
theorem [Ago13], by [GJZ08, Lemmas 3.2 and 3.3]. 2

The next result is the subject of [KZ08, Theorem 4.1] for PD3-groups, and for general n the
proof can be repeated replacing 3 by n.
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Theorem 1.10. If Γ is a good PDn group, then Γ̂ is PDn at every p.

We immediately obtain a profinite non-splitting result for good Poincaré duality groups.

Corollary 1.11. Let G be PDn group which is good in the sense of Serre. Then any action of
Ĝ on a profinite tree with edge stabilizers of cohomological dimension n − 2 has a global fixed
point.

Proof. Since G is good, Ĝ is a profinite PDn group at p for every p by Theorem 1.10, so the
result follows from Theorem 1.7. 2

Remark 1.12. The combined hypotheses of goodness and PDn apply to many examples in
dimensions 2 and 3, but are restrictive in higher dimensions.

Combining all of the above results, we obtain the following fact, which will be extremely
useful to us in what follows.

Corollary 1.13. If M is a closed, orientable, irreducible 3-manifold then any action of π̂1M
on a profinite tree with procyclic edge stabilizers has a global fixed point.

Proof. By the sphere theorem, irreducible 3-manifolds either have finite fundamental group or

are aspherical (see, for instance, [AFW15, (C.1)]). In the first case π̂1M is finite, and the result
follows from [ZM88, Theorem 2.10] or [Rib17, Theorem 4.1.8]. In the second case, π1M is PD3,
and the result follows from Theorem 1.9 and Corollary 1.11. 2

2. The Kneser–Milnor decomposition

As a warm-up, we show that the profinite completion of a 3-manifold group determines its
Kneser–Milnor decomposition. As noted above, this result can also be obtained using methods
from l2-cohomology [Wil17a]. Recall that a closed 3-manifold M is irreducible if every embedded
2-sphere bounds a 3-ball; equivalently, π1M does not admit a non-trivial splitting over the trivial
subgroup.

Proposition 2.1. Suppose that M1,M2 are closed, orientable 3-manifolds. If π̂1M1
∼= π̂1M2

and M1 is irreducible then so is M2.

Proof. If M2 were reducible then π1M2 would act on a tree with trivial edge stabilizers and

without a global fixed point, and π̂1M1
∼= π̂1M2 would act on a profinite tree with trivial edge

stabilizers and without a global fixed point. This contradicts Corollary 1.13. 2

Non-irreducible 3-manifolds admit non-trivial Kneser–Milnor decompositions. If M is a
closed, oriented 3-manifold then the Kneser–Milnor decomposition decomposes M as a connect
sum

M ∼= N1# · · ·#Nm#Fr,

where each Ni is irreducible and Fr is a connect sum of copies of S1 × S2. The Ni are uniquely
determined, in an appropriate sense. In particular, the conjugacy classes of the subgroups π1Ni

are unique up to reordering, and the integer r is also unique. The reader is referred to [AFW15,
Theorem 1.2.1] for details.
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Theorem 2.2 (Profinite Kneser–Milnor). Consider closed, orientable 3-manifolds with Kneser–
Milnor decompositions M = N1# · · ·#Nm#Fr and M ′ = N ′1# · · ·#N ′m′#Fr′ , where each Ni

and N ′j is irreducible and Fr and Fr′ are connect sums of S1×S2. If π̂1M ∼= π̂1M ′ then m = m′,

r = r′, and, up to reordering, π̂1Ni is conjugate to π̂1N ′i for each i.

