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The confinement of energetic particles in nuclear fusion devices is studied in
the presence of an oscillating radial electric field and an axisymmetric magnetic
equilibrium. It is shown that, despite the poloidal and toroidal symmetries, initially
integrable orbits turn into chaotic regions that can potentially intercept the wall of
the tokamak, leading to particle losses. It is observed that the losses exhibit algebraic
time decay different from the expected exponential decay characteristic of radial
diffusive transport. A dynamical explanation of this behaviour is presented, within the
continuous time random walk theory. The central point of the analysis is based on
the fact that, contrary to the radial displacement, the poloidal angle is not bounded
and a proper statistical analysis can therefore be made, showing for the first time
that energetic particle transport can be super-diffusive in the poloidal direction and
characterised by asymmetric poloidal displacement. The connection between poloidal
and radial positions ensured by the conservation of the toroidal canonical momentum,
implies that energetic particles spend statistically more time in the inner region of
the tokamak than in the outer one, which explains the observed algebraic decay. This
indicates that energetic particles might be efficiently slowed down by the thermal
population before leaving the system. Also, the asymmetric transport reveals a new
possible mechanism of self-generation of momentum.
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1. Introduction and motivation
Energetic particles (EP) are ubiquitous in both laboratory and astrophysical plasmas.

By definition, they exhibit velocities much larger than the thermal velocity of the
bulk plasma, which is characterised by a Maxwellian distribution function. EP, such
as the alpha particles, must be sufficiently well confined in order to transfer their
energy to the bulk plasma through Coulomb collisions or to ensure the current drive
efficiency (Heidbrink & Sadler 1994; Sharapov et al. 2000; Pinches et al. 2004).
Nevertheless, due to the curvature of the magnetic field lines, the trajectories of
particles depart from the magnetic flux surfaces. This departure (called magnetic drift)
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is more pronounced when the energy of particles increases. Therefore, the magnetic
drift of EP can be intense enough so that their trajectories intercept the wall even with
circular concentric magnetic surfaces, leading to losses and limiting the performance
of the machine. In addition, the presence of a substantial population of particles at
high energies leads to gradients in phase space, which may result in instabilities
called energetic particle modes (EPM) (see for instance Chen & Zonca (2007),
Heidbrink (2008), Lauber (2013) and Chen & Zonca (2016) and references therein).
EPM tend to increase the transport of energetic particles, reducing inevitably the
tokamak performance. Therefore, understanding and controlling the EPMs is also of
prime importance for the future of ITER. In the presence of fluctuations driven by EP,
such as for toroidal Alfvén eigenmodes, zonal structures can be nonlinearly generated
(Chen & Zonca 2012). Direct excitation of zonal structures by EP is also possible,
which occurs in the context of a special class of EPMs called energetic geodesic
acoustic modes (EGAMs), dominated by a zonal structure (m, n)= (0, 0) oscillating
approximately at the acoustic frequency (Fu 2008; Nazikian et al. 2008; Qiu, Zonca
& Chen 2010; Zarzoso et al. 2012). Because EGAMs are axisymmetric modes, they
were initially believed not to play a significant role in the transport of particles.
Nonetheless, it was experimentally and numerically evidenced that losses can occur
in the presence of these axisymmetric large scale modes (Nazikian et al. 2008; Fisher
et al. 2012). It was in particular shown that most of these losses are due to chaotic
transport in phase space (Zarzoso et al. 2018), but so far no systematic studies of
the nature of transport in the presence of EGAMs have been carried out. Similarly,
zonal structures can be driven by drift-wave turbulence in magnetised plasmas
(Hasegawa, Maclennan & Kodama 1979) and play a major role in the regulation of
micro-turbulence-induced transport in tokamaks (Lin et al. 1998). Although studies
of the EP transport in the presence of micro-turbulence have been performed in
the past (Zhang, Lin & Chen 2008; Angioni et al. 2009; Hauff et al. 2009; Zhang,
Lin & Chen 2011; Pace et al. 2013; Bovet et al. 2015), the direct impact of zonal
structures on the EP transport remains unexplored. Therefore, we aim in this work
to shed light on the fundamental mechanisms responsible for the EP transport in the
presence of zonal structures. For this purpose, statistical analyses can be performed
to determine some characteristic properties of the transport and the anomalous losses
of EP. By anomalous losses we mean losses that do not follow the loss rate of a
diffusive process. As we will explain, one of the main contributions of this work
is to show that these anomalous losses are due to the presence of super-diffusive
poloidal transport. In this paper, we focus our analyses on the transport induced by
zonal structures in the context of EGAMs, but the results can be extended without
any loss of generality to situations where zonal structures are nonlinearly generated
by small amplitude perturbations. The remainder of the paper is structured as follows.
Section 2 presents the model we use for the statistical analysis. In § 3 we present
the observations of fractal-like behaviour and algebraic decay of the exit time of EP
using relevant tokamak parameters. This naturally leads to § 4, where we give, for the
first time, evidence that zonal structures can lead to anomalous diffusion of energetic
particles. Conclusions and future work are presented in § 5.

