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A purely algebraic solution for the problem of the extreme definite ternary 
quadratic form has been given by Mordell (2). The equivalent geometric 
problem of the critical lattice of a sphere was solved by Mrs. Ollerenshaw (3) 
under a preliminary assumption that was said to be justified by "simple 
considerations" (p. 297). The present treatment eliminates this weakness, 
and avoids the use of trigonometric functions, without adding undue complica
tions. It arose from a remark of Hilbert and Cohn-Vossen (1, p. 45) which 
states that their method for the analogous two-dimensional problem (1, 
pp. 35-37) can be generalized to any number of dimensions. However, the 
generalization is not trivial, even in three dimensions, and the four-dimensional 
treatment of Mrs. Ollerenshaw (4) involves a preliminary assumption analogous 
to that mentioned above. 

We begin by briefly recapitulating Gauss's statement of the connection 
between the algebraic and geometric problems. Three independent vectors 
tT (r = 1, 2, 3) generate a system of vectors urtr {ur integers) which lead 
from the origin to the points of a lattice. We may regard (u\, u<2, Uz) as affine 
coordinates for the lattice points. The square of the distance from (0, 0, 0) to 
(ui, U2, Uz) is 

Œ, Urtr)
2 = J1J1 &rs Ur Us, 

where ars = t r - t s . Thus the lattice determines a positive definite ternary 
quadratic form whose minimum m is the square of the minimum distance c 
between lattice points. If the vector t r has Cartesian components (xr, yr, zr), 
the determinant of the form is 

D = det ( t r - t s ) = det (xr xs + yr ys + zr zs) 

= V\ 

where V is the volume of the elementary cell (or primitive parallelepiped) 
of the lattice. Since 

xi yi zi xi x2 Xz 

x2 yi z2 yi yi ys 
xz yz zz Z\ Z2 Zz 

D _ fzY 
m* ~ \c3J ' 

the form of smallest determinant for its minimum value corresponds to the 
lattice of smallest cell for its minimum distance. Such a lattice we now seek. 
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Consider any point A of a given lattice whose elementary cell has volume V. 
Choose a lattice point B at the minimum distance c from A, and a lattice 
point C outside the line AB, at the shortest distance b (>c) from A. These 
points can always be chosen so that Z CAB < %w, and the sides a = BC, 
b = CA, c = AB of the triangle ABC satisfy 

a > 6 > c, a2 < 62 + c2. 

Let A and JR denote the area and circumradius of this triangle, so that 

1GA2 = - a4 - 64 - c4 + 2b2c2 + 2c2a2 + 2a2b2, ±RA = abc. 

In a parallel lattice plane nearest to the plane ABC, there is a lattice point 
D whose orthogonal projection D\ on the plane ABC lies inside or on a side 
of the parallelogram ABA''C, and so, by choice of notation, inside or on a side 
of the triangle ABC. Denote by d the distance DD\ from D to the plane ABC, 
so that 

V = 2Ad. 

Since none of ^4D, J5D, CZ> is parallel to AB, all of them are greater than or 
equal to b. Since the triangle ABC has no obtuse angle, circles of radius R 
with centres at the vertices overlap in such a way that every point of the 
triangle except the circumcentre is inside at least one of them (3, p. 298, 
footnote). Therefore the distance of D\ from at least one vertex is less than R, 
except that it is equal to R when D\ is the circumcentre. Thus at least one 
of AD, BD, CD is less than or equal to (R2 + d2Y, and consequently 

b2 < R2 + d2, 

with equality only when D1 is the circumcentre. Hence , 

V2 = (2Ad)2 > 4A2(62 - R2) 

= i 6 2 ( - a 4 - 64 - à + 2b2c2 + c2a2 + 2a2b2) 

= he* + \c2(b2 - c2)(3b2 + 2c2) + I b2(a2 - b2){b2 + c2 - a2) 

^ 2 ° J 

with equality only when 

d* = b2 - R2, b = c, 

and either 
(i) a = b or (ii) b2 + c2 = a2. 

These conditions (i) and (ii) are sufficient to determine two ''critical" lattices 
Ai and A2 for either of which D/mz or (V/c*)2 attains its minimum value \. 

In case (i), the tetrahedron ABCD is regular, and we may choose Cartesian 
coordinates 

(0 ,0 ,0) , (0, 1, 1), (1,0, 1), (1, 1,0) 

for its vertices. Thus 
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ti = AB = (0, 1, 1), t2 = AC = (1, 0, 1), U = AD = (1, 1, 0) 

and 
( I > r t r ) 2 = (tt2 + W3, «3 + «1, «1 + ^2)2 

= (u2 + uz)2 + (M3 + ^i)2 + (wi + ^2)2 

= 2(Ui2 + U2
2 + Uz2 + U2Uz + UzUi + UiUo). 

In case (ii), the triangle ABC is right-angled isosceles. Choosing A, B and D 
as before, we now have C at (0, 1, —1). Thus 

tl = AB = (0, 1, 1), t2 = AC = (0, 1, - 1 ) , t8 = AD = (1, 1, 0) 

and 
Œ ^ r t r ) 2 = (w3, Wi + W2 + W3, Wi — U2)

2 

— Uz2 + (Wi + U2 + Uz)2 + (Ui — U2)
2 

= 2(^i2 + U2
2 + ^3

2 + M2 W3 + Uz Ml). 

In either case, the lattice generated by the t's consists of all points with 
integral coordinates whose sum is even. Thus the lattices Ai and A2 are the 
same, viz., the face-centred cubic lattice (1, pp. 46, 56). (The points whose 
coordinates are all even form an ordinary cubic lattice, while those which 
have two odd coordinates are the centres of the square faces.) Since the two 
sets of t 's are different bases for the same lattice, the two forms are equivalent: 
there is only one class of extreme ternary forms. 
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