Proof. Let S be the Bass–Serre tree of the corresponding decomposition of π1M , and let Ŝ be

the corresponding profinite tree for π̂1M on which π1M acts with trivial edge stabilizers. By

Corollary 1.13, each profinite completion π̂1N ′i fixes a vertex of Ŝ, and hence is conjugate into

some π̂1Nj . By symmetry, each π̂1Ni is conjugate into some π̂1N ′j . Profinite subgroups cannot be
conjugate to proper subgroups of themselves, as it would imply the same for some finite image,
and for a finite group it is clearly impossible. Therefore, it follows that m = m′ and the profinite
completions of the vertex groups are conjugate. Factoring the normal closures of these subgroups
out, we see that F̂r ∼= F̂r′ and hence r = r′ as claimed. 2

3. Cusped hyperbolic 3-manifolds

An immediate consequence of Corollary 1.11 is that, for a closed 3-manifold M , π̂1M does not
split over a subgroup of cohomological dimension 0 or 1 (e.g. a profinite free group). In this section
we prove some profinite non-splitting results for hyperbolic manifolds with toral boundary. In the
hyperbolic case, we will need a fact from [WZ17], describing the non-procyclic abelian subgroups

of π̂1N .

Proposition 3.1. Let N be a finite-volume hyperbolic 3-manifold and A a closed abelian
subgroup of π̂1N . If A is not procyclic then A is in the closure of a peripheral subgroup of
π1N , and this peripheral subgroup is unique up to conjugacy.

Proof. By [WZ17, Theorem 9.3], A is conjugate into the closure of a peripheral subgroup, and
by [WZ17, Lemma 4.5], the conjugacy class of the cusp subgroup is unique. 2

In the classical PDn setting, one handles manifolds with boundary using the theory of
PDn pairs [Dic80]. One of the upshots of this theory is that the fundamental group of an
aspherical manifold with aspherical boundary cannot split over a boundary subgroup, relative
to the collection of boundary subgroups. (This can be deduced from the results of [KR88].) No
doubt the profinite analogue of this statement can be proved by developing the theory of profinite
PDn pairs.1 We take a quicker route here: we prove the result in the cusped hyperbolic case,
using Dehn filling. First, we need to recall the definition of an acylindrical splitting.

Definition 3.2. An action of a group Γ on a tree T is k-acylindrical (for an integer k) if, for
every γ ∈ Γ r 1, the subtree fixed by γ is either empty or of diameter at most k. Likewise, an
action of a profinite group G on a profinite tree T̂ is k-acylindrical if the subtree fixed by γ̂ is
either empty or of diameter at most k, for every γ̂ ∈ G. Such an action is called acylindrical if
it is k-acylindrical for some k.

Acylindricity gives useful control over non-cyclic abelian subgroups, via the following lemma.
This was proved in [WZ17, Theorem 5.2]. (The discrete version of this fact is left as an instructive
exercise to the reader.)

1 This suggestion was carried out in [Wil18b].
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Lemma 3.3. If A is an abelian, profinite, non-procyclic group, and A acts acylindrically on a
profinite tree T , then A fixes a vertex.

We are now ready to prove the non-splitting result for hyperbolic manifolds with cusps.

Lemma 3.4. If N is a compact, orientable, hyperbolic 3-manifold with toral boundary and π̂1N
acts on a profinite tree T with each edge stabilizer either procyclic or conjugate into a peripheral
subgroup, then π̂1N fixes a vertex.

Proof. First, note that if π̂1N acts on T without fixed points then, by Lemma 1.3, after passing
to a proper open subgroup we may assume that π̂1N is not generated by vertex stabilizers.

Let the family of peripheral subgroups of π1N be P1, . . . , Pn. By Thurston’s hyperbolic Dehn
filling theorem (see, for instance, [Ago10, LM13] for modern improvements), we may choose
slopes ci ∈ Pi so that the resulting Dehn filled manifold N(c1, . . . , cn) is a closed, hyperbolic (in
particular, aspherical) manifold. Therefore,

π̂1N/〈〈c1, . . . , cn〉〉 ∼= π̂1N(c1, . . . , cn)

is a profinite PD3 group. Since 〈〈c1, . . . , cn〉〉 is generated by vertex stabilizers, π̂1N(c1, . . . , cn) acts
on a profinite tree 〈〈c1, . . . , cn〉〉\T (see [ZM88, Proposition 2.5] or [Rib17, Proposition 4.1.1]) and
still does not fix a vertex. The edge stabilizers of the latter action are procyclic. This contradicts
Corollary 1.11. 2

4. The JSJ decomposition

In this section we show that, as well as the Kneser–Milnor decomposition, the JSJ decomposition
is also determined by the profinite completion. In order to avoid ambiguity, we start by stating
the form of the JSJ decomposition we consider. In a nutshell, it is the minimal decomposition
along tori such that the complementary pieces are geometric.

