Introduction

Why adopt the nonparametric Bayesian approach for inference? The answer lies in the
simultaneous preference for nonparametric modeling and desire to follow a Bayesian proce-
dure. Nonparametric (and semiparametric) models can allow one to avoid the arbitrary and
possibly unverifiable assumptions inherent in parametric models. Bayesian procedures may
be desirable because of the conceptual simplicity of the Bayesian paradigm, philosophical
reasons.

1.1 Motivation

Bayesian nonparametrics concerns Bayesian inference methods for nonparametric and
semiparametric models. In the Bayesian nonparametric paradigm, a prior distribution is
assigned to all relevant unknown quantities, whether finite or infinite dimensional. The pos-
terior distribution is the conditional distribution of these quantities, given the data, and
is the basis for all inference. This is the same as in any Bayesian inference, except that
the unknown quantities or parameters may be infinite dimensional. A model completely
specifies the conditional distribution of all observed, given all unobserved quantities, or
parameters, while a prior distribution specifies the distribution of all unobservables. The
posterior distribution involves an inversion of the order of conditioning and gives the dis-
tribution of the unobservables, given the observables. Existence of a regular version of
the posterior distribution is guaranteed under mild conditions on the relevant spaces (see
Section 1.3). From the Bayesian point of view, random effects and latent variables are unob-
servables and are treated in the same way as the unknown parameters used to describe the
model. Distributions of these quantities, often considered as part of the model itself from the
classical point of view, are part of the prior.

1.1.1 Classical versus Bayesian Nonparametrics

Nonparametric and semiparametric statistical models are increasingly replacing paramet-
ric models as a way to gain the flexibility necessary to address a wide variety of data. A
nonparametric or semiparametric model involves at least one infinite-dimensional param-
eter and hence may also be referred to as an “infinite-dimensional model.” Indeed, the
nomenclature “nonparametric” is misleading in that it gives the impression that there are
no parameters in the model, while in reality there are infinitely many unknown quantities.
However, the term nonparametric is so popular that it makes little sense not to use it. The
infinite-dimensional parameter is usually a function or measure. In the canonical example of
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a nonparametric model, the data are a random sample from a completely unknown distribu-
tion or density. More generally, models may be structured and data non-i.i.d., and functions
of interest include the cumulative distribution function, density function, regression func-
tion, hazard rate, transition density of a Markov process, spectral density of a time series,
response probability of a binary variable as a function of covariates, false discovery rate as
a function of nominal level in multiple testing and receiver operating characteristic function
between distributions. Non-Bayesian methods for the estimation of many of these functions
are well understood, and widely accepted statistical procedures are available. Bayesian esti-
mation methods for nonparametric problems started receiving attention over the past four
decades.

Different people may like Bayesian methods for different reasons. To some the appeal
is philosophical. Certain axioms of rational behavior lead to the conclusion that one ought
to follow a Bayesian approach in order not to be irrational (see Bernardo and Smith 1994).
Although the axioms themselves can be questioned, the impression that Bayesian meth-
ods are logically more consistent than non-Bayesian methods is widespread. In particular,
expressing uncertainty in probabilities is more satisfying than using criteria that involve
integration over the sample space — that is, bother about samples that could have, but have
not, realized. Others justify the Bayesian paradigm by appealing to exchangeability and de
Finetti’s theorem (de Finetti 1937). This celebrated theorem concludes the existence of a
“random parameter” instead of a “fixed parameter” based on a “concrete” set of observa-
tions and a relatively weak assumption on distributional invariance (see Schervish 1995).
However, this argument leads to subjective specification of a prior, which is regarded as dif-
ficult. Decision theorists may be Bayesians because of the complete class theorem, which
asserts that for any procedure there is a better Bayesian procedure, and that only the lat-
ter procedures are admissible, or essentially so (see Ferguson 1967). While this could be a
strong reason for a frequentist to take the Bayesian route, there are difficulties in that the
complete class theorem holds only when the parameter space is compact (and the loss func-
tion is convex) and that the argument does not say which prior to choose from among the
class of all priors. People who believe in asymptotic theory might find Bayesian methods
attractive for their large-sample optimality. However, many non-Bayesian procedures (most
notably, the maximum likelihood estimator, or MLE) are also asymptotically optimal, hence
the argument is not compelling.

