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Abstract
We prove convergence in norm and pointwise almost everywhere on 𝐿𝑝 , 𝑝 ∈ (1,∞), for certain multi-parameter
polynomial ergodic averages by establishing the corresponding multi-parameter maximal and oscillation inequal-
ities. Our result, in particular, gives an affirmative answer to a multi-parameter variant of the Bellow–Furstenberg
problem. This paper is also the first systematic treatment of multi-parameter oscillation semi-norms which allows
an efficient handling of multi-parameter pointwise convergence problems with arithmetic features. The methods of
proof of our main result develop estimates for multi-parameter exponential sums, as well as introduce new ideas
from the so-called multi-parameter circle method in the context of the geometry of backwards Newton diagrams
that are dictated by the shape of the polynomials defining our ergodic averages.
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1. Introduction

1.1. A brief history

In 1933, Khintchin [40] had the great insight to see how to generalize the classical equidistribution result
of Bohl [12], Sierpiński [56] and Weyl [66] from 1910 to a pointwise ergodic theorem, observing that as
a consequence of Birkhoff’s famous ergodic theorem [11], the following equidistribution result holds:
namely, for any irrational 𝜃 ∈ R, for any Lebesgue measurable set 𝐸 ⊆ [0, 1) and for almost every 𝑥 ∈ R,
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lim
𝑀→∞

#{𝑚 ∈ [𝑀] : {𝑥 + 𝑚𝜃} ∈ 𝐸}
𝑀

= |𝐸 |,

where {𝑥} denotes the fractional part of 𝑥 ∈ R, and [𝑁] := (0, 𝑁] ∩ Z for any real number 𝑁 ≥ 1.
In 1916, Weyl [67] extended the classical equidistribution theorem to general polynomial sequences
({𝑃(𝑛)})𝑛∈N having at least one irrational coefficient, and so it was natural to ask whether a pointwise
ergodic extension of Weyl’s equidistribution theorem holds. This question was posed by Bellow [5] and
Furstenberg [24] in the early 1980s; precisely, they asked if for any polynomial 𝑃 ∈ Z[m] with integer
coefficients and 𝑃(0) = 0 and for any invertible measure-preserving transformation 𝑇 : 𝑋 → 𝑋 on a
probability space (𝑋,B(𝑋), 𝜇), does the limit

lim
𝑀→∞

E𝑚∈[𝑀 ] 𝑓 (𝑇𝑃 (𝑚)𝑥)

exist for almost every 𝑥 ∈ 𝑋 and for every 𝑓 ∈ 𝐿∞(𝑋)? Here and throughout the paper we use the
notation E𝑦∈𝑌 𝑓 (𝑦) := 1

#𝑌
∑

𝑦∈𝑌 𝑓 (𝑦) for any finite set 𝑌 ≠ ∅ and any function 𝑓 : 𝑌 → C. In the mid
1980s, the first author [13, 14, 15] established that this is indeed the case whenever 𝑓 ∈ 𝐿 𝑝 (𝑋) and
𝑝 ∈ (1,∞), leaving open the question of what happens on 𝐿1 (𝑋). Interestingly, it was shown much
later by Buczolich and Mauldin [18] that the above pointwise convergence result fails for general 𝐿1

functions when 𝑃(𝑚) = 𝑚2; see also [42] for further refinements. In any case, the papers [13, 14, 15]
represent a far-reaching common generalization of Birkhoff’s pointwise ergodic theorem and Weyl’s
equidistribution theorem.

Both Birkhoff’s and Weyl’s results have natural multi-parameter extensions. In 1951, Dunford [23]
and Zygmund [72] independently extended Birkhoff’s theorem to multiple measure-preserving transfor-
mations 𝑇1, . . . , 𝑇𝑘 : 𝑋 → 𝑋 . They showed that the limit

lim
𝑀1 ,...,𝑀𝑘→∞

E(𝑚1 ,...,𝑚𝑘 ) ∈
∏𝑘

𝑗=1 [𝑀 𝑗 ] 𝑓 (𝑇𝑚1
1 · · ·𝑇𝑚𝑘

𝑘 𝑥) (1.1)

exists for almost every 𝑥 ∈ 𝑋 and for any 𝑓 ∈ 𝐿𝑝 (𝑋) with 𝑝 ∈ (1,∞), where
∏𝑘

𝑗=1 [𝑀 𝑗 ] := [𝑀1] ×
. . . × [𝑀𝑘 ]. The limit is taken in the unrestricted sense; that is, when min{𝑀1, . . . , 𝑀𝑘 } → ∞. Here,
when 𝑘 ≥ 2, the pointwise convergence result is manifestly false for general 𝑓 ∈ 𝐿1 (𝑋).

In 1979, Arkhipov, Chubarikov and Karatsuba [2] extended Weyl’s equidistribution result to polyno-
mials (even multiple polynomials) of several variables. In its simplest form, their result asserts that for
any k-variate polynomial 𝑃 ∈ Z[m1, . . . , m𝑘 ], any irrational 𝜃 ∈ R and any interval [𝑎, 𝑏) ⊆ [0, 1), one
has

lim
min{𝑀1 ,...,𝑀𝑘 }→∞

#{(𝑚1, . . . , 𝑚𝑘 ) ∈
∏𝑘

𝑗=1 [𝑀 𝑗 ] : {𝜃𝑃(𝑚1, . . . , 𝑚𝑘 )} ∈ [𝑎, 𝑏)}
𝑀1 · · · 𝑀𝑘

= 𝑏 − 𝑎. (1.2)

In the late 1980s, after [13, 14, 15] and in light of these results, it was natural to seek a common
generalization of the results of Dunford and Zygmund on the one hand (which generalize Birkhoff’s
original theorem) and Arkhipov, Chubarikov and Karatsuba on the other hand (which generalize Weyl’s
theorem), which can be subsumed under the following conjecture, a multi-parameter variant of the
Bellow–Furstenberg problem:

Conjecture 1.3. Let 𝑘 ∈ Z+ with 𝑘 ≥ 2 be given and let (𝑋,B(𝑋), 𝜇) be a probability measure space
with an invertible measure-preserving transformation 𝑇 : 𝑋 → 𝑋 . Assume that 𝑃 ∈ Z[m1, . . . , m𝑘 ]
with 𝑃(0) = 0. Then for any 𝑓 ∈ 𝐿∞(𝑋), the limit

lim
min{𝑀1 ,...,𝑀𝑘 }→∞

E(𝑚1 ,...,𝑚𝑘 ) ∈
∏𝑘

𝑗=1 [𝑀 𝑗 ] 𝑓 (𝑇𝑃 (𝑚1 ,...,𝑚𝑘 )𝑥) exists for 𝜇-almost every 𝑥 ∈ 𝑋. (1.4)

Our main theorem resolves this conjecture.

https://doi.org/10.1017/fmp.2023.21 Published online by Cambridge University Press

https://doi.org/10.1017/fmp.2023.21


Forum of Mathematics, Pi 3

Theorem 1.5. Conjecture 1.3 is true for all 𝑘 ∈ Z+.

The case 𝑘 = 1 corresponds to the classical one-parameter question of Bellow [5] and Furstenberg
[24] and was resolved in [13, 14, 15]. In this paper, we will establish the cases 𝑘 ≥ 2. In fact, we will
prove stronger quantitative results including corresponding multi-parameter maximal and oscillation
estimates (see Theorem 1.11 below), which will imply Conjecture 1.3. This paper also represents a
first systematic treatment of multi-parameter oscillation semi-norms which allows an efficient handling
of multi-parameter pointwise convergence problems for ergodic averaging operators with polynomial
orbits. Before we formulate our main quantitative results, we briefly describe the interesting history of
Conjecture 1.3.

