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Abstract

Sufficient conditions are obtained for the existence of a globally asymptotically stable
strictly positive (componentwise) almost-periodic solution of a Lotka-Volterra system
with almost periodic coefficients.

1. Introduction

This article is concerned with the derivation of a set of "easily verifiable"
sufficient conditions for the existence of a globally asymptotically stable strictly-
positive (componentwise) almost-periodic solution of the Lotka-Volterra system

dx.(t)

= ( - 0 0 , 0 0 ) ; / = 1 , 2 , . . . , n, (1.1)

where bt, atj (/, y = 1,2,...,n) are nonnegative almost periodic functions de-
fined for t G (-00, oo). In mathematical ecology, the system (1.1) denotes the
dynamics of an n-species population system, in which each individual competes
with all others of the system for a common pool of resources. The assumption of
almost-periodicity of the parameters bt, at] (/', j = 1 ,2 , . . . ,«) in (1.1) is a way of
incorporating the time dependent variability of the environment, especially when
the various components of the environment are periodic with not necessarily
commensurate periods (e.g. seasonal effects of weather, food supplies, mating
habits, harvesting etc.). Mathematically, (1.1) will denote a generalisation of an
autonomous and a periodic system; our result will, as a special case, provide
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Ul Almost-periodic Lotka-Volterra system 347

results corresponding to such special cases of (1.1). We refer to Fink [1] or
Yoshizawa [7] for the relevant definitions and properties of almost-periodic
functions.

We shall need the following preparation; let R and Rn respectively denote the
set of all real numbers and the n-dimensional real Euclidean space; R* will
denote the nonnegative cone of Rn. Since almost-periodic functions defined on R
are bounded, we define the constants b\, b", a\p a," (i,j = 1,2, . . . ,«) by the
following:

inf b,(t) = b\\ sup b,(t)

= fl,'y; s u p a ( / ) = a ? .
R

infa

We shall study the almost-periodic system (1.1) with the following assumption
on the coefficients of (1.1);

b\ > 0; a\, > 0, (1.2)

(1.3)

Since the solutions of (1.1) corresponding to nonnegative initial conditions
remain nonnegative subsequently, it will follow that

dx, , , ,
* > / „ , / = 1 , 2 , . . . , / ! , (1.4)

as a consequence of which we will have

0 < *,(/„) < *,"/*,', = x? =* *,(') < W/a1,,, i = 1,2,..., »; / > t0.

(1.1) and (1.5) together lead to

(1.5)

ijibJ/a'^-aiA, i= 1,2, ..., (1.6)

Now (1.2), (1.3) and (1.6) lead to

(./ V U ( LU / I >

»/- La,j\bj'ajJ,
y - l

x,{t)>x'i f o r / > / „ , / = 1 , 2 , . . . , n . (1.7)
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From the foregoing preparation we have the following:

LEMMA 1.1. Assume that bt, atj (/', j = 1,2,..., n) are scalar nonnegatiue almost
periodic functions defined on R such that (1.2) and (1.3) hold. Then the set S
defined by

S= { x = (xl,x2,...,xn) e R , , | x * « * , < * • ; i = 1 , 2 , . . . , « } (1.8)

where

x* = min JC'; x* = min x" (1.9)
1 < (' < n 1 <; ^ n

is invariant with respect to (1.1).

2. Existence of an almost-periodic solution

We shall note the following facts on almost-periodic functions before formulat-
ing our existence theorem.

DEFINITION 2.1. A function f(t, x), where / is an w-vector, / is a real scalar
and x is an w-vector, is said to be almost periodic in / uniformly with respect to
x G X c Rn, if f(t, x) is continuous in t e R and x G l , and if for any e > 0, it
is possible to find a constant l(e) > 0 such that in any interval of length /(e) there
exists a T such that the inequality

m

»/(/ + r ,x ) -f(t,x)\\ = I \f,{t + r,x) =f,{t,x)\ < e (2.1)
1 = 1

is satisfied for all / e (-oo, oo), x e X. The number T is called an e-translation
number of/( / , x).

Let { Xj} denote the set of all real numbers such that
lim T~l [Tf(t,x)exp(-i\ t) dt * 0 for x e X; i = i/-f. (2.2)

T— oo •'0

It is known that when the set X is separable, the set of numbers { Ay } in (2.2) is
countable (Yoshizawa [7], page 6). The set {Ef/iyA,} for all integers N and
integers ny is called the module of / ( / , x).

The following result concerned with module containment will be used in the
proof of our existence theorem below.