Although the specification of a prior distribution may be challenging, the Bayesian
approach is extremely straightforward, in principle — the full inference is based on the pos-
terior distribution only. All inference tools are produced in one stroke, and one need not
start afresh when the focus of attention changes from one quantity to another. In particular,
the same analysis produces an estimate as well as an assessment of its accuracy (in terms
of variability or a probable interval for the location of the parameter value). The Bayesian
approach produces a “real probability” on the unknown parameter as a quantification of
the uncertainty about its value, which may be used to construct a “credible interval” or test
with a clear interpretation. The Bayesian approach also eliminates the problem of nuisance
parameters by integrating them out, while classical procedures must often find ingenious
ways to tackle them separately for each inference problem. Finally, prediction problems,
which are often the primary objective of statistical analysis, are solved most naturally if one
follows the Bayesian approach.
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These conveniences come at a price, however. The Bayesian principle is also restrictive
in nature, allowing no freedom beyond the choice of prior. This limitation can put Bayesian
methods at a disadvantage vis-a-vis non-Bayesian methods, particularly when performance
is evaluated by frequentist principles. For instance, even if only a part of the unknown param-
eter is of interest, a Bayesian must still specify a prior on the whole parameter, compute the
posterior distribution, and integrate out the irrelevant part, whereas a classical procedure
may be able to target the part of interest. Another problem is that no corrective measures are
allowed in a Bayesian framework once the prior has been specified. In contrast, the MLE
is known to be nonexistent or inconsistent in many infinite-dimensional problems, such as
density estimation, but it can be modified by penalization, sieves (see Grenander 1981),
partial likelihood (Cox 1972) or other devices (Murphy and van der Vaart 2000). An hon-
est Bayesian cannot change the likelihood, change the prior by looking at the data or even
change the prior with increasing sample size.

1.1.2 Parametric versus Nonparametric Bayes

Parametric models make restrictive assumptions about the data-generating mechanism,
which may cause serious bias in inference. In the Bayesian framework, a parametric model
assumption can be viewed as an extremely strong prior opinion. Indeed, a parametric model
specification X|6 ~ py, for 6 € ® C R?, with a prior specification # ~ 7, may be written
as X| p ~ p for p ~ I1 and a prior distribution IT on the set of all possible densities with
the property that I[T1({pp: 6 € ®}) = 1. Thus parametric modeling is equivalent to insist-
ing on a prior that assigns probability one to a thin subset of all densities. This is a very
strong prior opinion indeed, which is replaced by an open-minded view when following the
nonparametric Bayesian approach.

To some extent, the nonparametric Bayesian approach also solves the problem of par-
tial specification. Often a model is specified incompletely, without describing every detail
of the data-generating mechanism. A familiar example is the Gauss-Markov setup of a lin-
ear model, where errors are assumed to be uncorrelated, mean-zero variables with constant
variance, but no further distributional assumptions are imposed. Lacking a likelihood, a
parametric Bayesian approach cannot proceed further. However, a nonparametric Bayesian
approach can use a prior on the space of densities with mean zero as a model for the error dis-
tribution. More generally, incomplete model assumptions may be complemented by general
assumptions involving infinite-dimensional parameters in order to build a complete model,
which a nonparametric Bayesian approach can equip with infinite-dimensional priors.

1.2 Challenges of Bayesian Nonparametrics

This section describes some conceptual and practical difficulties that arise in Bayesian
nonparametrics, along with possible remedies.

1.2.1 Prior Construction

A Bayesian analysis cannot proceed without a prior distribution on all parameters. A prior
ideally expresses a quantification of knowledge from past experience and subjective feelings.
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A prior on a function requires knowledge of many aspects of the function, including
infinitesimal details, and the ability to quantify the information in the form of a probabil-
ity measure. This poses an apparent conceptual contradiction: a nonparametric Bayesian
approach is pursued to minimize restrictive parametric assumptions, but at the same time it
requires specification of the minute details of a prior distribution for an infinite-dimensional
parameter.