The theorems of Dunford [23] and Zygmund [72] have simple proofs, which can be deduced by
iterative applications of the classical Birkhoff ergodic theorem. For this purpose, it suffices to note
that the Dunford–Zygmund averages from (1.1) can be written as a composition of k classical Birkhoff
averages as follows

E(𝑚1 ,...,𝑚𝑘 ) ∈
∏𝑘

𝑗=1 [𝑀 𝑗 ] 𝑓 (𝑇𝑚1
1 · · ·𝑇𝑚𝑘

𝑘 𝑥) = E𝑚𝑘 ∈[𝑀𝑘 ]
[
· · ·E𝑚1∈[𝑀1 ] 𝑓 (𝑇𝑚1

1 (· · ·𝑇𝑚𝑘

𝑘 )𝑥)
]
. (1.6)

The order in this composition is important since the transformations 𝑇1, . . . , 𝑇𝑘 do not need to commute.
The first author, in view of [13, 14, 15], extended the observation from (1.6) to polynomial orbits and
showed that for every 𝑓 ∈ 𝐿 𝑝 (𝑋) with 𝑝 ∈ (1,∞), the limit

lim
min{𝑀1 ,...,𝑀𝑘 }→∞

E(𝑚1 ,...,𝑚𝑘 ) ∈
∏𝑘

𝑗=1 [𝑀 𝑗 ] 𝑓 (𝑇𝑃1 (𝑚1)
1 · · ·𝑇𝑃𝑘 (𝑚𝑘 )

𝑘 𝑥) (1.7)

exists for 𝜇-almost every 𝑥 ∈ 𝑋 , whenever 𝑃1, . . . , 𝑃𝑘 ∈ Z[m] with 𝑃1 (0) = . . . = 𝑃𝑘 (0) = 0 and
𝑇1, . . . , 𝑇𝑑 : 𝑋 → 𝑋 is a family of commuting and invertible measure-preserving transformations. The
result from (1.7) was never published; nonetheless, it can be thought of as a polynomial extension of
the theorem of Dunford [23] and Zygmund [72] (the arguments in Section 3.4 can be used to derive a
quantitative version of (1.7)). Interestingly, as observed by Benjamin Weiss (privately communicated to
the first author), any ergodic theorem for these averages fails in general for 𝑘 ≥ 2 when the 𝑇1, . . . , 𝑇𝑘 are
general non-commuting transformations. It may even fail in the one-parameter situation for the averages
of the form E𝑚∈[𝑀 ] 𝑓 (𝑇𝑃1 (𝑚)

1 · · ·𝑇𝑃𝑘 (𝑚)
𝑘 𝑥); see also [10] for interesting counterexamples.

This was a turning point, illustrating that the multi-parameter theory for averages with orbits along
polynomials with separated variables as in (1.7) is well-understood and can be readily deduced from
the one-parameter theory [13, 14, 15] by simple iteration as in (1.6). However, the equidistribution
result (1.2) of Arkhipov, Chubarikov and Karatsuba [2], based on the so-called multi-parameter circle
method (deep and intricate tools in analytic number theory which go beyond the classical circle method)
showed that the situation may be dramatically different when orbits are defined along genuinely k-variate
polynomials 𝑃 ∈ Z[m1, . . . , m𝑘 ] and led to Conjecture 1.3. Even for 𝑘 = 2 with 𝑃(𝑚1, 𝑚2) = 𝑚2

1𝑚3
2

in (1.4), the problem becomes very challenging. Surprisingly it seems that there is no simple way (like
changing variables or interpreting the average from (1.4) as a composition of simpler one-parameter
averages as in (1.6)) that would help us to reduce the matter to the setup where pointwise convergence
is known.

The multi-parameter case 𝑘 ≥ 2 in Conjecture 1.3 lies in sharp contrast to the one-parameter situation
𝑘 = 1, causing serious difficulties that were not apparent in [13, 14, 15]. The most notable differences
are multi-parameter estimates of corresponding exponential sums and a delicate control of error terms
that arise in implementing the circle method. These difficulties arise from the lack of nestedness when
the parameters 𝑀1, . . . , 𝑀𝑘 are independent; see Figure 1 and Figure 2 below. We now turn to a more
detailed discussion and precise formulation of the results in this paper.
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𝑄𝑀,𝑀

𝑄𝑁,𝑁

...

𝑀 𝑁

𝑀

𝑁

Figure 1. Family of nested rectangles (cubes) 𝑄𝑀,𝑀 ⊂ 𝑄𝑁 ,𝑁 with 𝑀 < 𝑁 , for 𝑘 = 2.

𝑄𝑀1 ,𝑀2

𝑄𝑁1 ,𝑁2

...

𝑀1 𝑁1

𝑁2

𝑀2

Figure 2. Family of un-nested rectangles 𝑄𝑀1 ,𝑀2 � 𝑄𝑁1 ,𝑁2 with 𝑀1 < 𝑁1 and 𝑀2 > 𝑁2, for 𝑘 = 2.

1.2. Statement of the main results

Throughout this paper, the triple (𝑋,B(𝑋), 𝜇) denotes a 𝜎-finite measure space, and Z[m1, . . . , m𝑘 ]
denotes the space of all formal k-variate polynomials 𝑃(m1, . . . , m𝑘 ) with 𝑘 ∈ Z+ indeterminates
m1, . . . , m𝑘 and integer coefficients. Each polynomial 𝑃 ∈ Z[m1, . . . , m𝑘 ] will always be identified
with a map Z𝑘 
 (𝑚1, . . . , 𝑚𝑘 ) ↦→ 𝑃(𝑚1, . . . , 𝑚𝑘 ) ∈ Z.

Let 𝑑, 𝑘 ∈ Z+, and given a family T = {𝑇1, . . . , 𝑇𝑑} of invertible commuting measure-preserving
transformations on X, a measurable function f on X, polynomials P = {𝑃1, . . . , 𝑃𝑑} ⊂ Z[m1, . . . , m𝑘 ]
and a vector of real numbers 𝑀 = (𝑀1, . . . , 𝑀𝑘 ) whose entries are greater than 1, we define the multi-
parameter polynomial ergodic average by

𝐴P
𝑀 ;𝑋,T 𝑓 (𝑥) := E𝑚∈𝑄𝑀 𝑓 (𝑇𝑃1 (𝑚)

1 · · ·𝑇𝑃𝑑 (𝑚)
𝑑 𝑥), 𝑥 ∈ 𝑋, (1.8)

where 𝑄𝑀 := [𝑀1] × . . . × [𝑀𝑘 ] is a rectangle in Z𝑘 . We will often abbreviate 𝐴P
𝑀 ;𝑋,T to 𝐴P

𝑀 ;𝑋 when
the tranformations are understood. In some instances, we will write out the averages

𝐴P
𝑀 ;𝑋 𝑓 (𝑥) = 𝐴𝑃1 ,...,𝑃𝑑

𝑀1 ,....,𝑀𝑘 ;𝑋 𝑓 (𝑥) or 𝐴P
𝑀 ;𝑋,T 𝑓 (𝑥) = 𝐴𝑃1 ,...,𝑃𝑑

𝑀1 ,...,𝑀𝑘 ;𝑋,𝑇1 ,...,𝑇𝑑
𝑓 (𝑥),

depending on how explicit we want to be.

Example 1.9. From the point of view of pointwise convergence problems, due to the Calderón trans-
ference principle [19], the most important dynamical system is the integer shift system. Consider
the d-dimensional lattice (Z𝑑 ,B(Z𝑑), 𝜇Z𝑑 ) equipped with a family of shifts 𝑆1, . . . , 𝑆𝑑 : Z𝑑 → Z𝑑 ,
where B(Z𝑑) denotes the 𝜎-algebra of all subsets of Z𝑑 , 𝜇Z𝑑 denotes counting measure on Z𝑑 , and
𝑆 𝑗 (𝑥) = 𝑥 − 𝑒 𝑗 for every 𝑥 ∈ Z𝑑 (here, 𝑒 𝑗 is j-th basis vector from the standard basis in Z𝑑 for
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each 𝑗 ∈ [𝑑]). The average 𝐴P
𝑀 ;𝑋,T with T = (𝑇1, . . . , 𝑇𝑑) = (𝑆1, . . . , 𝑆𝑑) can be rewritten for any

𝑥 = (𝑥1, . . . , 𝑥𝑑) ∈ Z𝑑 and any finitely supported function 𝑓 : Z𝑑 → C as

𝐴P
𝑀 ;Z𝑑 𝑓 (𝑥) = E𝑚∈𝑄𝑀 𝑓 (𝑥1 − 𝑃1 (𝑚), . . . , 𝑥𝑑 − 𝑃𝑑 (𝑚)). (1.10)

The main result of this paper, which implies Conjecture 1.3, is the following ergodic theorem.

Theorem 1.11. Let (𝑋,B(𝑋), 𝜇) be a 𝜎-finite measure space with an invertible measure-preserving
transformation 𝑇 : 𝑋 → 𝑋 . Let 𝑘 ∈ Z+ with 𝑘 ≥ 2 be given, and 𝑃 ∈ Z[m1, . . . , m𝑘 ] be a polynomial
such that 𝑃(0) = 0. Let 𝑓 ∈ 𝐿𝑝 (𝑋) for some 1 ≤ 𝑝 ≤ ∞, and let 𝐴𝑃

𝑀1 ,...,𝑀𝑘 ;𝑋,𝑇 𝑓 be the average defined
in (1.8) with 𝑑 = 1 and arbitrary 𝑘 ∈ Z+.