2. Description of the model

Within the framework of the EGAM-induced transport, we base our analysis on
previous results obtained with gyro-kinetic simulations (Zarzoso et al. 2018). However,
in order to have meaningful statistical analyses, we need to simulate a huge number of
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test particles during sufficiently long gyro-kinetic simulations. Due to computational
restrictions, we avoid this approach by replacing the EGAM potential obtained from
the expensive direct gyro-kinetic simulations by an analytical model containing the
main physics of the EGAM. This strategy is the most favorable in terms of CPU time,
since no interpolation of the field is required. In addition, it allows us to simulate
trajectories on time scales comparable with the experimental measurements. The main
characteristics of a zonal (n= 0) structure are: (i) its frequency, (ii) its spatial (radial
and poloidal) structure and (iii) its amplitude. A zonal structure can therefore be
modelled as

φ(r, θ, t)≈ [φ00(r)+ φ10(r) sin θ ] cos(ωt), (2.1)

where φ is the potential, decomposed here into its Fourier modes (φ00 for (m = 0,
n= 0) and φ10 for (m= 1, n= 0)), r is the radial position represented by the tokamak
minor radius, θ is the poloidal angle, ω is the frequency and t is the time.

Based on the ordering φ10 ∼ 10−1φ00, we neglect in the following the poloidal
dependence and focus only on the dominant component. Following gyro-kinetic
simulations (Zarzoso et al. 2012, 2013, 2017) we can model the radial dependence
as

φ00(r)= φ00

(
1− tanh

(
r− r0

δr

))
, (2.2)

where φ00 is the value of the potential at r= r0 and δr controls the width of the mode.
This gives a radial electric field of amplitude Er,0 = φ00/δr at r= r0 and localised in
a region r0 − δr/2< r< r0 + δr/2.

The guiding-centre equations of motion to be solved in toroidal geometry in the
presence of a given electrostatic potential are (Grandgirard et al. 2016)

dxi

dt
= v‖b∗ · ∇xi

+ vE · ∇xi
+ vD · ∇xi, (2.3a)

ms
dv‖
dt
=−µb∗ · ∇B− eZsb∗ · ∇J0φ +

msv‖

B
vE · ∇B, (2.3b)

where xi is the ith contravariant component of the coordinate x (x1
≡ r in the radial

direction, x2
≡ θ in the poloidal direction and x3

≡ ϕ in the toroidal direction), v‖ the
parallel component of the velocity along the magnetic field lines, vE is the E×B drift,
vD is the magnetic drift, µ is the magnetic moment, which is an invariant within the
present model, ms is the mass of particles, e is the elementary charge, Zs is the atomic
number, B is the magnitude of the magnetic field, J0 is the gyro-average operator and
b∗ is defined as

b∗ =
B
B∗‖
+

msv‖

eZsB∗‖B
∇×B, (2.4)

with
B∗
‖
= B+

ms

eZs
v‖b · ∇× b, (2.5)

where b is the unit vector along the magnetic field. This expression (2.5) allows us
to write the volume element in guiding-centre velocity space as (2πB∗

‖
/ms) dv‖ dµ.