MODULE CONTAINMENT THEOREM (Yoshizawa [7], page 18). Let f(t,x) and
g(t, x) be almost periodic in t uniformly for x e D c Rn. If for any compact set
S c D and for any sequence of real numbers {tk} having a limit as k —> oo (the
limit being finite or +oo) for which {/(/ + Tk, x)} is uniformly convergent on
R X 5, {g(t + Tk, x)} is also uniformly convergent on R X S then the module of
g(t, x) is contained in the module off(t, x).
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[ 4 ] Almost-periodic Lotka-Volterra system 349

W e can n o w formulate our existence theorem.

T H E O R E M 2 .1 . Assume that the almost-periodic parameters b,, atJ (/, j =
1 , 2 , . . . , « ) of (1.1) satisfy (1.2)—(1.3). Furthermore assume that there exists a
positive number ju. such that

inf a,,{t) > i(supaj,(t))+ii, i = l , 2 , . . . , « . (2.3)

/je system (1.1) /ias a strictly positive (componentwise) almost-periodic
solution, say w(t) = w^t),..., wn(t), t e R, wtoe module is contained in that of

f(t,x) = [f1(t,xl,...,xn), f2(t,xu...,xn),...,fn(t,x1,...,xn)}

where

i=l,2,...,n;(xux2,...,xn)(=S. (2.4)

PROOF. The set S defined by (1.8)—(1.9) is compact in Rn. Let {TA} be any
sequence of real numbers such that Tk —> 00 as k -* 00 and

n

E\fi(t + Tk,x1,...,xn)-fl(t,x1,...,xn)\^O as fc^oo (2.5)
< = i

uniformly in (xv ..., xn) e 5 for / e (-00, 00). For any real number /?, let ko(ft)
be the smallest value of k such that rko + /Z > t0. Since the invariance of S
implies that any solution of (1.1)

{Xl(t + Tk,to,Xl(to)),x2(t + rk,t0,x2(t0)),...,xn(t + Tk,t0,xn(t0))} e S

for all / > fi and k > A:0(j8) whenever { X ^ Q ) , . . . , nn(tQ)} e S, our first task in
the proof is to show that the sequence

( * i ( ' + W o - * i ( ' o ) ) > •••>*,.(' + T*,'o>*,.('o))}> k 7z ko(p),

converges to a continuous bounded function say w(t) — {wl(t),...,wn(t)} de-
fined for t e [ / ? , 00) such that wt(t) e [x*, x*], t e [ /? , 00), / = 1,2, . . . ,« and
the convergence is uniform on all compact subsets of [/?, 00). Since x* and x*
are independent of /?, it is enough to show that

{*i(t + W o , *i( 'o))>--•>*„(' + T * . ' o ^ n ( ' o ) ) } , k > ko(p),

is a Cauchy sequence on compact subsets of [/3, 00).

Let U be any compact subset of [/?, 00), and let e be any arbitrary positive
number. Choose an integer no(E,fi) > ko((i) so large that for m > k ^ /io(e, yS)

https://doi.org/10.1017/S0334270000004975 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000004975


350

and all t e (-00

x* '

,00)

E M ' + T,

n n

K. Gopalsamy

n) - b,{t + rk) | < (eiixt)/(4x*),

f Tm) - a.jO + Tk) | < (M^*)/(4

(s,

(2-6)

tk - t0)] < {e/2x*). (2.8)

Denote x,(/,/0, JC,(/0)) by *,(/) for brevity, and consider a function v(s)
defined by

v(s) = v(x(s), x(s
n

= E (2.9)
/ - I

where x(t) = {x^t) , . .. , *„(/)} denotes a solution of (1.1) with
(xi('o)> • • •» ^0(^0)} e ^- The invariance of S for (1.1), together with the elemen-
tary mean value theorem of differential calculus, implies

1=1

(1/**) £ \x,(s) - x,(s + rm -
1 - 1

(2.10)

Calculating the right derivative D+u of v along the solutions of (1.1) and
simplifying

D+v(s) = c,(i) - x,(s + rm - rk)] }
1 - 1

d[\OgXi(s)] d[\OgX,(s +
ds ds

1 = 1

E fl/y(^)|-«y( - T J |
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+ E I k ( j ) - a>As +T- - T*)h(* +T- -T*) <2-n)
,=iy=i

n

< -jux1>t;(jc(5)>x(i + rm - rk)) + £ |fe,(-s) ~ bi(s + Tm- rk)\

n n

Let us set s — Tk = a; then we have from (2.6)-(2.7) that
n n n

E \t>,{s) - b,(s + rm-Tk)\+ x* E E |a,y(-y) - a o ( j + rm - rk)\

( - 1

n n

*). (2.13)