(i) (Mean ergodic theorem) If 1 < 𝑝 < ∞, then the averages 𝐴𝑃
𝑀1 ,...,𝑀𝑘 ;𝑋,𝑇 𝑓 converge in 𝐿 𝑝 (𝑋) norm.

(ii) (Pointwise ergodic theorem) If 1 < 𝑝 < ∞, then the averages 𝐴𝑃
𝑀1 ,...,𝑀𝑘 ;𝑋,𝑇 𝑓 converge pointwise

almost everywhere.
(iii) (Maximal ergodic theorem) If 1 < 𝑝 ≤ ∞, then one has�� sup

𝑀1 ,...,𝑀𝑘 ∈Z+
|𝐴𝑃

𝑀1 ,...,𝑀𝑘 ;𝑋,𝑇 𝑓 |
��
𝐿𝑝 (𝑋 ) �𝑝,𝑃 ‖ 𝑓 ‖𝐿𝑝 (𝑋 ) . (1.12)

(iv) (Oscillation ergodic theorem) If 1 < 𝑝 < ∞ and 𝜏 > 1, then one has

sup
𝐽 ∈Z+

sup
𝐼 ∈𝔖𝐽 (D𝑘

𝜏 )

��𝑂 𝐼 ,𝐽 (𝐴𝑃
𝑀1 ,...,𝑀𝑘 ;𝑋,𝑇 𝑓 : 𝑀1, . . . , 𝑀𝑘 ∈ D𝜏)‖𝐿𝑝 (𝑋 ) �𝑝,𝜏,𝑃 ‖ 𝑓 ‖𝐿𝑝 (𝑋 ) ,

(1.13)

where D𝜏 := {𝜏𝑛 : 𝑛 ∈ N}; see Section 2 for a definition of the oscillation semi-norm 𝑂 𝐼 ,𝐽 . The
implicit constant in (1.12) and (1.13) may depend on 𝑝, 𝜏, 𝑃.

For ease of exposition, we only prove Theorem 1.11 in the two-parameter setting 𝑘 = 2, though
there are some places in the paper where some arguments are formulated and proved in the multi-
parameter setting to convince the reader that our arguments are adaptable to the general multi-parameter
setup. However, the patient reader will readily see that all two-parameter arguments are adaptable (at
the expense of introducing cumbersome notation, which would make the exposition unreadable) to the
general multi-parameter setting for arbitrary 𝑘 ≥ 2, by multiple iterations of the arguments presented in
the paper.

We now give some remarks about Theorem 1.11.

1. Theorem 1.11 establishes Conjecture 1.3 for the averages 𝐴𝑃
𝑀 ;𝑋,𝑇 𝑓 . This is the first nontrivial

result in the literature establishing pointwise almost everywhere convergence for polynomial ergodic
averages in the multi-parameter setting. See [53] for other pointwise convergence results in the
multi-parameter setting.

2. The proof of Theorem 1.11 is relatively simple if 𝑃 ∈ Z[m1, . . . , m𝑘 ] is degenerate; see inequality
(3.5) in Section 3. We will say that 𝑃 ∈ Z[m1, . . . , m𝑘 ] is degenerate if it can be written as

𝑃(m1, . . . , m𝑘 ) = 𝑃1 (m1) + . . . + 𝑃𝑘 (m𝑘 ), (1.14)

where 𝑃1 ∈ Z[m1], . . . , 𝑃𝑘 ∈ Z[m𝑘 ] with 𝑃1 (0) = . . . = 𝑃𝑘 (0) = 0. Otherwise, we say that
𝑃 ∈ Z[m1, . . . , m𝑘 ] is non-degenerate. The method of proof of Theorem 1.11 in the degenerate case
can be also used to derive quantitative oscillation bounds for the polynomial Dunford and Zygmund
theorem establishing (1.7).

3. At the expense of great complexity, one can also prove that inequality (1.13) holds with Z+ in place
of D𝜏 . However, we do not address this question here, since (1.13) is sufficient for our purposes and
will allow us to establish Theorem 1.11(ii).
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4. If (𝑋,B(𝑋), 𝜇) is a probability space and the measure preserving transformation T in Theorem 1.11
is totally ergodic, then Theorem 1.11(ii) implies

lim
min{𝑀1 ,...,𝑀𝑘 }→∞

𝐴𝑃
𝑀1 ,...,𝑀𝑘 ;𝑋,𝑇 𝑓 (𝑥) =

∫
𝑋

𝑓 (𝑦)𝑑𝜇(𝑦) (1.15)

𝜇-almost everywhere on X. We recall that a measure preserving transformation T is called ergodic on
X if 𝑇−1 [𝐵] = 𝐵 implies 𝜇(𝐵) = 0 or 𝜇(𝐵) = 1, and totally ergodic if 𝑇𝑛 is ergodic for every 𝑛 ∈ Z+.

5. This paper is the first systematic treatment of multi-parameter oscillation semi-norms; see (2.9),
Proposition 2.16 and Proposition 2.18. Moreover, it seems that the oscillation semi-norm is the only
available tool that allows us to handle efficiently multi-parameter pointwise convergence problems
with arithmetic features. This contrasts sharply with the one-parameter setting, where we have a
variety of tools including oscillations, variations or jumps to handle pointwise convergence problems;
see [38, 49] and the references therein. Multi-parameter oscillations (2.9) were considered for the
first time in [37] in the context of the Dunford–Zygmund averages (1.1) for commuting measure-
preserving transformations.

We close this subsection by emphasizing that the methods developed in this paper allow us to handle
averages (1.8) with multiple polynomials. At the expense of some additional work, one can prove the
following ergodic theorem.

Theorem 1.16. Let (𝑋,B(𝑋), 𝜇) be a 𝜎-finite measure space equipped with a family of commuting
invertible and measure-preserving transformations 𝑇1, 𝑇2, 𝑇3 : 𝑋 → 𝑋 . Let 𝑃 ∈ Z[m1, m2] be a
polynomial such that 𝑃(0, 0) = 𝜕1𝑃(0, 0) = 𝜕2𝑃(0, 0) = 0, which additionally has partial degrees (as
a polynomial of the variable m1 and a polynomial of the variable m2) at least two. Let 𝑓 ∈ 𝐿 𝑝 (𝑋)
for some 1 ≤ 𝑝 ≤ ∞, and let 𝐴m1 ,m2 ,𝑃 (m1 ,m2)

𝑀1 ,𝑀2;𝑋 𝑓 be the average defined in (1.8) with 𝑑 = 3, 𝑘 = 2, and
𝑃1 (m1, m2) = m1, 𝑃2(m1, m2) = m2 and 𝑃3 (m1, m2) = 𝑃(m1, m2).

(i) (Mean ergodic theorem) If 1 < 𝑝 < ∞, then the averages 𝐴m1 ,m2 ,𝑃 (m1 ,m2)
𝑀1 ,𝑀2;𝑋 𝑓 converge in 𝐿 𝑝 (𝑋)

norm.
(ii) (Pointwise ergodic theorem) If 1 < 𝑝 < ∞, then the averages 𝐴m1 ,m2 ,𝑃 (m1 ,m2)

𝑀1 ,𝑀2;𝑋 𝑓 converge pointwise
almost everywhere.

(iii) (Maximal ergodic theorem) If 1 < 𝑝 ≤ ∞, then one has�� sup
𝑀1 ,𝑀2∈Z+

|𝐴m1 ,m2 ,𝑃 (m1 ,m2)
𝑀1 ,𝑀2;𝑋 𝑓 |

��
𝐿𝑝 (𝑋 ) �𝑝,𝑃 ‖ 𝑓 ‖𝐿𝑝 (𝑋 ) . (1.17)

(iv) (Oscillation ergodic theorem) If 1 < 𝑝 < ∞ and 𝜏 > 1, then one has

sup
𝐽 ∈Z+

sup
𝐼 ∈𝔖𝐽 (D2

𝜏 )

��𝑂 𝐼 ,𝐽 (𝐴m1 ,m2 ,𝑃 (m1 ,m2)
𝑀1 ,𝑀2;𝑋 𝑓 : 𝑀1, 𝑀2 ∈ D𝜏)‖𝐿𝑝 (𝑋 ) �𝑝,𝜏,𝑃 ‖ 𝑓 ‖𝐿𝑝 (𝑋 ) ,

(1.18)

where D𝜏 := {𝜏𝑛 : 𝑛 ∈ N}. The implicit constant in (1.17) and (1.18) may depend on 𝑝, 𝜏, 𝑃.