To further reduce the computational time, it is important to realise that due to the
axisymmetry of the electrostatic potential, the equation for the toroidal angle does not
need to be integrated to determine the radial transport. Axisymmetry also implies the
conservation of the toroidal canonical momentum Pϕ

Pϕ =−eZsψ +msvϕ = const., (2.6)
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with vϕ = bϕv‖, where bϕ is the toroidal covariant component of the unit vector along
the magnetic field, R is the major radius and ψ is the poloidal flux, which is written
for circular flux surfaces in terms of the safety factor q, the amplitude of the magnetic
field at the magnetic axis B0 and the radial position r as

ψ = B0

∫ r

0

r′

q(r′)
dr′. (2.7)

Equation (2.6) allows us to obtain the parallel velocity v‖ at each time step without
integrating equation (2.3b). Finally, for large scale zonal structure the gyro-average is
not expected to play a major role. Therefore, we make the simplification J0 · φ = φ.
This numerical scheme reduces the number of differential equations to be integrated
and ensures the exact conservation of the toroidal canonical momentum within
machine precision. The differential equations for r and θ are solved using a
fourth-order Runge–Kutta explicit integration in time. Following a convergence
test, the time step for all the simulations has been set up to 1t = 50 normalised to
the cyclotron period. In all the simulations presented in this paper, the safety factor
is assumed to be flat and set to q = 1.8, the width of the electrostatic potential is
δr= 20ρth, which is larger than the maximum Larmor radius of the energetic particles
that we consider, and the frequency is ω = 3.7 × 10−3 normalised to the cyclotron
frequency, which is typical of self-consistent gyro-kinetic simulations presented in
Zarzoso et al. (2018).

3. Fractal-like dependence of loss time on initial conditions

Motion invariants are very valuable to describe how the trajectories are modified
in the presence of a perturbation. This is because in the absence of any perturbation,
a particle initialised with a given value of the invariants will explore the phase space
while keeping the motion invariants constant, which translates into a one-dimensional
(1-D) curve in the 3-D real space when three invariants exist. We know that this
trajectory will correspond to the one of any other particle initialised in such a way
that at t = 0 it has the same motion invariants. The unperturbed trajectory of a
particle can for instance be described by the kinetic energy E and the ratio between
the magnetic moment and the kinetic energy, Λ=µB0/E, providing the initial radial
position is known. An example is illustrated in figure 1, where (a) represents the
projection onto the poloidal cross-section of the trajectories of two particles, one
deeply counter-passing and the other barely counter-passing, both starting at the
radial position r/a= 0.1 and the poloidal angle θ = 0 (fixing therefore Pϕ). Of course,
particles are injected with a certain range of E and Λ. If all the particles are injected
roughly at the same position, the resulting trajectories will cover the area represented
by the blue region in figure 1(b).

One can use then the electrostatic potential model in (2.1) to study the losses of
particles injected in the inner region of the tokamak, at r/a≈ 0.1 with a certain range
of E and Λ. It is to be noted that the adiabatic invariance of the magnetic moment
µ is imposed owing to the gyro-kinetic ordering. In addition, since the modes are
axisymmetric, the toroidal canonical momentum Pϕ is an exact invariant, which is also
imposed by solving (2.6). Regarding the kinetic energy, it remains invariant only if the
perturbed potential does not depend explicitly on time. The fact that we have only two
motion invariants of guiding centres in a system with three degrees of freedom makes
it actually possible that the motion is chaotic, as reported in Zarzoso et al. (2018).
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(a) (b)

FIGURE 1. (a) Trajectories of two counter-passing particles: one deeply counter-passing
with (Λ = 0.4, E = 25Eth), represented by the almost circular projection, and one barely
counter-passing with (Λ = 0.8, E = 43Eth). (b) Ensemble of all the possible trajectories
with energies within the range 25Eth 6 E 6 43Eth and pitch angle 0.4 6Λ6 0.8.

(a) (b)

FIGURE 2. (a) Fraction of lost particles as a function of initial E and Λ in the presence
of a perturbation. The overlaid contours correspond to Pϕ = const. (b) Poincaré map of an
initial condition with Λ= 0.54 and E= 31.5Eth without perturbation (blue dots) and with
perturbation (red dots).

We have performed a set of simulations for each couple (E, Λ) up to t = 2 × 105

cyclotron periods. The result of this calculation is given in figure 2. Panel (a) shows
the fraction of lost particles as a function of their initial kinetic energy and Λ, with
iso-contours of the toroidal canonical momentum.

When focusing on a particular point of figure 2(a), (for instance the one with
initial Λ = 0.54 and E = 31.5Eth, characterised by a lost fraction of approximately
0.8), we can plot the invariant surface in the absence of the perturbation (blue circle)
and the Poincaré map in the presence of the perturbation of the particles initialised
on that blue circle. This is what figure 2(b) shows. This is a clear example of how
an initially confined counter-passing particle can be lost due to the perturbation. The
escape region is given by the intersection of the chaotic sea (red dots) with the
tokamak wall (black circle), and depends on the initial conditions of the lost particle.