Definition 4.1. Let M be a closed, orientable, irreducible 3-manifold which is not a torus
bundle over the circle. Let T ⊆M be an embedded disjoint union of essential tori such that the
connected components of M r T are each geometric – that is, either Seifert fibred or admitting
hyperbolic or Sol-geometry. Such a union T with the smallest number of connected components
is called the JSJ decomposition of M .

The existence of the JSJ decomposition follows from the work of Jaco, Shalen and Johannson
together with Perelman’s proof of the geometrization conjecture; see [AFW15, § 1.6, § 1.7] for
details. The tori are unique up to isotopy. We follow Wilkes’s elegant terminology [Wil18a], and
use the term minor to denote those components of MrT that are homeomorphic to the twisted
interval bundle over the Klein bottle; the remaining components we call major. If two minor
components are adjacent then their union is virtually a torus bundle over a circle, and so admits
either Euclidean, Nil- or Sol-geometry, which contradicts the hypothesis that T was minimal.
Therefore, every edge adjoins at least one major vertex.

The submanifold T induces a graph-of-spaces decomposition of M , and hence a graph-

of-groups decomposition of π1M and a profinite graph-of-groups decomposition of π̂1M (see
Example 1.4). The Bass–Serre trees of the latter are denoted by TM and T̂M , respectively.
Crucially, these trees turn out to be acylindrical, in the sense of Definition 3.2.
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Proposition 4.2. For M a closed, orientable, irreducible 3-manifold, the JSJ tree TM and the
profinite JSJ tree T̂M are both 4-acylindrical.

Proof. In [WZ10] the authors showed that the corresponding decomposition of π1M is 4-
acylindrical and fits into Example 1.4. In [HWZ13], the authors showed with Hamilton that

the corresponding profinite decomposition of π̂1M is a 4-acylindrical injective graph of profinite
groups (see also [WZ17, Lemma 4.5]). 2

We are now ready to state our main theorem.

Theorem 4.3. If M,M ′ are closed, orientable, irreducible 3-manifolds and

f : π̂1M
∼=
→ π̂1M ′

is an isomorphism, then there is an f -equivariant isomorphism

φ : T̂M → T̂M ′

of the corresponding profinite Bass–Serre trees. In particular, the underlying graphs of the JSJ
decompositions of M and M ′ are isomorphic, as are the profinite completions of the fundamental
groups of the corresponding pieces.

Consider a vertex space N of M . The next three lemmas show that π̂1N must act with a
fixed point on T̂M ′ . We start with the hyperbolic case.

Lemma 4.4. Consider N a compact, hyperbolic 3-manifold with (possibly empty) toral

boundary. If π̂1N acts acylindrically on a profinite tree Ŝ with abelian edge stabilizers then
π̂1N fixes a unique vertex.

Proof. If N is closed then every abelian subgroup of π̂1N is procyclic [WZ17, Theorem D] and
the result follows from Corollary 1.13.

Suppose therefore that N has non-empty toroidal boundary. By Proposition 3.1 every edge
stabilizer is either procyclic or conjugate into a peripheral subgroup, and therefore π̂1N fixes a
vertex by Lemma 3.4.

Uniqueness follows from [ZM88, Corollary 2.9] or [Rib17, Corollary 4.1.6], since π̂1N is non-
abelian and edge stabilizers are abelian. 2

We move on to the major Seifert fibred case.

Lemma 4.5. Consider N a compact, major Seifert fibred 3-manifold with (possibly empty) toral

boundary. If π̂1N acts acylindrically on a profinite tree Ŝ with abelian edge groups then π̂1N
fixes a unique vertex.