For simplicity of notation, we have only formulated Theorem 1.16 in the two-parameter setting,
but it can be extended to a multi-parameter setting as well. Namely, let 𝑑 ≥ 2 and let (𝑋,B(𝑋), 𝜇)
be a 𝜎-finite measure space equipped with a family of commuting invertible and measure-preserving
transformations 𝑇1, . . . , 𝑇𝑑 : 𝑋 → 𝑋 . Suppose that 𝑃 ∈ Z[m1, . . . , m𝑑−1] is a polynomial such that

𝑃(0, . . . , 0) = 𝜕1𝑃(0, . . . , 0) = . . . = 𝜕𝑑−1𝑃(0, . . . , 0) = 0,
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which has partial degrees (as a polynomial of the variable m𝑖 for any 𝑖 ∈ [𝑑 − 1]) at least two. Then the
conclusions of Theorem 1.16 remain true for the averages

𝐴m1 ,...,m𝑑−1 ,𝑃 (m1 ,...,m𝑑−1)
𝑀1 ,...,𝑀𝑑−1;𝑋,𝑇1 ,...,𝑇𝑑

𝑓 in place of 𝐴m1 ,m2 ,𝑃 (m1 ,m2)
𝑀1 ,𝑀2;𝑋 𝑓 . (1.19)

All remarks from items 1–4 after Theorem 1.11 remain true for ergodic averages from (1.19). Finally,
we emphasize that Theorem 1.11 and Theorem 1.16 make a contribution to the famous Furstenberg–
Bergelson–Leibman conjecture, which we now discuss.

1.3. Contributions to the Furstenberg–Bergelson–Leibman conjecture

Furstenberg’s ergodic proof [27] of Szemerédi’s theorem [59] (on the existence arbitrarily long arithmetic
progressions in subsets of integers with positive density) was a departure point for modern ergodic
Ramsey theory. We refer to the survey articles [7], [8] and [25], where details (including comprehensive
historical background) and an extensive literature are given about this fascinating subject. Ergodic
Ramsey theory is a very rich body of research, consisting of many natural generalizations of Szemerédi’s
theorem, including the celebrated polynomial Szemerédi theorem of Bergelson and Leibman [9] that
motivates the following far-reaching conjecture:
Conjecture 1.20 (Furstenberg–Bergelson–Leibman conjecture [10, Section 5.5, p. 468]). For given
parameters 𝑑, 𝑘, 𝑛 ∈ N, let 𝑇1, . . . , 𝑇𝑑 : 𝑋 → 𝑋 be a family of invertible measure-preserving transfor-
mations of a probability measure space (𝑋,B(𝑋), 𝜇) that generates a nilpotent group of step 𝑙 ∈ Z+,
and assume that 𝑃1,1, . . . , 𝑃𝑖, 𝑗 , . . . , 𝑃𝑑,𝑛 ∈ Z[m1, . . . , m𝑘 ]. Then for any 𝑓1, . . . , 𝑓𝑛 ∈ 𝐿∞(𝑋), the
nonconventional multiple polynomial averages

𝐴
𝑃1,1 ,...,𝑃𝑑,𝑛

𝑀 ;𝑋,𝑇1 ,...,𝑇𝑑
( 𝑓1, . . . , 𝑓𝑛) (𝑥) = E𝑚∈

∏𝑘
𝑗=1 [𝑀 𝑗 ]

𝑛∏
𝑗=1

𝑓 𝑗 (𝑇
𝑃1, 𝑗 (𝑚)
1 · · ·𝑇𝑃𝑑, 𝑗 (𝑚)

𝑑 𝑥) (1.21)

converge for 𝜇-almost every 𝑥 ∈ 𝑋 as min{𝑀1, . . . , 𝑀𝑘 } → ∞.
Variants of this conjecture were promoted in person by Furstenberg (we refer to Austin’s article [3,

pp. 6662]) before it was published by Bergelson and Leibman [10, Section 5.5, pp. 468] for 𝑘 = 1. The
nilpotent and multi-parameter setting is the appropriate setting for Conjecture 1.20 as convergence may
fail if the transformations 𝑇1, . . . , 𝑇𝑑 generate a solvable group, as shown by Bergelson and Leibman
[10]. The 𝐿2 (𝑋) norm convergence of (1.21) has been studied since Furstenberg’s ergodic proof [27]
of Szemerédi’s theorem [59] and is fairly well-understood (even in the setting of nilpotent groups) due
to the groundbreaking work of Walsh [70] with 𝑀1 = . . . = 𝑀𝑘 . Prior to Walsh’s paper, extensive
efforts had been made towards understanding 𝐿2 (𝑋) norm convergence, including breakthrough works
of Host–Kra [31], Ziegler [71], Bergelson [6] and Leibman [43]. For more details and references, we
also refer to [4, 21, 26, 32, 61] and the survey articles [7, 8, 25].

The situation is dramatically different for the pointwise convergence problem (1.21), but recently, sig-
nificant progress has been made towards establishing the Furstenberg–Bergelson–Leibman conjecture.
Now let us make a few remarks about this conjecture, its history and the current state of the art.
1. The case 𝑑 = 𝑘 = 𝑛 = 1 of Conjecture 1.20 with 𝑃1,1 (𝑚) = 𝑚 follows from Birkhoff’s ergodic

theorem [11]. In fact, the almost everywhere limit (as well as the norm limit; see also [64]) of (1.21)
exists also for all functions 𝑓 ∈ 𝐿 𝑝 (𝑋), with 1 ≤ 𝑝 < ∞, defined on any 𝜎-finite measure space
(𝑋,B(𝑋), 𝜇).

2. The case 𝑑 = 𝑘 = 𝑛 = 1 of Conjecture 1.20 with arbitrary polynomials 𝑃1,1 ∈ Z[m] (as we have
seen above) was the famous open problem of Bellow [5] and Furstenberg [24], which was solved by
the first author [13, 14, 15] in the mid 1980s. In fact, in [13, 14, 15], it was shown that the almost
everywhere limit (as well as the norm limit; see also [29]) of (1.21) exists also for all functions
𝑓 ∈ 𝐿 𝑝 (𝑋), with 1 < 𝑝 < ∞, defined on any 𝜎-finite measure space (𝑋,B(𝑋), 𝜇). In contrast to the
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Birkhoff theorem, if 𝑃1,1 ∈ Z[n] is a polynomial of degree at least two, the pointwise convergence
at the endpoint for 𝑝 = 1 may fail as was shown by Buczolich and Mauldin [18] for 𝑃1,1 (𝑚) = 𝑚2

and by LaVictoire [42] for 𝑃1,1 (𝑚) = 𝑚𝑘 for any 𝑘 ≥ 2.
3. In the commutative case (step ℓ = 1) where 𝑑, 𝑘 ∈ Z+ and 𝑛 = 1 of Conjecture 1.20 with arbitrary

polynomials 𝑃1,1, . . . , 𝑃𝑑,1 ∈ Z[m1, . . . , m𝑘 ] in the diagonal setting 𝑀1 = . . . = 𝑀𝑘 – that is, the
multi-dimensional one-parameter setting – was solved by the second author with Trojan in [54]. As
before, it was shown that the almost everywhere limit (as well as the norm limit) of (1.21) exists also
for all functions 𝑓 ∈ 𝐿𝑝 (𝑋), with 1 < 𝑝 < ∞, defined on any 𝜎-finite measure space (𝑋,B(𝑋), 𝜇).

4. The question to what extent one can relax the commutation relations between 𝑇1, . . . , 𝑇𝑑 in (1.21),
even in the one-parameter case 𝑀1 = . . . = 𝑀𝑘 , is very intriguing. Some particular examples of
averages (1.21) with 𝑑, 𝑘 ∈ Z+ and 𝑛 = 1 and polynomial mappings with degree at most two in
the step two nilpotent setting were studied in [33, 45]. Recently, the second author with Ionescu,
Magyar and Szarek [36] established Conjecture 1.20 with 𝑑 ∈ Z+ and 𝑘 = 𝑛 = 1 and arbitrary
polynomials 𝑃1,1, . . . , 𝑃𝑑,1 ∈ Z[m] in the nilpotent setting (i.e., when 𝑇1, . . . , 𝑇𝑑 : 𝑋 → 𝑋 is a
family of invertible measure-preserving transformations of a 𝜎-finite measure space (𝑋,B(𝑋), 𝜇)
that generates a nilpotent group of step two).