Figure 2(b) seems to indicate that all particles initialised on the blue circle should
leave the domain, but figure 2(a) shows that only 80 % of the particles are lost.
There are two complementary explanations for this issue, one numerical and another
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theoretical. Numerically, it should be kept in mind that all results pertain to finite-time
dynamics, which for the simulations reported in figure 2(a) is 2 × 105 cyclotron
periods. That is, figure 2(a) is the fraction of particles lost at or before 2 × 105

cyclotron periods. There is also a theoretical aspect to this issue related to the fact
that the red region in figure 2(b) does not have a trivial topology because (as it is
common in Hamiltonian chaos) the Poincaré map of an orbit does not necessarily
fill ergodically a simple 2-D manifold. Indeed, even if we were able to run a
simulation for arbitrarily long time, we might find particles initialised in the blue
circle that do not intercept the wall, despite the fact that the blue circle seems to be
sort of embedded in the chaotic red region. There are also boundaries between the
non-chaotic regions (e.g. the white islands where the red point did not enter) and
the chaotic region (i.e. the region that contains the red points in the Poincaré map)
separated by Cantor sets known as Cantori (see e.g. Meiss (1992)) that trap particles
and preclude them from escaping.

The observed chaotic motion implies that the trajectories of particles exhibit
sensitive dependence on initial conditions. It is thus expected that the exit time of
the lost particles also exhibits sensitive dependence on initial conditions. Analysing
this dependence is especially relevant, since it allows us to identify the existence
of patterns or structures. This cannot be done with diagrams of lost particles as
those reported in Zarzoso et al. (2018), because the quantity plotted there was binary
(either the particle is lost or it remains confined). Of course, since the exit time of
particles that are never lost is infinite, the best way to represent the exit time is by
plotting its inverse, i.e. t−1

exit. Figure 3 shows the inverse of the exit time as a function
of the initial parallel velocity and magnetic moment. Panel (a) shows t−1

exit for all the
simulated initial conditions. A clear pattern of structures aligned with the trapping
cone is observed. To unveil the detailed structure of the dependence of t−1

exit on v‖
and µ, panels (b,c) show successive zooms, revealing similar structures at smaller
scales when focusing on the region of lost particles. It is to be noted that, although
the successive zooms do not exhibit exact self-similarity, it is clear that there is a
non-trivial dependence of the exit time on initial conditions at all scales, what we
refer to as fractal-like behaviour. The observed property of scale invariance imply
similarity properties that can be uncovered when performing statistical analysis of the
particle dynamics.

We can now focus the analysis on a more restricted region in velocity space,
selecting almost mono-energetic EP injected in a localised region of the tokamak and
determining the probability distribution function (PDF) of their exit time. We assume
experiment-relevant parameters, taking the minor radius of the tokamak (a) and the
thermal ion Larmor radius (ρth) such that ρ?=1/150, with ρ?=ρth/a, and we calculate
the exit time of an ensemble of counter-passing EP. Such EP are characteristic of
neutral beam injection (NBI) heating in medium-size tokamaks like DIII-D. For this
purpose, we follow ∼4 × 105 deuterium tracers initialised at the position r = 0.4a,
θ = 0, ϕ = 0, with energy E ≈ 20Eth and magnetic moment such that µB0/Ti = 14.
These particles are confined in the absence of any perturbation. We use GYSELA
normalisations (Grandgirard et al. 2016), but one can recover the units by choosing
parameters for standard tokamaks. For instance, with Ti ≈ 4 keV and B0 ≈ 2 T, one
gets a ≈ 0.67 m, which is typical of medium-size tokamaks. Using the amplitude
of the EGAM in nonlinear GYSELA simulations (φ00 = 1.5), and using the electron
temperature Te≈ 3 keV, the amplitude of the radial electric field is Er,0≈ 14 kV m−1,
which is of the same order as the one obtained in Fisher et al. (2012). Despite
the simple structure of φ, its time dependence leads to radial transport and losses.
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(a)

(b)

(c)

FIGURE 3. Inverse of the exit time as a function of the initial parallel velocity and
magnetic moment. The middle and bottom panels show successive zooms of the (v‖, µ)
parameter space, illustrating the same structures at smaller scales.
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FIGURE 4. Probability distribution function of the exit time for counter-passing EP
initialised at r = 0.4a, θ = 0, ϕ = 0, with E = 20Eth and µB0/Ti = 14. The dashed line
shows an algebraic fit, with µe = 2.5.