There seems to be overall agreement that subjective specification of a prior cannot be
expected in complex statistical problems. Instead, inference must be based on a default prior.
This is vaguely understood as a prior distribution that is proposed by some automatic mech-
anism that is not biased toward any particular parameter values and has low information
content compared to the data.

Some of the earliest statistical analyses in history used the idea of inverse probability and
came down to a default Bayesian analysis with respect to a uniform prior. Later uniform pri-
ors were strongly criticized for lacking invariance, which led to a decline in the popularity of
Bayesian analysis until more invariance-friendly methods such as reference analysis or prob-
ability matching emerged. However, most of these ideas are restricted to finite-dimensional
parametric problems.

A default prior need not be noninformative, but should be spread over the whole parameter
space. Some key hyperparameters regulating the prior may be chosen by the user, whereas
other details must be constructed by the default mechanism. Unlike in parametric situations,
where noninformative priors are often improper, default priors considered in nonparametric
Bayesian inference are almost always proper. Large support of the prior means that the
prior is not too concentrated in some particular region. This situation generally ensures that
the information contained in the prior is subdued gradually by the data if the sample size
increases, so that eventually the data override the prior.

The following chapters discuss methods of prior construction for various problems of
interest. Although a default prior is not unique in any sense, it is expected that over the
years, based on theoretical results and practical experience, a handful of suitable priors will
be short-listed and cataloged for consensus use in each inference problem.

1.2.2 Computation

The property of conjugacy played an important role in parametric Bayesian analysis, as
it enabled the derivation of posterior distributions at a time when computing resources
were lacking. Later sampling-based methods such as the Metropolis-Hastings algorithm and
Gibbs sampling gave Bayesian analysis a tremendous boost. Without modern computing,
nonparametric Bayesian analysis would hardly be practical.

However, we cannot simulate directly from the posterior distribution of a function unless
it is parameterized by finitely many parameters. The function of interest must be broken up
into more elementary finite-dimensional objects whose posterior distributions are accessible.
For this reason, the structure of the prior is important. Useful structure may come from
conjugacy or approximation. Often, a computational method combines analytic derivation
and Markov chain Monte Carlo (MCMC) algorithms, and is based on innovative ideas. For
instance, density estimation with a Dirichlet mixture prior, discussed in Chapter 4, uses an
equivalent hierarchical mixture model involving a latent variable for each observation and
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integrates out the infinite-dimensional parameter, given the latent variables (see 5.3). Thus
the problem of infinite dimension has been reduced to one of finite dimension. In another
instance, in a binary response model with a Gaussian process prior, introducing normal latent
variables brings in conjugacy (see Section 11.7.3).

1.2.3 Asymptotic Behavior

Putting a prior on a large parameter space makes it easy to be grossly wrong. Therefore
“robustness” is important in Bayesian nonparametrics: the choice of prior should not influ-
ence the posterior distribution too much. This is difficult to study in a general framework.
A more manageable task is the study of asymptotic properties of posterior distributions, as
the information in the data increases indefinitely. For example, “posterior consistency” may
be considered an asymptotic form of robustness. Loosely speaking, posterior consistency
means that the posterior probability eventually concentrates in a (any) small neighborhood
of the actual value of the parameter. This is a weak property shared by many prior distribu-
tions. Finer properties, such as the rate of contraction or a (functional) limit theorem, give
more insight into the performance of different priors.

The study of asymptotic properties is more complex in the nonparametric than in the
parametric context. In the parametric setting, good properties are guaranteed under mild
conditions. Under some basic regularity conditions, it suffices that the true value of the
parameter belongs to the support of the prior. In the infinite-dimensional context this
is not enough. Consistency may fail for natural priors satisfying the support condition,
meaning that even an infinite amount of data may not overcome the pull of a prior in
a wrong direction. Consistent priors may differ strongly in accuracy, depending on their
fine details, as can be measured through their rates of contraction. Unlike in the para-
metric setting, many priors do not “wash out,” as the information in the data increases
indefinitely.

Thus it makes sense to impose posterior consistency and a good rate of contraction as
requirements on a “default prior.” Several chapters in this book are devoted to the study of
asymptotic behavior of the posterior distribution and other related quantities. Chapter 10 is
devoted to combining priors hierarchically into an overall prior so as to make the posterior
“adapt” to a large class of underlying true parameters.