5. In contrast to the commutative linear theory, the multilinear theory is wide open. Only a few results
are known in the bilinear 𝑛 = 2 and commutative 𝑑 = 𝑘 = 1 setting. The first author [16] established
pointwise convergence when 𝑃1,1 (𝑚) = 𝑎𝑚 and 𝑃1,2 (𝑚) = 𝑏𝑚, with 𝑎, 𝑏 ∈ Z. Recently, the third
author with Krause and Tao [41] proved pointwise convergence for the polynomial Furstenberg–
Weiss averages [28, 30] corresponding to 𝑃1,1 (𝑚) = 𝑚 and 𝑃1,2 (𝑚) = 𝑃(𝑚) with 𝑃 ∈ Z[m] and
deg 𝑃 ≥ 2.

6. A genuinely multi-parameter case 𝑑 = 𝑘 ≥ 2 with 𝑛 = 1 of Conjecture 1.20 for averages (1.21) with
linear orbits (i.e. 𝑃 𝑗 ,1 (𝑚1, . . . , 𝑚𝑑) = 𝑚 𝑗 for 𝑗 ∈ [𝑑]) was established independently by Dunford [23]
and Zygmund [72] in the early 1950s. Moreover, it follows from [23, 72] that the almost everywhere
convergence (as well as the norm convergence) of (1.21) holds for all functions 𝑓 ∈ 𝐿 𝑝 (𝑋), with
1 < 𝑝 < ∞, defined on any 𝜎-finite measure space (𝑋,B(𝑋), 𝜇) equipped with a family of measure-
preserving transformations 𝑇1, . . . , 𝑇𝑑 : 𝑋 → 𝑋 , which does not need to be commutative. One also
knows that pointwise convergence fails if 𝑝 = 1. A polynomial variant of the Dunford and Zygmund
theorem was discussed above; see (1.7).

We close this discussion by emphasizing that Theorem 1.11 and Theorem 1.16 also contribute to
the Furstenberg–Bergelson–Leibman conjecture and, together with all the results listed above, support
the evidence that Conjecture 1.20 may be true in full generality though a complete solution seems very
difficult.

1.4. Overview of the paper

The paper is organized as follows. In Section 2, we fix necessary notation and terminology. We also
introduce the definition of multi-parameter oscillations (2.9) and collect their useful properties; see
Proposition 2.16 and Proposition 2.18. In Section 3, we give a detailed proof of Theorem 1.11 by
reducing the matter to oscillation estimates for truncated variants of averages 𝐴𝑃

𝑀1 ,𝑀2;𝑋 𝑓 ; see definition
(3.6) and Theorem 3.16, which in turn is reduced to the integer shift system, and Theorem 3.19. A result
that may be of independent interest is Proposition 3.7, which shows that oscillations for 𝐴𝑃

𝑀1 ,𝑀2;𝑋 𝑓 and
their truncated variants are, in fact, comparable. In Section 3, see inequality (3.5), and we also illustrate
how to prove Theorem 1.11 in the degenerate case in the sense of definition (1.14) stated after Theorem
1.11. These arguments can be also used to prove oscillation bounds for the polynomial Dunford and
Zygmund theorem, which in turn imply (1.7).

We start with a brief overview of the proof of Theorem 3.19, which implies Theorem 1.5 when
𝑘 = 2 and takes up the bulk of this paper. The proof requires substantial new ideas to overcome a
series of new difficulties arising in the multi-parameter setting. These complications do not arise in the
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one-parameter setup [13, 14, 15]. The most notable obstacle is the lack of nestedness in the definition of
averaging operators (1.8) when the parameters 𝑀1, . . . , 𝑀𝑘 are allowed to run independently. The lack
of nestedness complicates every argument in the circle method, which is the main tool in these kinds
of problems. In order to understand how the lack of nestedness may affect the underlying arguments, it
will be convenient to illustrate this phenomenon by comparing Figure 1 and Figure 2 below. The first
picture (Figure 1) represents the family of nested cubes, which is increasing when the time parameter
increases. The diagonal relation between parameters 𝑀1 = . . . = 𝑀𝑘 is critical.

The second picture (Figure 2) represents the family which is genuinely multi-parameter and there is
no nestedness as the parameters 𝑀1, . . . , 𝑀𝑘 vary independently.

Our remedy to overcome the lack of nestedness will be to develop the so-called multi-parameter circle
method, which will be based on an iterative implementation of the classical circle method. Although
this idea sounds very simple, it is fairly challenging to formalize it in the context of Conjecture 1.3.
We remark that the multi-parameter circle method has been developed for many years in the context
of various problems arising in number theory (see [1] for more details and references, including a
comprehensive historical background) though it is not applicable directly in the ergodic context. We
now highlight the key ingredients that we develop in this paper and that will lead us to develop the
multi-parameter circle method in the context of Theorem 3.19:

(i) ‘Backwards’ Newton diagram is the key tool allowing us to overcome the problem with the lack
of nestedness. In particular, it permits us to understand geometric properties of the underlying
polynomials in Theorem 3.19 by extracting dominating monomials. The latter are critical in making
a distinction between minor and major arcs in the multi-parameter circle method. As far as we know,
this is the first time when the concept of Newton diagrams is exploited in problems concerning
pointwise ergodic theory. We refer to Section 4 for details.

(ii) We derive new estimates for multi-parameter exponential sums arising in the analysis of Fourier
multipliers corresponding to averages (1.10). In Section 5, we build a theory of double exponential
sums, which is dictated by the geometry of the corresponding ‘backwards’ Newton diagrams.
Although the theory of multi-parameter exponential sums is rich (see for example, [1]), our results
seem to be new and the idea of exploiting ‘backwards’ Newton diagrams and iterative applications
of the Vinogradov mean value theorem [17] in estimates of exponential sums is quite efficient.

(iii) A multi-parameter Ionescu–Wainger multiplier theory is developed in Section 6. The Ionescu–
Wainger multiplier theorem [34] was originally proved for linear operators; see also [46, 52,
55, 62]. In this paper, we prove a semi-norm variant of the Ionescu–Wainger theory in the one-
parameter setting, which is consequently upgraded to the multi-parameter setup. ‘Backwards’
Newton diagrams play an essential role in our considerations here as well.

(iv) Finally, we arrive at the stage where the multi-parameter circle method is feasible by a delicate
iterative application of the classical circle method. In this part of the argument, the lack of nested-
ness is particularly unpleasant, causing serious difficulties in controlling error terms that arise in
estimating contributions of the corresponding Fourier multipliers on minor and major arcs, which
are genuinely multi-parameter. In Section 7, we illustrate how one can use all the tools developed
in the previous sections to give a rigorous proof of Theorem 3.19.

We now take a closer look at the tools highlighted above. In Section 4, we introduce the concept
of ‘backwards’ Newton diagram, which is the key to circumvent the difficulties caused by the lack
of nestedness. The ‘backwards’ Newton diagram splits the parameter space into a finite number of
sectors, where certain relations between parameters are given. In each of these sectors there is a
dominating monomial which, in turn, gives rise to an implementation of the circle method to each of
the sectors separately. The distinctions between minor and major arcs are then dictated by the degree
of the associated dominating monomial. At this stage, we eliminate minor arcs by invoking estimates
of double exponential sums from Proposition 5.37. This proposition is essential in our argument; its
proof is given in Section 5. The key ingredients are Proposition 5.22, which may be thought of as a two
parameter counterpart of the classical Weyl’s inequality, and the properties of the ‘backwards’ Newton
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diagram. Although the theory of multi-parameter exponential sums has been developed over the years
(see [1] for a comprehensive treatment of the subject), we require more delicate estimates than those
available in the existing literature. In this paper, we give an ad-hoc proof of Proposition 5.22, which
follows from an iterative application of Vinogradov’s mean value theorem, and may be interesting in
its own right. In Section 5, we also develop estimates for complete exponential sums. In Section 6,
we develop the Ionescu–Wainger multiplier theory for various semi-norms in one-parameter as well as
in multi-parameter settings. Our result in the one-parameter setting, Theorem 6.14, is formulated for
oscillations and maximal functions, but the proofs also work for 𝜌-variations or jumps. In fact, Theorem
6.14 is the starting point for establishing the corresponding multi-parameter Ionescu–Wainger theory
for oscillations. The latter theorem will be directly applicable in the analysis of multipliers associated
with the averages 𝐴𝑃

𝑀1 ,𝑀2;𝑋 𝑓 . The results of Section 6 are critical in our multi-parameter circle method
that is presented in Section 7, as it allows us to efficiently control the error terms that arise on major
arcs as well as the contribution coming from the main part. In contrast to the one-parameter theory [13,
14, 15], the challenge here is to control, for instance, maximal functions corresponding to error terms.
For this purpose, all error terms have to be provided with asymptotic precision, which usually requires
careful arguments. The details of the multi-parameter circle method are presented in Section 7 in the
context of the proof of Theorem 3.19.