The PDF of the exit time, Pexit, is plotted in figure 4 in log–log scale, showing an
algebraic decay Pexit ∼ t−µe , in contrast with the exponential decay one would expect
in the case of a diffusive transport (Gardiner 2004). For the parameters chosen here,
the tail of the PDF is developed from 1 to 100 ms. It is to be noted that a long time
decay was mentioned in Fisher et al. (2012), although no scaling was provided.

To compare with the expected result in the case of diffusive behaviour, we can
perform a simple exercise where we consider the motion of an ensemble of particles
initially located at (x, y)= (0, 0) on a 2-D disk. The two physical parameters in this
simple model are the diffusivity, D, and the radius of the circle, Rc. Figure 5 shows
the probability of the exit time for different values of Rc and D according to a Monte
Carlo simulation of the diffusion equation on a disk. For all values of Rc and D the
probability exhibits an exponential decay of the form

Pdiff ∼ Tmean exp[−λt/Tmean], (3.1)

where λ≈ 3/2 and Tmean is the mean exit time (first moment) for particles under the
Brownian motion on a disk,

Tmean =
πR2

c

4D
. (3.2)

It is interesting to point out that, because in figure 4 we get µe > 2, the mean exit
time does exists. However, the second moment, is infinite and thus not defined. This
is in stark contrast with the diffusion problem for which all the moments of the exit
time distribution exist.

To understand why this algebraic decay occurs and therefore why the radial
transport is not diffusive in the presence of an oscillating radial electric field, we focus
on the region responsible for the chaotic transport of particles, i.e. the stochastic layer
separating the passing and trapped particles. Let us remember that, in the absence
of any perturbation, the particles in a tokamak are divided into trapped and passing
and the boundary between these two classes is called trapping cone. This cone is a
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FIGURE 5. Monte Carlo simulation of exit time for an ensemble of particles initialised
at (x, y) = (0, 0) on a disk of radius Rc in the presence of a diffusivity D. The plot
shows the probability dependence on time rescaled by the analytical mean exit time Tmean
in (3.2) for (Rc,D)= {(0.1, 1), (1, 0.1), (1, 10) (2, 1) (10, 1) (1, 1)}. The dashed line shows
an exponential fit with decay rate λ= 3/2.

well-defined surface in phase space, also called the separatrix, since it represents the
separation between the two classes of particles. The black lines in figure 6 represent
the Poincaré map of the unperturbed trajectories for passing and trapped particles.
Panel (a) represents the projection onto the poloidal cross-section, i.e. onto the (R, Z)
sub-space, and panel (b) represents the projection onto the (r2/2, θ) sub-space. The
dashed blue lines with arrows in panel (a) indicate the direction of the trajectories
of the particles contained in each region. We assume that counter-passing particles
are injected in the inner part of the tokamak. Therefore, those particles rotate in
the clockwise direction. When they become trapped and eventually co-passing, they
rotate in the anti-clockwise direction. This occurs in the outer region of the tokamak,
where particles can intercept the wall and be lost. The red region represents the
Poincaré map of particles located on the separatrix in the presence of an oscillating
radial electric field. It is clearly observed that the separatrix is transformed into a
chaotic area connecting the inner and outer parts of the tokamak. More interestingly,
it is to be noted that the separation between inner and outer regions is done strictly
speaking in the radial direction. Since the radial region that the particle explores
when going from one region to another is necessarily bounded by the minor radius
of the tokamak, the statistics might be meaningless when focusing on the radial
excursion of particles. However, due to the conservation of Pϕ , the radial position
is intrinsically linked to the parallel velocity, which is in turn linked to the time
derivative of the poloidal angle according to (2.3a) applied to i = 2, corresponding
to x2

≡ θ . Combining the conservation of Pϕ and the time derivative of the poloidal
angle, we can write

Pϕ ≈−eZψ +m
bϕ
bθ

dθ
dt
⇒ r2

≈
2q
eZ

(
−Pϕ +m

bϕ
bθ

dθ
dt

)
, (3.3)

with Pϕ constant and bθ the poloidal contravariant component of the unit vector
along the magnetic field. In other words, when the poloidal angle decreases the
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(b)(a)