Now an integration of (2.12) over (f0, t — rk) together with (2.13) leads to

o(x(t + rk), x{t + rm)) < o(x(t0), x(t0 + rm - rk))exp[-tixm(t + tk- t0)]

+ [(liex,)/(2x*)]/(nxj

< [(2jc;)A*]exp[-MJc*(/ + /* - r0)] +(e/2x*)

< (e/x*) on using (2.8), (2.10) (2.14)

for m > k > no{e,P) and for all / e f/c[)8, oo). Thus we have from the
definition of v and (2.14) that

E |logx,(/ + T J - logx,(? + T J I < (eA*) (2.15)
i-i

a n d hence us ing xm < JC,-(O < oc*, / = 1,2, . . . , « ; / > /0,

E \Xi(t + rk)-x,(t + T J | < £ for all l e l / c [ ^ , o o ) ,
/=i

m> k> no{e,P). (2.16)

The existence of a function w(r) = {wl(t),...,wn(t)} defined on [ft, oo) such
that w,.(0 G [x«, x*], / = 1,2, . . . ,«; / e [0, oo) follows from (2.16) and the fact
that Xj(t) G [x+, x*], i = 1,2,. . . , n for / > t0. Since )8 is arbitrary, w is in fact
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defined on (-00, 00) and hence we have

[7]

Xj(t + rk) -» w,(/) as k -» 00 uniformly on compact subsets of (-00, 00),

1 = 1,2, . . . , ii. (2.17)

Our next task is to show that w: R -> 5 is differentiable and is a solution of
(1.1). Since x(t) = {xr(t),.. -,xn(t)} satisfies (1.1) we have

Tk) ~ JtX,{ )

/ = • !

(2.18)

, . . . , Xn{t + Tm))|

where /, (i = 1,2,...,/i) are as in (2.4). Since x(t + Tk) = x^t + rk),...,
xn(t + Tk) G S for large Tt for t in each compact subset of (-00, 00) there exists
an integer n1(e)> 0 such that if m > k > nx{e) then for any e > 0,

1 = 1 (2.19)

rk))\

Similarly since x,(? + 7^)6 5 and x,(? + rm) G 5 for /' = 1,2,..., « there is an
integer «2(e) > 0 such that for large enough m, k, such that m > k > M2(

£)>
 w e

have

E \fXt + Tm>xl(* + Tk)>--->Xn(* + T * ) )

- / , ( / + TmtX(t + 7m), . . . , Xn(t + Tm))| < (6/2).

Thus if m > k > «0(£) = max{n!, n2}, we have

(2.20)

(2.21)

which shows that

lim -rx,(t + rk) exists for / = 1 ,2 , . . . ,«
k-* x (*t
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[8] Almost-periodic Lotka-Volterra system 353

uniformly on all compact subsets of (-00, 00). Thus we have

lim lim * I ( '
k-*oo h—'oo

, U m l i m

/i-«0 A: —0

w,(t + h) - wA

showing that (since the left side of (2.22) exists) w(- (/ = 1,2,. . . , /i) is differentia-
ble. Furthermore we have from (2.22) that

- ^ - = l im \fi(t + -rk,xl{t + 'rk),...,xn{t + rk))

-f,{t + Tk,Wl(t),...,Wn(t))

+ fXt + rk,Wl(t),...,wn(t))]

= f,(t,wl(t),...,wn(t)); / = 1 , 2 , . . . . / i , (2.23)

by the uniform almost periodicity of fx, f2, . . . , / „ on R X 5 and hence w(t) =
(wj(/), • • •» wn(/)) is a solution of (1.1).

In order to complete the proof, we have to show that w(t) = {w^t),..., wn{t)}
is an almost-periodic function whose module is contained in that of
{ f^t, * ! , . . . , xn), f2(t, xl,x2,...,xn),..., fn(t, xx,..., xn)} for (xj, x2,..., xn)
G S. For this purpose it is in fact sufficient (by the module containment theorem)
to show that for any sequence of real numbers { rk} for which

{ f i ( ' + T k , x u . . . , x n ) , f 2 ( t + T k , x 1 , . . . , x n ) , . . . , f n ( t + r k , x 1 , . . . , x n ) }

converges uniformly on R for all (xv. . . , j c n ) e S, the sequence {wi(t + rk),
...,wn(t + rk)) converges uniformly on R where rk tends to a finite number or
±00 as k -* 00.