1.5. More about Conjecture 1.20

Conjecture 1.20 is one of the major open problems in pointwise ergodic theory, which seems to be
very difficult due to its multilinear nature. Here, in light of the Arkhipov, Chubarikov and Karatsuba
[2] equidistribution theory which works also for multiple polynomials, it seems reasonable to propose a
slightly more modest problem (implied by Conjecture 1.20) though still very interesting and challenging
that can be subsumed under the following conjecture:

Conjecture 1.22. Let 𝑑, 𝑘 ∈ Z+ be given and let (𝑋,B(𝑋), 𝜇) be a probability measure space endowed
with a family of invertible commuting measure-preserving transformations 𝑇1, . . . , 𝑇𝑑 : 𝑋 → 𝑋 . Assume
that 𝑃1, . . . , 𝑃𝑑 ∈ Z[m1, . . . , m𝑘 ]. Then for any 𝑓 ∈ 𝐿∞(𝑋), the multi-parameter linear polynomial
averages

𝐴𝑃1 ,...,𝑃𝑑

𝑀1 ,...,𝑀𝑘 ;𝑋,𝑇1 ,...,𝑇𝑑
𝑓 (𝑥) = E𝑚∈

∏𝑘
𝑗=1 [𝑀 𝑗 ] 𝑓 (𝑇𝑃1 (𝑚)

1 · · ·𝑇𝑃𝑑 (𝑚)
𝑑 𝑥)

converge for 𝜇-almost every 𝑥 ∈ 𝑋 , as min{𝑀1, . . . , 𝑀𝑘 } → ∞.

Even though we prove Conjecture 1.3 here, it is not clear whether Conjecture 1.22 is true for all
polynomials. If it is not true for all polynomials, it would be interesting, in view of Theorem 1.16, to
characterize the class of those polynomials for which Conjecture 1.22 holds. Although the averages
from Theorem 1.11 and Theorem 1.16 share a lot of difficulties that arise in the general case, there are
some cases that are not covered by the methods of this paper. An interesting difficulty arises for the
so-called partially complete exponential sums when we are seeking estimates of the form

1
𝑀1𝑞

𝑀1∑
𝑚1=1




 𝑞∑
𝑚2=1

𝒆(𝑎2𝑚2/𝑞 + 𝑎3𝑃(𝑚1, 𝑚2)/𝑞)



 � 𝑞−𝛿 , (1.23)

for all 𝑀1, 𝑞 ∈ Z+ and some 𝛿 ∈ (0, 1), whenever (𝑎2, 𝑎3, 𝑞) = 1. These kinds of estimates arise from
applications of the circle method with respect to the second variable 𝑚2 for the averages 𝐴m1 ,m2 ,𝑃 (m1 ,m2)

𝑀1 ,𝑀2;𝑋 𝑓
when we are at the stage of applying the circle method with respect to the first variable 𝑚1. Here, the
assumption that P has partial degrees (as a polynomial of the variable 𝑚1 and a polynomial of the
variable 𝑚2) at least two is essential. Otherwise, if 𝑀1 < 𝑞, the decay 𝑞−𝛿 in (1.23) is not possible.
In order to see this, it suffices to take 𝑃(𝑚1, 𝑚2) = 𝑚2

1𝑚2. A proof of Theorem 1.16 for polynomials
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of this type, as well as Conjecture 1.22, will require a deeper understanding and substantially new
methods. We believe that the proof of Theorem 1.11 is an important contribution towards understanding
Conjecture 1.22 that may shed new light on the general case and either lead to its full resolution or to a
counterexample. The second and fourth authors plan to pursue this problem in the future.

1.6. In Memoriam

It was a great privilege and an unforgettable experience for the second and fourth authors to know and
work with Elias M. Stein (January 13, 1931–December 23, 2018) and Jean Bourgain (February 28,
1954–December 22, 2018). Eli and Jean had an immeasurable effect on our lives and careers. It was a
very sad time for us when we learned that Eli and Jean passed away within an interval of one day in
December 2018. We miss our friends and collaborators dearly.

We now briefly describe how the collaboration on this project arose. In 2011, the second and
fourth authors started to work on some aspects of a multi-parameter circle method in the context of
various discrete multi-parameter operators. These efforts resulted in a draft on estimates for certain
two-parameter exponential sums. This draft was sent to the first author sometime in the first part of
2016. In October 2016, when the second author was a member of the Institute for Advanced Study, it
was realized (during a discussion between the first two authors) that the estimates from this draft are
closely related to a multi-parameter Vinogradov’s mean value theorem. This was interesting to the first
author who at that time was involved in developing the theory of decoupling. We also realized that
some ideas of a multi-parameter circle method from the draft of the second and fourth authors may
be upgraded and used in attacking a multi-parameter variant of the Bellow and Furstenberg problem
formulated in Conjecture 1.3. That was the first time when the second, third and fourth authors learned
about this conjecture and unpublished observations of the first author from the late 1980s that resulted
in establishing pointwise convergence in (1.7). This was the starting point of our collaboration. At that
time another question arose, which is also related to this paper. It is interesting whether a sharp multi-
parameter variant of Vinogradov’s mean value theorem can be proved using the recent developments in
the decoupling theory from [17]. A multi-parameter Vinogradov’s mean value theorem was investigated
in [1], but the bounds are not optimal. So the question is about adapting the methods from [17] to the
multi-parameter setting in order to obtain sharp bounds, and their applications in the exponential sum
estimates.

A substantial part of this project was completed at the end of November/beginning of December
2016, when the fourth author visited Princeton University and the Institute for Advanced Study. At that
time, we discussed (more or less) all tools that were needed to establish Theorem 1.11 for the monomial
𝑃(𝑚1, 𝑚2) = 𝑚2

1𝑚3
2. Then we were convinced that we could establish Conjecture 1.22 in full generality,

but various difficulties arose when we started to work out the details, and we ultimately only managed
to prove Theorem 1.11 and Theorem 1.16. The second and fourth authors decided to illustrate the
arguments in the two-parameter setting and the reason is twofold. On the one hand, we wanted to avoid
introducing heavy multi-parameter notation capturing all combinatorial nuances arising in this project.
On the other hand, what is more important is that we wanted to illustrate the spirit of our discussions
that took place in 2016. For instance, the arguments presented in Section 5 can be derived by using Weyl
differencing argument, which may be even simpler and can be easily adapted to the multi-parameter
setting, though our presentation is very close to the arguments that we developed in 2016, and also
motivates the question about the role of decoupling theory in the multi-parameter Vinogradov’s mean
value theorem that we have stated above.

2. Notation and useful tools

We now set up notation that will be used throughout the paper. We also collect useful tools and basic
properties of oscillation semi-norms that will be used in the paper.
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2.1. Basic notation

The set of positive integers and nonnegative integers will be denoted, respectively, by Z+ := {1, 2, . . .}
and N := {0, 1, 2, . . .}. For 𝑑 ∈ Z+, the sets Z𝑑 , R𝑑 , C𝑑 and T𝑑 := R𝑑/Z𝑑 have standard meaning. For
any 𝑥 ∈ R, we will use the floor and fractional part functions

�𝑥� := max{𝑛 ∈ Z : 𝑛 ≤ 𝑥}, and {𝑥} := 𝑥 − �𝑥� .

For 𝑥, 𝑦 ∈ R, we shall also write 𝑥 ∨ 𝑦 := max{𝑥, 𝑦} and 𝑥 ∧ 𝑦 := min{𝑥, 𝑦}. We denote R+ := (0,∞),
and for every 𝑁 ∈ R+, we set

[𝑁] := (0, 𝑁] ∩ Z = {1, . . . , �𝑁�},

and we will also write

N≤𝑁 := [0, 𝑁] ∩ N, and N<𝑁 := [0, 𝑁) ∩ N,

N≥𝑁 := [𝑁,∞) ∩ N, and N>𝑁 := (𝑁,∞) ∩ N.