1.3 Priors, Posteriors and Bayes’s Rule

In the Bayesian framework, the data X follows a distribution determined by a parameter 6,
which is itself considered to be generated from a prior distribution I1. The correspond-
ing posterior distribution is the conditional distribution of 6, given X. This framework is
identical in parametric and nonparametric Bayesian statistics, the only difference being the
dimension of the parameter. Because the proper definitions of priors and (conditional) distri-
butions require (more) care in the nonparametric case, we review the basics of conditioning
and Bayes’s rule in this section.

If the parameter set © is equipped with a o-field %, the prior distribution IT is a prob-
ability measure on the measurable space (®, %), and the distribution Py of X, given 6, is
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a regular conditional distribution on the sample space (X, .2") of the data,! then the pair
(X, 0) has a well-defined joint distribution on the product space (X x ©, 2" ® %), given by

P(X € A,6 € B) =f Py(A) dTI1(6).
B
This gives rise to the marginal distribution of X, defined by
P(XeA):/Pg(A)dH(G), Ae X,

and the conditional distribution, called posterior distribution, given by
IT(B| X) =P(0 € B| X), Be X

By Kolmogorov’s definition, the latter conditional probabilities are always well defined, for
every given B € 4, as measurable functions of X such that E[TT(B| X)1{A}(X)] =P(X €
A,0 € B), for every A € A . If the measurable space (®, %) is not too big, then there
also exists a regular version of the conditional distribution: a Markov kernel from (X, 2)
into (®, A). We shall consider the existence of a regular version to be necessary in order to
speak of a true posterior distribution. A sufficient condition is that ® is a Polish space” and
A its Borel o-field.?

Even though the posterior distribution can usually be thus defined, some further care may
be needed. It is inherent in the definition that the conditional probabilities P(6 € B| X) are
unique only up to null sets under the marginal distribution of X. Using a regular version
(on a standard Borel space) limits these null sets to a single null set that works for every
measurable set B, but does not eliminate them altogether. This is hardly a concern if the full
Bayesian setup is adopted, as this defines the marginal distribution of X as the appropriate
data distribution. However, if the Bayesian framework is viewed as a method for inference
only and it is allowed that the data X is generated according to some “true” distribution
Py different from the marginal distribution of X in the Bayesian setup, then the exceptional
“null sets” may well have nonzero mass under this “true” distribution, and it is impossible to
speak of the posterior distribution. (To distinguish Py from the marginal distribution of X,
we shall refer to the latter sometimes as the “Bayesian marginal distribution.”)

Obviously, this indefiniteness can only happen under serious “misspecification” of the
prior. In particular, no problem arises if

Py <</P9d1'[(9),

which is guaranteed for instance if Py is dominated by Py for 6 in a set of positive prior prob-
ability. In parametric situations the latter condition is very reasonable, but the nonparametric
case can be more subtle, particularly if the set of all Py is not dominated. Then there may
be a “natural” way of defining the posterior distribution consistently for all X, but it must

! Le. a Markov kernel from (©, ) into (¥, Z°): the map A — Py(A) is a probability measure for every
6 € © and the map 6 — Py(A) is measurable for every A € 2.

2 A topological space that is a complete separable metric space relative to some metric that generates the
topology.

3 More generally, it is sufficient that (©®, %) is a standard Borel space: a measurable space admitting a
bijective, bimeasurable correspondence with a Borel subset of a Polish space.
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be kept in mind that this is not dictated by Bayes’s rule alone. An important example of this
situation arises with the nonparametric Dirichlet prior (see Chapter 4), where the marginal
distribution may or may not dominate the distribution of the data.

For a dominated collection of measures Py, it is generally possible to select densities pg
relative to some o -finite dominating measure w such that the map (x, 6) — pg(x) is jointly
measurable. Then a version of the posterior distribution is given by Bayes’s formula

S Po(X) dT1(0)
[ pe(X)dT1(0)

Of course, this expression is defined only if the denominator f po(X)dI1(0), which is the
(Bayesian) marginal density of X, is positive. Definitional problems arise (only) if this is
not the case under the true distribution of the data. Incidentally, the formula also shows that
a Polish assumption on (®, %) is sufficient, but not necessary, for existence of the posterior
distribution: (1.1) defines a Markov kernel as soon as it is well defined.