FIGURE 6. Poincaré map of unperturbed trajectories (black lines) and particles initialised
on the separatrix in the presence of an EGAM (red dots). The direction of rotation of
particles in the inner and outer regions of the tokamak is represented by dashed blue
lines in (a).

counter-passing particle is confined in the core of the tokamak, and when the poloidal
angle increases the particle becomes co-passing in the outer region. Contrary to the
behaviour of the radial position, the poloidal angle that the particle explores can
be arbitrarily large. Therefore, the statistical analysis of the poloidal excursion can
be easily done with the possibility to be connected to the radial excursion. In
the following, we study only the statistics in the poloidal angle, which exhibits a
stochastic behaviour in the presence of the oscillating electric field and so does the
radial position.

4. Anomalous exit time and asymmetric diffusion

Our analysis follows closely the one reported in del-Castillo-Negrete (1998) for the
transport of passive scalars in vortices in the presence of a shear flow. Also, the
study of exit time statistics of EP is closely related to the fundamental first-passage
problem in non-equilibrium statistical mechanics, which is an open research problem
in systems with nontrivial dynamics (see for example Benkadda et al. (1997), Dybiec
et al. (2017), Palyulin et al. (2019) and references therein). We follow during ∼107

cyclotron periods an ensemble of ∼105 energetic particles initialised with E ≈ 20Eth

in the chaotic region. We calculate their poloidal displacement, defined as

1θ(t)= θ(t)− θ (0) , (4.1)

which is plotted, for a subset of these particles, in figure 7(a), where a clear spreading
is observed. The question arises whether this spreading results from a diffusion in
the poloidal direction or not. This can be analysed with the variance of the poloidal
displacement, defined as

σ 2
θ (t)= 〈(1θ − 〈1θ〉)

2
〉, (4.2)

where the time dependence of the poloidal displacement has been dropped for the
sake of clarity and the brackets 〈· · ·〉 represent an ensemble average. When the
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(a) (b)

FIGURE 7. (a) Poloidal displacement of passive tracers showing a spreading in the
poloidal direction. (b) Time dependence of the variance of the poloidal displacement.

variance exhibits algebraic growth in time, i.e. σ 2
θ (t)∼ tγ , the poloidal transport can

be classified as
γ < 1 : sub-diffusive
γ = 1 : diffusive
1< γ < 2 : super-diffusive
γ = 2 : ballistic.

The super- and sub-diffusive regimes correspond to anomalous diffusion.
In figure 7(b) we represent by open red symbols the time trace (in log–log scale)

of the variance of the poloidal displacement as measured from our simulations using
the expressions (4.1) and (4.2). The solid red line represents the linear fit in log–
log scale. For comparison, we also show the ballistic (dotted-dashed black line) and
diffusive (dotted blue line) scalings. It is clear that our simulations are bounded by
both processes, meaning that the spreading observed in panel (a) is due to a super-
diffusion, with an exponent γ = 1.64. It is to be noted that this super-diffusion occurs
in the poloidal direction, not necessarily in the radial direction.

The existence of anomalous diffusion implies that the motion of the guiding centres
cannot be modelled using a diffusion equation, which has important consequences
when trying to predict the transport of energetic particles by means of reduced fluid
models. As explained in del-Castillo-Negrete (1998), the anomalous diffusion is
understood as follows (Lesieur 2008). Let us consider the Lagrangian velocity

d1θ
dt
= vθ(t) (4.3)

and the Lagrangian diffusion coefficient

K(t)=
1
2

d
dt

〈
(1θ − 〈1θ〉)2

〉
, (4.4)

which can simply be expressed as K(t) =
∫ t

0〈v
θ(τ )vθ(0)〉 dτ =

∫ t
0 C(τ ) dτ . Therefore,

the time derivative of the variance is expressed in terms of the integral of the
Lagrangian velocity auto-correlation function as follows

dσ 2
θ

dt
= 2

∫ t

0
C(τ ) dτ . (4.5)
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Therefore, the scaling of the variance depends on how the Lagrangian velocity
auto-correlation function decays in time. If the auto-correlation function decays fast
enough in time, the integral (4.5) exists in the limit t→∞, meaning that σ 2

θ ∼ t
and defining the diffusion coefficient K. If the auto-correlation function exhibits an
algebraic decay (for γ 6= 1) as C ∼ tγ−2, then σ 2