In the case where Tk -» T ¥= ± 00 as k -» 00, we have w,(t + rk) -» w,(/ + T) ,
/ = 1,2, . . . , n uniformly on R as k -» 00. Let us suppose T^ -» 00 as k -* 00. For
any e > 0 there exists an integer no(e) such that if m > k > /?0(e) t n e n

n

E |6,(r + T J - b,(t + TM) I < (e/4x*)x^, (2.24)
1 = 1

n n

^ E I |flo-(/ + T J - a,j(t + rm)\< (e/4x*)nx,, (2.25)
,•=1 j = i
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n(2x*/x*)exp[-px,Tk] < (e/2x*). (2.26)

Consider the function v(w(s),w(s + rm - T J ) for s e [t, t + rk] defined by

n

v(w(s),w(s + rm- rk))= E l logw^i) - l o g w , ( j + T m - T J |. (2.27)
/ - I

Using the fact w: R -» S and w is a solution of (1.1), calculate the right derivative
D+vof v;

n

D + v(w(s),w(s + rm - T J ) = E (sign[w,(i) - w,.(s + Tm - T^)] }
1 = 1

-Tfc) 1Tm- Tk

* w,(j) ds wt(s + Tm-Tk)

n n

E l / \ / \ I . V™* I I / \ L ( i \ I

| U ; I C I U 7 I P - I - T T 1 - 1 - 7 I / ) I C I / 7 I V - T - T T , II wi\i ) WI\:I ' Tm k! I ' i—i I"/'V / ui\* ~ 'm ' k I \

% \~* \~* I { \ ( _L "\ I ^0 08^

1 = 1
n n

+ x* E E !«,,(*) - a o ( j + r m - rk)\
, = 1 7 - - 1

If we set j — TA = a then we have from (2.29),

D + v(w(s),w(s+Tm-rk))

< -HX*v(w(s),w(s + rm - rk))

-flXmu(w(s),w(s + Tm - Tk))

*)]. (2.31)
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[ io 1 Almost-periodic Lotka-Volterra system 355

Integrating (2.31) over (t, t + Tk)

< e->"*o{w(t)Mt + Tm~ TJ) +(e/2x*) (2.32)

<S e-»*^ £ |logw(.(0 - logM/,(r + rm - TA)|+(e/2jc*)

< e-"*«T* E K ( 0 - w,( ' + Tm - Tfc)|(lA*) + (e/2**)

< (eA*)- (2-33)

Since

i;(w(r + T J , W ( / + T J ) > E K(r + rk) - w,(t + Tm)]A* (2-34)

we have from (2.33) that

n

E \w,0 + rk) -w^t + rm)\< e for w > k> no(e)
/-I

which show that the sequence {^(z + Tk),...,wn(t + Tk)} converges uniformly
on R. By a similar argument the above conclusion is also valid when rk -» -oo as
fc -> oo. Thus the uniform convergence of the sequence {wr(t + ik),...,
w>n(r + T A ) } as k -* oo on R follows and this completes the proof of the theorem.

C O R O L L A R Y . Suppose b{, atJ (i,j= 1 , 2 , . . . , « ) / « ( 1 . 1 ) are periodic with a
common period say T > 0. 77ien // (1.2), (1.3) a/irf (2.3) hold, the system (1.1) w/7/
/iaue a periodic solution w(t) = { w, ( f ) , . . . , wn (f)} of period T such that

w , ( / + T ) = w , ( 0 . i e R ; / = l , 2 , . . . , n .

PROOF. Proof follows from that of Theorem 2.1 if we choose T^ = KT (K =
0 , 1 , 2 , . . . ) and note that

* , ( ' + KT) - w , (0 - 0 a s * - » oo; / = l , 2 , . . . , / i ; r e R,

x,.(r + ( A " + 1) / ) -w,(t)-*0 asK^> oo; / = l , 2 , . . . , n ; r e R,
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implying that

w,(t+ T) = w,(t); / = l ,2 , . . . , / i ; r e R.

3. Global asymptotic stability

By definition we say that an almost-periodic solution, say w(t) =
{w^t),... ,wn(t)} of (1.1) is globally asymptotically stable (or attractive) if and
only if every other solution x(t) = {xt(t),..., xn(t)} with JC,(O) > 0, /'=
1,2, ...,n is defined for all t > 0 and satisfies

l im \w,(t) ~ x,(t)\= 0; i = l,2,...,n. (3.1)
I— 00

A consequence of such a global asymptotic stability is that there cannot be
another strictly positive almost-periodic solution of (1.1).