In a vague sense, the support of a measure is a smallest set that contains all its mass.
A precise definition is possible only under assumptions on the measurable space. We limit
ourselves to Polish spaces, for which the following definition of support can be shown to be
well posed.

(B X) = (1.1)

Definition 1.1 (Support) The support of a probability measure on the Borel sets of a Polish
space is the smallest closed set of probability one. Equivalently, it is the set of all elements
of the space for which every open neighborhood has positive probability.

It is clear that a posterior distribution will not recover a “nonparametric” set of true dis-
tributions unless the prior has a large support. In Chapters 6 and 8 this requirement will be
made precise in terms of posterior consistency (at a rate), which of course depends both on
the prior and on the way the data distribution Py depends on the parameter 6. As preparation,
when discussing priors in the following chapters, we pay special attention to their supports.

1.3.1 Absolute Continuity

Bayes’s formula (1.1) is available if the model (Py: 6 € ©) is dominated. This is common in
parametric modeling, but may fail naturally in nonparametric situations. As a consequence,
sometimes we perform Bayesian analysis without Bayes. Mathematically, this is connected
to absolute continuity of prior and posterior distributions.

It seems natural that a prior distribution supported on a certain set yields a posterior
distribution supported inside the same set. Indeed, the equality I1(B) = EP(® € B|X)
immediately gives the implication: if [T(B) = 1, then P(6 € B| X) = 1, almost surely. The
exceptional null set is again relative to the marginal distribution of X, and it may depend on
the set B. The latter dependence can be quite serious. In particular, the valid complementary
implication: if I[T(B) = 0, then P(8 € B| X) = 0 almost surely, should not be taken as proof
that the posterior is always absolutely continuous with respect to the prior. The nonparamet-
ric Dirichlet prior exemplifies this, as the posterior is typically orthogonal to the prior (see
Section 4.3.4).
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Such issues do not arise in the case that the collection of distributions Py is dominated.
Formula (1.1) immediately shows that the posterior is absolutely continuous relative to the
prior in this case (where it is assumed that the formula is well posed). This can also be
reversed. In the following lemma we assume that the posterior distribution is a regular
conditional distribution, whence it is unique up to a null set.

Lemma 1.2 [fboth (X, Z°) and (®, RB) are standard Borel spaces, then the set of poste-
rior distributions P(0 € B| X = x), where x € X( for a measurable set Xo C X of marginal
probability one, is dominated by a o -finite measure if and only if the collection { Py: 0 € ©g}
is dominated by a o -finite measure, for some measurable set ®g C © with T1(®¢) = 1. In
this case, the posterior distributions are dominated by the prior.

Proof A collection of probability measures { Py: 6 € ®} on a standard Borel space is dom-
inated if and only if it is separable relative to the total variation distance, and in this case
the measures permit densities x > pg(x) that are jointly measurable in (x, ) (e.g. Strasser
1985, Lemmas 4.6 and 4.1). Formula (1.1) then gives a version of the posterior distribution,
which is dominated by the prior. Any other version differs from this version by at most a
null set X,.

The converse follows by interchanging the roles of x and 6. If the set of posterior dis-
tributions is dominated by a o -finite measure, then they can be represented by conditional
densities (0| x) relative to the dominating measure, measurable in (x, 8), and we can recon-
struct a regular version of the conditional distribution of x given 6 by (1.1) with the roles of
6 and x interchanged, which is dominated. By assumption, the original distributions Py give
another regular version of this conditional distribution and hence agree with the dominated
version on a set of probability one. 0