θ ∼ tγ . The anomalous diffusion is
therefore related to the slow decay of the auto-correlation function. This behaviour
is understood in terms of the physics at play. Indeed, an energetic counter-passing
particle is injected in the inner region of the tokamak and will remain rotating in
the clockwise direction unless something (the chaotic separatrix) makes it change
its radial position until it becomes magnetically trapped. Once it is trapped, the
poloidal displacement vanishes on average (there is no transport). The particle will
remain trapped unless the chaotic separatrix makes it change again its radial position.
It will become either co-passing, evolving as if the particle was flying towards
positive poloidal angles, or counter-passing, evolving as if the particle was flying
towards negative poloidal angles. A super-diffusion can therefore be understood as
a compromise between trapping periods and short and rare events called flights,
which tend to de-trapped the particles. More specifically, we interpret the observed
super-diffusive transport in the framework of the continuous time random walk
(CTRW) model. The CTRW extends the standard Brownian random walk (which
underlies diffusive transport) by allowing non-Gaussian jump distributions and/or
non-Markovian waiting time distributions (Montroll & Weiss 1965; Metzler & Klafter
2000), caused by the presence of coherent structures (magnetically trapped and
passing regions) which make particles spend an anomalous amount of time moving
slowly (trapping region) or fast (passing region) (del-Castillo-Negrete 1998), the
bridge between both being ensured by the chaotic separatrix. Of particular interest
to this work is the case of Lévy flights which are jumps with diverging second
moments.

The existence of the flights is clearly visible in figure 8(a), where we plot the
poloidal displacement of two tracers during the first 106 cyclotron periods. It can be
observed that sometimes the particle is magnetically trapped and therefore the poloidal
displacement does not evolve on average. Sometimes, the particles are de-trapped and
exhibit either positive or negative flights. As a comparison, we give in figure 8(b)
a time trace assuming an asymmetric standard random walk, in the absence of any
flights.

Coming back to figure 6, when an EP becomes trapped it is lost if the wall of the
tokamak intercepts the chaotic region, which is the case here since a = 150ρth. The
exit time of a counter-passing particle is related to the time a particle spends moving
towards negative poloidal angles, since the particle remains in the inner region of
the tokamak. Accordingly, the probability distribution function of the exit time, Pexit,
corresponds to the PDF of the negative flights of duration t, P−flight, i.e.

Pexit ≡P(texit = t)=P−flight(t). (4.6)

To verify this connection, figure 9 shows the probability distribution function of
negative (a) and positive (b) flights of duration t. As expected, the PDF of negative
flights exhibits an algebraic decay, P−flight ∼ t−µf , with µf ≈ µe, where as shown
in figure 4 Pexit ∼ t−µe . The PDF of positive flights decays faster, following an
exponential scaling (P+flight ∼ e−λt). This finding has a physical impact in terms of
radial transport: a counter-passing particle spends, probabilistically speaking, more
time in the inner region than a co-passing particle in the outer region. This leads to an
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(a) (b)

FIGURE 8. (a) Poloidal displacement of two passive tracers, showing the existence of
positive and negative flights. (b) Poloidal displacement assuming an asymmetric random
walk.

(b)(a)

FIGURE 9. PDF of negative (a) and positive (b) flight events of duration t.

asymmetrically poloidal (and therefore radial) transport in the presence of the chaotic
separatrix. Note that, because µf < 3, the second moment of the PDF of negative
flights diverges,

∫
∞

0 t2P−flight dt → ∞. That is, the negative flights are Lévy flights
which invalidates the use of the central limit theorem (CLT) as it is customary done
in the Brownian random walk model of diffusive transport. On the other hand, within
the CTRW, superdiffusive behaviour, γ > 1, is a natural consequence of the existence
of Lévy flights, µf < 3. In particular, according to CTRW theory γ = 2/(µf − 1)
which for the numerically determined exponent µf ≈ 2.2 predicts γ = 1.66, a value
very close to the numerically observed γ ≈ 1.64. Let us remember that the theory of
the Brownian motion relies upon the application of the CLT, which states that the
sum of N independent and identically distributed (i.i.d.) random variables {xi}16i6N

is described by a Gaussian distribution in the limit N → ∞, as long as the first
and second moments exist, i.e. 〈xi〉 < ∞ and 〈x2

i 〉 < ∞. One can naturally ask
what happens in the case where one of the moments (or even both) does not exist,
which is our case. Fortunately, there is a generalisation of the CLT for this kind of
situations, which was formulated by P. Lévy in the 1930s. The Gaussian distribution
function as limit of the sum of i.i.d. variables is replaced by the so-called Lévy
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FIGURE 10. Rescaled PDF of poloidal displacements at different times: ωct = 9 × 106