Proof. The subgroups of π̂1N which are isomorphic to Ẑ2 each fix a vertex by Lemma 3.3. Thus
the maximal procyclic normal subgroup C of π̂1N fixes a vertex.

Suppose to the contrary π̂1N does not fix a vertex. By [Zal90, Lemma 1.5] or [Rib17,

Proposition 2.4.12], there exists a unique minimal π̂1N -invariant subtree D̂ of Ŝ, which is
infinite. Now by [ZM88, Theorem 2.12] or [Rib17, Proposition 4.2.2], C acts trivially on D̂,
which contradicts the acylindricity of the action.

Uniqueness again follows from [ZM88, Corollary 2.9] or [Rib17, Corollary 4.1.6]. 2

The case of minor Seifert fibred vertex follows immediately from [WZ17, Theorem 5.2]
and [ZM88, Corollary 2.9] or [Rib17, Corollary 4.1.6].
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Lemma 4.6. Consider N a minor Seifert fibred 3-manifold. If π̂1N acts acylindrically on a
profinite tree Ŝ with abelian edge groups then π̂1N fixes a unique vertex.

We next classify the fixed point sets of Ẑ2 subgroups of π̂1M . First, we need an analysis
of their normalizers in vertex stabilizers. We start with the hyperbolic case, in which case
normalizers coincide with centralizers.

Lemma 4.7. Let N be a compact, orientable, hyperbolic 3-manifold with toral boundary, and
H ∼= Ẑ2 a subgroup of π̂1N . Then N

π̂1N
(H) = C

π̂1N
(H).

Proof. By [WZ17, Theorem 9.3], H is conjugate into the closure of a cusp subgroup, and
by [WZ17, Lemma 4.5], that cusp subgroup is malnormal. The result follows. 2

We next treat the case of a major Seifert fibred manifold.

Lemma 4.8. Let N be a compact, orientable, major Seifert fibred 3-manifold with toral
boundary, and H ∼= Ẑ2 a subgroup of π̂1N conjugate to the closure of the fundamental group of
a boundary component. Then N

π̂1N
(H) = C

π̂1N
(H).

Proof. The fundamental group π1N is torsion-free of the form

1 → Z → π1N → π1O → 1,

where π1O is a Fuchsian group and Z is infinite cyclic (and not necessarily central). Since Seifert
fibred 3-manifold groups are LERF [Sco78, Sco85] we have a corresponding short exact sequence
of profinite completions,

1 → Ẑ → π̂1N
f
→ π̂1O → 1.

Then C
π̂1N

(H) contains Ẑ and centralizes it. So f(C
π̂1N

(H)) = C
π̂1O

(f(H)) and f(N
π̂1N

(H)) =

N
π̂1O

(f(H)). Hence it suffices to show that C
π̂1O

(f(H)) = N
π̂1O

(f(H)). We may assume

that H is the closure of the fundamental group of a boundary component; then f(H) is
the closure of a peripheral infinite-cyclic subgroup C of π1O. Since Fuchsian groups are
conjugacy separable [FR90] we deduce that every-finite index subgroup of π1O is conjugacy

separable. Then Cπ1O(C) = C
π̂1O

(f(H)) by [Min12, Corollary 12.3], and Nπ1O(C) = N
π̂1O

(f(H))

by [CZ13, Lemma 2.3 combined with Theorem 2.14]. But Nπ1O(C) = Cπ1O(C), so C
π̂1O

(f(H)) =

N
π̂1O

(f(H)) as required. 2

Next, we classify the possible fixed subtrees for Ẑ2 subgroups of π̂1M .

Lemma 4.9. Let M be a closed, orientable, irreducible 3-manifold. Consider the action of a

subgroup H ∼= Ẑ2 of π̂1M on T̂M . One of the following holds.

(i) The fixed point set of H is a vertex with Seifert fibred stabilizer.

(ii) The fixed point set of H consists of exactly one edge.

(iii) The fixed subtree of H consists of exactly two edges; the central vertex has a minor Seifert
fibred stabilizer, and the other two vertices are major.