1.4 Historical Notes

Laplace and Bayes pioneered the idea of inverse probability. Fisher was a strong critic of
this approach because of invariance-related paradoxes. Jeffreys revived the idea of inverse
probability by replacing the uniform prior with his famous prior, the square root of the deter-
minant of Fisher’s information. The theory of objective priors has now evolved extensively;
see Bernardo and Smith (1994) for different approaches and references. A Bayesian non-
parametric idea seems to have been first used by Poincaré for numerical interpolation. He
considered the unknown function as a random series and function values as observed up to
measurement error. He computed Bayes estimates by assigning priors on the coefficients in
the expansion. Freedman (1963) considered tail-free priors, a general class that can avoid
inconsistency problems. Computational issues were still not considered very seriously. A
breakthrough came in the seminal paper in which Ferguson (1973) introduced the Dirichlet
process, which initiated modern Bayesian nonparametrics. The Dirichlet process has only
two easily interpretable hyperparameters and leads to an analytically tractable posterior dis-
tribution. This advance solved the problem of estimating a cumulative distribution by a
Bayesian method and reduced the gap with the classical approach, which already offered
solutions to density estimation, nonparametric regression and other curve estimation prob-
lems using kernel and other smoothing methods. Within a decade, a Bayesian solution to
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density estimation by Dirichlet mixture processes was available, although computational
challenges remained daunting. A little later, Gaussian processes and Pdlya tree processes
were proposed as alternative solutions. The early nineties also witnessed the development
of priors for survival analysis, including the beta process prior of Hjort (1990) and indepen-
dent increment processes. The first half of the nineties saw the astonishing development of
computational methods for Bayesian nonparametrics, ostensibly because of the advent of
MCMC techniques and the availability of fast computers. Major initial contributions came
from Escobar, West, MacEachern, Miiller, Neal and others, fueled by the progress on MCMC
ideas in general by Gelfand, Smith, Green, Chib and the development of the WinBUGS soft-
ware by Gilks et al. (1994). Recently, the R-package DP package has been developed to
solve Bayesian nonparametric computational problems; see Jara (2007). The earliest results
on posterior consistency for nonparametric problems were obtained by Doob (1949), but
those results give no clue about consistency at a given true value of the parameter. Freedman
(1963, 1965) constructed examples of posterior inconsistency and showed, in general, that a
posterior distribution can asymptotically misbehave for most priors (here, “most” is used in
a topological sense). Freedman also introduced the concept of tail-freeness, a key property
that can eliminate inconsistency problems. The most significant early result on consistency
was due to Schwartz (1965), whose ideas led to a reasonably complete general theory of
consistency. Schwartz showed that the support of the prior in a Kullback-Leibler sense is the
key factor in determining consistency, together with a restriction on the size of the model
imposed through a testing condition. The original Schwartz theorem is, however, incapable
of yielding consistency for density estimation. Subsequent ideas were developed by Bar-
ron, Ghosh, Ghosal, Wasserman, Ramamoorthi, Walker and others. Diaconis and Freedman
(1986b,a) and Doss (1985a,b) pointed out serious problems of inconsistency with the Dirich-
let process prior if used for the error distribution in the location problem. This is an important
phenomenon, as such a prior was considered natural for the location problem in the eighties.
It emphasized that posterior consistency cannot be taken lightly in nonparametric problems.
A more striking example of posterior inconsistency was recently constructed by Kim and
Lee (2001) in the context of survival analysis. The study of rates of contraction in a gen-
eral framework was started at the beginning of the previous decade by Ghosal, van der
Vaart, Shen, Wasserman and others and a relatively complete theory is now available, even
extending to observations that may not be independent or identically distributed. Rates of
contraction have been computed for several priors such as Dirichlet process mixtures, pri-
ors based on splines and Gaussian processes. Results on rates of contraction that adapt to
the underlying function class and related problems about model selection have been studied
recently. The Bernstein—von Mises theorem for regular parametric models implies that the
posterior distribution of the parameter centered at the MLE converges to the same normal
distribution as that of the limit of the normalized MLE. Thus, asymptotically, Bayesian and
sampling probabilities agree, so confidence regions of approximate frequentist validity may
be generated from the posterior distribution. Cox, Freedman and others showed that such
a result should not be expected for curve estimation problems. Some positive results have
been obtained by Lo, Kim, Lee, Shen, Castillo, Nickl, Leahu, Bickel, Kleijn and others. The
study of nonparametric Bayesian uncertainty quantification for curve estimation problems
was started only recently, with first results and discussion by Szabd et al. (2015).

https://doi.org/10.1017/9781139029834.002 Published online by Cambridge University Press


https://doi.org/10.1017/9781139029834.002