T H E O R E M 3.1. Suppose the almost-periodic coefficients b,, atJ (i, j = 1 , 2 , . . . , « )

satisfy (1.2) and (1.3) and the following

(3.2)

for some positive number ju. 77ie« (1.1) has an almost-periodic solution (with strictly
positive components) which is globally asymptotically stable.

We will omit the proof since the proof is identical with that of Theorem 3.1 of

[3].
Under condition (3.2), the almost-periodic solution w(t) = {w^t),.. -,wn(t)}

of (1.1) enjoys a somewhat strong form of stability, even if the coefficients of (1.1)
are subjected to a class of perturbations. We note (see Yoshizawa [7], page 17)
that if a function b: R -> R is almost periodic, then H(b), the "hull of b" is
defined as follows:

(g\g: R -» R and g(t) = lim b(t + rk) for some sequence
H(b)={ *-» (3.3)

[ rk of real numbers, the limit being uniform i n ; G R.

By Theorem 2.2 of Yoshizawa [7, page 10], members of the hull of almost-peri-
odic functions are themselves almost periodic.
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1121 Almost-periodic Lotka-Volterra system

A system of the form

357

J=l

I; t>

where

(3.4)

(3-5)

is known as a system from the hull of (1.1). As a consequence of the definition of
the hull in (3.3) and (3.5) we shall have

inf B,(t) = b',; supB,(t) = b'i,

' e R ,eR -

and hence the coefficients of (3.4)-(3.5) satisfy the same conditions as (1.2), (1.3)
and (3.2). It will then follow from theorems (2.1) and (3.1) that solutions of
(3.4)-(3.5) with y,(tQ) >0,i = l,2,...,n will have the following property:

y,(t)>0 f o r / > f o ; i = 1 ,2 , . . . ,n ,
n

E y, ( 0 remains bounded for t > /0.

DEFINITION. A solution x(t) = {x^t),• ••, *„(')}> ( 6 (0 e R of (1.1) is said
to be stable under perturbations from the hull of (1.1) if the following holds: let
.HO = {^(O. •••»>'«(')} b e a ny solution of (3.4)-(3.5) such that y,(t0) > 0,
/ = 1,2,...,«, and for some positive constants Bu B2, Bx < y,{t) < B2, t > t0,
i = 1,2,..., n. Then, given any e > 0, there exists a constant 8 > 0 such that

sup\bl(t)-B,(t)\<8

E E suP|fl/y(o-V)|<«
R

, = 1

|
IER

1 = 1

for t > t0. (3.6)

We can now formulate the following result which shows that all solutions of
(1.1) are stable under perturbations from the hull of (1.1).
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THEOREM 3.2. Assume that the conditions of Theorem (3.1) hold. Then every
strictly positive solution of (1.1) (including its unique almost-periodic solution) is
stable under perturbations from the hull of (1.1).

PROOF. Let x(t) = {Xl(t),...,xn(t)} and y(t)= [y^t),..., yn(O} be any
two strictly positive solutions of (1.1) and (3.4)-(3.5) respectively for / > t0 e R.
Let p\, /?2 be constants such that

0! < JC,.(O<02, / = 1 2 „• , > , (37)

Consider now a function F(/) = V(x(t), y(t)) defined by

V(x(t), y(t)) = t \logx,(t) - log y,(t) \, t>to<ER. (3.8)

It is easy to see that

02 , = 1

< — Y \x (t) - v(t)\ t>t G R (3 9)
01 , = 1

Calculating the right derivative D+V of F and using (1.1) and (3.4) we derive
(after simplification) that

i - i i = i
n n

7 - 1 7 - 1
n

/-I

An integration of (3.9) over [/0, t] with an application of (3.8) leads to

7T E k(0-M0l< V(x(t),y(t))^V(x(t0),y(t0))
Pi , = i
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[141 Almost-periodic Lotka-Volterra system 359

and hence

£k(O-.v,

+ -4-[£suPM0-*,(0l

(3-11)
J

Now for any e > 0 if one chooses a 8 > 0 such that

then (3.6) will be satisfied and this completes the proof.

4. Some comments

The sufficient conditions obtained here provide a significant generalisation of
the author's results in [2], [3]. Periodic Lotka-Volterra systems have been consid-
ered by several authors; however almost-periodic Lotka-Volterra systems seem to
have been not considered in the literature so far. Our conditions of Theorem 3.1
(although sufficient) are easy to verify and offer global asymptotic stability. For
some remarks regarding the evolutionary and ecological significance of the
variability of environment we refer to [4]. For a discussion of the ecological
implication of the condition (3.2) we refer to [5], [6]. In a forthcoming analysis we
will consider almost periodic systems of the type (1.1) including infinite time
delays.
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