(dashed magenta), ωct = 9.5 × 106 (dotted red) and ωct = 107 (solid black). The dotted-
dashed grey line corresponds to a Gaussian PDF. The insets represent the log–log plots
of the tails, showing the asymmetric algebraic decays.

or α-stable distribution, characterised by long heavy tails and diverging moments (see
for instance Lévy (1934, 1940) and references therein).

Back to our physical problem, figure 10 shows the PDF of the total (summed)
poloidal displacements at different times as a function of the similarity variable

χ =
1θ − 〈1θ〉

tγ /2
. (4.7)

The definition of this variable is not a coincidence. Indeed, the collapse of the
rescaled PDFs at different times provides numerical evidence that poloidal transport
exhibits self-similar dynamics with anomalous exponent γ which, consistent with the
CTRW model, is equal to the numerically determined super-diffusive exponent γ ≈
1.64. Formally, the observed self-similar evolution implies the existence of a scaling
function F satisfying P1θ = t−γ /2F(χ).

It is observed that the scaling function departs significantly from a Gaussian
distribution (represented by a dashed grey line for comparison, which is representative
of diffusive processes). Also, the asymmetry in the flights is reflected in the
asymmetry of the scaling function. Moreover, according to the CTRW, it should
exhibit an algebraic decay of the χ < 0 tail of the form F∼χ−(α

−
+1) with α−=µf − 1,

a result fully consistent with the numerically obtained values µf ≈ 2.2 and α− ≈ 1.2.
For the χ >0 tail, within the CTRW, the exponential decay of P+flight implies, consistent
with the numerical results, α+ > 2. This is represented in the insets of figure 10
showing the log–log plots of the tails of the PDF.

5. Conclusions and future work
In this paper, we have explored the fundamental mechanism of the transport

of energetic particles (EP) in the presence of an oscillating radial electric field
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in axisymmetric tokamak magnetic equilibria. Such scenarios can be found in the
presence of EGAMs, as reported for instance in Fisher et al. (2012), Nazikian et al.
(2008) and Zarzoso et al. (2018). We show in particular that initially integrable
orbits are transformed into chaotic regions that can intercept the wall of the tokamak,
leading to losses of EP. We have provided numerical evidence of fractal-like patterns
and anomalous exit time statistics of EP, exhibiting algebraic decay in sharp contrast
with the expected exponential exit time in the case of radial diffusive transport. We
have shown that the algebraic loss time decay is the result of Lévy flights that
lead to super-diffusive poloidal transport and an asymmetric non-Gaussian (Lévy)
PDF of displacements. Since the radial displacement is related to the sign of the
time derivative of the poloidal angle, the observed poloidal displacement asymmetry
translates into a radial displacement asymmetry and EP can spend probabilistically
speaking more time in the inner region of the tokamak than in the outer one. These
results might have an important impact on the confinement time of EP needed to
achieve sustained fusion in burning plasmas, in addition to the potential generation
of a toroidal net torque resulting from the poloidal asymmetry of the particle
displacements.

The work presented in this paper opens the doors to further analyses that have
not been addressed here. First, the observed anomalous radial transport should be
quantified in the presence of other mechanisms that could be responsible of diffusive
transport. Second, the dependence of the transport (diffusive, super- or sub-diffusive)
on the parameters characterising the oscillating radial electric field should be studied
in detail. Third, quantifying the generation of momentum due to the radial asymmetric
displacement is essential in order to assess its effect in future plasma scenarios.
Finally, it is known that fractional diffusion results from the continuum (fluid) limit
of the (kinetic) CTRW model, see e.g. del-Castillo-Negrete, Carreras & Lynch (2004)
and Metzler & Klafter (2000). Accordingly, the observed self-similar dynamics of
the PDF of poloidal displacements, along with the consistency of the numerically
determined anomalous exponents µe, γ , µf , α− and α+ with the CTRW predictions,
opens the possibility to describe EP transport using non-local transport models based
on fractional derivatives (del-Castillo-Negrete 2006). These four directions of research
will be explored in a forthcoming publication.
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