For any 𝜏 > 1, we will consider the set

D𝜏 := {𝜏𝑛 : 𝑛 ∈ N}.

For 𝑎 = (𝑎1, . . . , 𝑎𝑛) ∈ Z𝑛 and 𝑞 ≥ 1 an integer, we denote by (𝑎, 𝑞) the greatest common divisor of
a and q; that is, the largest integer 𝑑 ≥ 1 that divides q and all the components 𝑎1, . . . , 𝑎𝑛. Clearly, any
vector in Q𝑛 has a unique representation as 𝑎/𝑞 with 𝑞 ∈ Z+, 𝑎 ∈ Z𝑛 and (𝑎, 𝑞) = 1.

We use 1𝐴 to denote the indicator function of a set A. If S is a statement, we write 1𝑆 to denote its
indicator, equal to 1 if S is true and 0 if S is false. For instance, 1𝐴(𝑥) = 1𝑥∈𝐴.

Throughout the paper, 𝐶 > 0 is an absolute constant which may change from occurrence to occur-
rence. For two nonnegative quantities 𝐴, 𝐵, we write 𝐴 � 𝐵 if there is an absolute constant 𝐶 > 0 such
that 𝐴 ≤ 𝐶𝐵. We will write 𝐴 � 𝐵 when 𝐴 � 𝐵 � 𝐴. We will write �𝛿 or �𝛿 to emphasize that the
implicit constant depends on 𝛿. For a function 𝑓 : 𝑋 → C and positive-valued function 𝑔 : 𝑋 → (0,∞),
we write 𝑓 = 𝑂 (𝑔) if there exists a constant 𝐶 > 0 such that | 𝑓 (𝑥) | ≤ 𝐶𝑔(𝑥) for all 𝑥 ∈ 𝑋 . We will also
write 𝑓 = 𝑂 𝛿 (𝑔) if the implicit constant depends on 𝛿.

2.2. Summation by parts

For any real numbers 𝑢 < 𝑣 and any sequences (𝑎𝑛 : 𝑛 ∈ Z) ⊆ C and (𝑏𝑛 : 𝑛 ∈ Z) ⊆ C, we will use the
following version of the summation by parts formula∑

𝑛∈(𝑢,𝑣 ]∩Z
𝑎𝑛𝑏𝑛 = 𝑆𝑣𝑏 �𝑣 � +

∑
𝑛∈(𝑢,𝑣−1]∩Z

𝑆𝑛 (𝑏𝑛 − 𝑏𝑛+1), (2.1)

where 𝑆𝑤 :=
∑

𝑘∈(𝑢,𝑤 ]∩Z 𝑎𝑘 for any 𝑤 > 𝑢.

2.3. Euclidean spaces

For 𝑑 ∈ Z+, the set {𝑒𝑖 ∈ R𝑑 : 𝑖 ∈ [𝑑]} denotes the standard basis in R𝑑 . The standard inner product
and the corresponding Euclidean norm on R𝑑 are denoted by

𝑥 · 𝜉 :=
𝑑∑
𝑘=1

𝑥𝑘𝜉𝑘 , and |𝑥 | := |𝑥 |2 :=
√

𝑥 · 𝑥

for every 𝑥 = (𝑥1, . . . , 𝑥𝑑) and 𝜉 = (𝜉1, . . . , 𝜉𝑑) ∈ R𝑑 .
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Throughout the paper, the d-dimensional torus T𝑑 , which unless otherwise stated will be identified
with [−1/2, 1/2)𝑑 , is a priori endowed with the periodic norm

‖𝜉‖ :=
( 𝑑∑
𝑘=1

‖𝜉𝑘 ‖2
)1/2

for 𝜉 = (𝜉1, . . . , 𝜉𝑑) ∈ T𝑑 ,

where ‖𝜉𝑘 ‖ = disr(𝜉𝑘 ,Z) for all 𝜉𝑘 ∈ T and 𝑘 ∈ [𝑑]. However, identifying T𝑑 with [−1/2, 1/2)𝑑 , we
see that the norm ‖ · ‖ coincides with the Euclidean norm | · | restricted to [−1/2, 1/2)𝑑 .

2.4. Smooth functions

The partial derivative of a differentiable function 𝑓 : R𝑑 → C with respect to the j-th variable 𝑥 𝑗 will
be denoted by 𝜕𝑥 𝑗 𝑓 = 𝜕 𝑗 𝑓 , while for any multi-index 𝛼 ∈ N𝑑 , let 𝜕𝛼 𝑓 denote the derivative operator
𝜕𝛼1
𝑥1 · · · 𝜕𝛼𝑑

𝑥𝑑 𝑓 = 𝜕𝛼1
1 · · · 𝜕𝛼𝑑

𝑑 𝑓 of total order |𝛼 | := 𝛼1 + . . . + 𝛼𝑑 .
Let 𝜂 : R→ [0, 1] be a smooth and even cutoff function such that

1[−1,1] ≤ 𝜂 ≤ 1[−2,2] .

For any 𝑛, 𝜉 ∈ R, we define

𝜂≤𝑛 (𝜉) := 𝜂(2−𝑛𝜉).

For any 𝜉 = (𝜉1, . . . , 𝜉𝑑) ∈ R𝑑 and 𝑖 ∈ [𝑑], we also define

𝜂 (𝑖)
≤𝑛 (𝜉) := 𝜂≤𝑛 (𝜉𝑖).

More generally, for any 𝐴 = {𝑖1, . . . , 𝑖𝑚} ⊆ [𝑑] for some 𝑚 ∈ [𝑑], and numbers 𝑛𝑖1 , . . . , 𝑛𝑖𝑚 ∈ R
corresponding to the set A, we will write

𝜂𝐴≤𝑛𝑖1 ,...,≤𝑛𝑖𝑚
(𝜉) :=

𝑚∏
𝑗=1

𝜂≤𝑛𝑖 𝑗 (𝜉𝑖 𝑗 ) =
𝑚∏
𝑗=1

𝜂
(𝑖 𝑗 )
≤𝑛𝑖 𝑗

(𝜉). (2.2)

If the elements of the set A are ordered increasingly 1 ≤ 𝑖1 < . . . < 𝑖𝑚 ≤ 𝑑, we will also write

𝜂 (𝑖1 ,...,𝑖𝑚)
≤𝑛𝑖1 ,...,≤𝑛𝑖𝑚

(𝜉) := 𝜂𝐴≤𝑛𝑖1 ,...,≤𝑛𝑖𝑚
(𝜉) =

𝑚∏
𝑗=1

𝜂≤𝑛𝑖 𝑗 (𝜉𝑖 𝑗 ) =
𝑚∏
𝑗=1

𝜂
(𝑖 𝑗 )
≤𝑛𝑖 𝑗

(𝜉).

If 𝑛𝑖1 = . . . = 𝑛𝑖𝑚 = 𝑛 ∈ R, we will abbreviate 𝜂𝐴≤𝑛𝑖1 ,...,≤𝑛𝑖𝑚
to 𝜂𝐴≤𝑛 and 𝜂 (𝑖1 ,...,𝑖𝑚)

≤𝑛𝑖1 ,...,≤𝑛𝑖𝑚
to 𝜂 (𝑖1 ,...,𝑖𝑚)

≤𝑛 .

2.5. Function spaces

All vector spaces in this paper will be defined over the complex numbers C. The triple (𝑋,B(𝑋), 𝜇) is a
measure space X with 𝜎-algebra B(𝑋) and 𝜎-finite measure 𝜇. The space of all 𝜇-measurable complex-
valued functions defined on X will be denoted by 𝐿0 (𝑋). The space of all functions in 𝐿0 (𝑋) whose
modulus is integrable with p-th power is denoted by 𝐿𝑝 (𝑋) for 𝑝 ∈ (0,∞), whereas 𝐿∞(𝑋) denotes the
space of all essentially bounded functions in 𝐿0 (𝑋). These notions can be extended to functions taking
values in a finite dimensional normed vector space (𝐵, ‖ · ‖𝐵); for instance,

𝐿 𝑝 (𝑋; 𝐵) :=
{
𝐹 ∈ 𝐿0 (𝑋; 𝐵) : ‖𝐹‖𝐿𝑝 (𝑋 ;𝐵) � ‖‖𝐹‖𝐵 ‖𝐿𝑝 (𝑋 ) < ∞

}
,
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where 𝐿0 (𝑋; 𝐵) denotes the space of measurable functions from X to B (up to almost everywhere
equivalence). Of course, if B is separable, these notions can be extended to infinite-dimensional B.
In this paper, we will always be able to work in finite-dimensional settings by appealing to standard
approximation arguments. In our case, we will usually have 𝑋 = R𝑑 or 𝑋 = T𝑑 equipped with Lebesgue
measure, and 𝑋 = Z𝑑 endowed with counting measure. If X is endowed with counting measure, we will
abbreviate 𝐿 𝑝 (𝑋) to ℓ𝑝 (𝑋) and 𝐿 𝑝 (𝑋; 𝐵) to ℓ𝑝 (𝑋; 𝐵).