Furthermore, if the centralizer C
π̂1M

(H) is properly contained in the normalizer N
π̂1M

(H), then

we are in case (i) or case (iii).
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Proof. By Lemma 3.3 and Proposition 4.2, H fixes a non-empty subtree. Recall that every edge of
T̂M adjoins a major vertex, and that every minor vertex of T̂M adjoins exactly two edges. If H
stabilizes an edge e and an adjacent major vertex v then, by Lemmas 4.7 and 4.8, e is the unique
edge incident at v stabilized by H. It follows that the fixed tree of H is of one of the three
claimed forms.

We now prove that, in case (ii), N
π̂1M

(H) = C
π̂1M

(H). Indeed, N
π̂1M

(H) preserves the fixed

subtree of C
π̂1M

(H), and so if H fixes a unique edge, N
π̂1M

(H) is contained in an edge stabilizer,

hence is abelian, and so N
π̂1M

(H) = C
π̂1M

(H). 2

We now have enough information to construct a map φ. To start with, it will only be a map
of abstract, unoriented graphs.

Lemma 4.10. Consider closed, orientable, irreducible 3-manifolds M,M ′, and let f : π̂1M →

π̂1M ′ be an isomorphism. Then there exists an f -equivariant morphism of graphs

φ : T̂M → T̂M ′ .

Note that, here, we only claim that φ is a map of abstract, non-oriented graphs. This map may
in principle send edges to either edges or vertices.

Proof. For brevity, we write G = π̂1M and Ŝ = T̂M ′ , and let G act on Ŝ via f . Let e be an
edge of T̂M with stabilizer Ge ∼= Ẑ2. Let u1, u2 be the adjacent vertices of T̂M . Lemmas 4.4–4.6
together guarantee the existence of unique vertices v1, v2 of Ŝ such that Gui ⊆ Gvi for both i.

We claim that v1 and v2 are either equal or adjacent. Suppose therefore that v1, v2 are at
distance greater than 2 (possibly infinite). Then Ge stabilizes the geodesic [v1, v2] (see [ZM88,
Corollary 2.9] or [Rib17, Corollary 4.1.6]) and therefore, by Lemma 4.9, v1, v2 are at distance
precisely 2, are both adjacent to a minor vertex w, and CG(Ge) is properly contained in NG(Ge).
Therefore, by Lemma 4.9, e is adjacent to a minor vertex; without loss of generality, we may
assume that u1 is major, Gu1 ⊆ Gv1 , and that u2 is minor and Gu2 ⊆ Gv2 . But Gw also normalizes
Ge, so Gw ⊆ Gu2 ⊆ Gv2 . This implies that Gw stabilizes an edge, which is absurd because edge
stabilizers are abelian. Therefore, v1 and v2 are either equal or adjacent. If they are equal to a
vertex v, we set φ(e) = v. If they are adjacent, we set φ(e) to be the image of the unique edge
joining them. This completes the construction of the map φ : T̂M → Ŝ, which is equivariant by
construction. 2

We are now ready to complete the proof of the main theorem.

Proof of Theorem 4.3. Applying Lemma 4.10 twice, we obtain maps of graphs

φ : T̂M → T̂M ′ , ψ : T̂M ′ → T̂M ,

where φ is f -equivariant and ψ is f−1-equivariant. Equivariance implies that

gψ ◦ φ(x) = ψ ◦ φ(gx)

for all g ∈ π̂1M and x ∈ T̂M , whence the stabilizer of x is contained in the stabilizer of ψ ◦ φ(x).
Since vertex stabilizers stabilize unique vertices, it follows that ψ ◦ φ is equal to the identity
on vertices, and hence on the whole of T̂M . In particular, φ and ψ induce isomorphisms of the

finite quotient graphs π̂1M\T̂M and π̂1M ′\T̂ ′M ; we may therefore choose consistent orientations

on these graphs, which lift to equivariant orientations on the profinite trees T̂M and T̂M ′ , which
are respected by φ and ψ; this also implies continuity of φ and ψ. 2
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