If 𝑇 : 𝐵1 → 𝐵2 is a continuous linear map between two normed vector spaces 𝐵1 and 𝐵2, we use
‖𝑇 ‖𝐵1→𝐵2 to denote its operator norm.

The following extension of the Marcinkiewicz–Zygmund inequality to the Hilbert space setting will
be very useful in Section 6.

Lemma 2.3. Let (𝑋,B(𝑋), 𝜇) be a 𝜎-finite measure space endowed with a family 𝑇 = (𝑇𝑚 : 𝑚 ∈ N) of
bounded linear operators 𝑇𝑚 : 𝐿 𝑝 (𝑋) → 𝐿 𝑝 (𝑋) for some 𝑝 ∈ (0,∞). Suppose that

𝐴𝑝 (𝑇) := sup
(𝜔𝑚:𝑚∈N) ∈{−1,1}N

���∑
𝑚∈N

𝜔𝑚𝑇𝑚

���
𝐿𝑝→𝐿𝑝

< ∞.

Then there is a constant 𝐶𝑝 > 0 such that for every sequence ( 𝑓 𝑗 : 𝑗 ∈ N) ∈ 𝐿 𝑝 (𝑋; ℓ2 (N)), we have���(∑
𝑗∈N

∑
𝑚∈N



𝑇𝑚 𝑓 𝑗


2 )1/2

���
𝐿𝑝 (𝑋 )

≤ 𝐶𝑝𝐴𝑝 (𝑇)
���(∑

𝑗∈N



 𝑓 𝑗 

2 )1/2
���
𝐿𝑝 (𝑋 )

. (2.4)

The index set N in the inner sum of (2.4) can be replaced by any other countable set and the result
remains valid.

The proof of Lemma 2.3 can be found in [48].

2.6. Fourier transform

We shall write 𝒆(𝑧) = 𝑒2𝜋𝒊𝑧 for every 𝑧 ∈ C, where 𝒊2 = −1. Let FR𝑑 denote the Fourier transform on
R𝑑 defined for any 𝑓 ∈ 𝐿1 (R𝑑) and for any 𝜉 ∈ R𝑑 as

FR𝑑 𝑓 (𝜉) :=
∫
R𝑑

𝑓 (𝑥)𝒆(𝑥 · 𝜉)𝑑𝑥.

If 𝑓 ∈ ℓ1(Z𝑑), we define the discrete Fourier transform (Fourier series) FZ𝑑 , for any 𝜉 ∈ T𝑑 , by setting

FZ𝑑 𝑓 (𝜉) :=
∑
𝑥∈Z𝑑

𝑓 (𝑥)𝒆(𝑥 · 𝜉).

Sometimes we shall abbreviate FZ𝑑 𝑓 to 𝑓 .
Let G = R𝑑 or G = Z𝑑 . The corresponding dual groups are G∗ = (R𝑑)∗ = R𝑑 or G∗ = (Z𝑑)∗ = T𝑑 ,

respectively. For any bounded function 𝔪 : G∗ → C and a test function 𝑓 : G → C, we define the
Fourier multiplier operator by

𝑇G [𝔪] 𝑓 (𝑥) :=
∫
G∗

𝒆(−𝜉 · 𝑥)𝔪(𝜉)FG 𝑓 (𝜉)𝑑𝜉, for 𝑥 ∈ G. (2.5)

One may think that 𝑓 : G→ C is a compactly supported function on G (and smooth if G = R𝑑) or any
other function for which (2.5) makes sense.
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Let R≤𝑑 [x1, . . . , x𝑛] be the vector space of all polynomials on R𝑛 of degree at most 𝑑 ∈ Z+, which
is equipped with the norm ‖𝑃‖ :=

∑
0≤ |𝛽 | ≤𝑑 |𝑐𝛽 | whenever

𝑃(𝑥) =
∑

0≤ |𝛽 | ≤𝑑
𝑐𝛽𝑥

𝛽1
1 · · · 𝑥𝛽𝑛𝑛 for 𝑥 = (𝑥1, . . . , 𝑥𝑛) ∈ R𝑛.

We now formulate a multidimensional variant of the van der Corput lemma for polynomials that will be
useful in our further applications.

Proposition 2.6. For each 𝑑, 𝑛 ∈ Z+, there exists a constant 𝐶𝑑,𝑛 > 0 such that for any 𝑃 ∈
R≤𝑑 [x1, . . . , x𝑛] with 𝑃(0) = 0, one has



 ∫

[0,1]𝑛
𝒆(𝑃(𝑥))𝑑𝑥





 ≤ 𝐶𝑑,𝑛‖𝑃‖−1/𝑑 .

The proof of Proposition 2.6 can be found in [20, Corollary 7.3., p. 1008]; see also [1, Section 1].

2.7. Comparing sums to integrals

A well-known but useful lemma comparing sums to integrals is the following. The proof can be found
in [73, Chapter V]; see also [63].

Lemma 2.7. Suppose 𝑓 : [𝑎, 𝑏] → R is 𝐶1 such that 𝑓 ′ is monotonic and | 𝑓 ′(𝑠) | ≤ 1/2 on [𝑎, 𝑏]. Then
there is an absolute constant A such that


 ∑

𝑎<𝑛≤𝑏
𝒆( 𝑓 (𝑛)) −

∫ 𝑏

𝑎
𝒆( 𝑓 (𝑠))𝑑𝑠




 ≤ 𝐴.

2.8. Coordinatewise order �

For any 𝑥 = (𝑥1, . . . , 𝑥𝑘 ) ∈ R𝑘 and 𝑦 = (𝑦1, . . . , 𝑦𝑘 ) ∈ R𝑘 , we say 𝑥 � 𝑦 if and only if 𝑥𝑖 ≤ 𝑦𝑖 for each
𝑖 ∈ [𝑘]. We also write 𝑥 ≺ 𝑦 if and only if 𝑥 � 𝑦 and 𝑥 ≠ 𝑦, and 𝑥 ≺s 𝑦 if and only if 𝑥𝑖 < 𝑦𝑖 for each
𝑖 ∈ [𝑘]. Let I ⊆ R𝑘 be an index set such that #I ≥ 2 and for every 𝐽 ∈ Z+ ∪ {∞}, define the set

𝔖𝐽 (I) :=
{
(𝑡𝑖 : 𝑖 ∈ N≤𝐽 ) ⊆ I : 𝑡0 ≺s 𝑡1 ≺s . . . ≺s 𝑡𝐽

}
, (2.8)

where N≤∞ := N. In other words, 𝔖𝐽 (I) is a family of all strictly increasing sequences (with respect to
the coordinatewise order) of length 𝐽 + 1 taking their values in the set I.

2.9. Oscillation semi-norms

Let I ⊆ R𝑘 be an index set such that #I ≥ 2. Let (𝔞𝑡 (𝑥) : 𝑡 ∈ I) ⊆ C be a k-parameter family of
measurable functions defined on X. For any J ⊆ I and a sequence 𝐼 = (𝐼𝑖 : 𝑖 ∈ N≤𝐽 ) ∈ 𝔖𝐽 (I), the
multi-parameter oscillation semi-norm is defined by

𝑂 𝐼 ,𝐽 (𝔞𝑡 (𝑥) : 𝑡 ∈ J) :=
( 𝐽−1∑
𝑗=0

sup
𝑡 ∈B[𝐼 , 𝑗 ]∩J



𝔞𝑡 (𝑥) − 𝔞𝐼 𝑗 (𝑥)


2 )1/2

, (2.9)

where B[𝐼, 𝑖] := [𝐼𝑖1, 𝐼 (𝑖+1)1) × . . .× [𝐼𝑖𝑘 , 𝐼 (𝑖+1)𝑘 ) is a box determined by the element 𝐼𝑖 = (𝐼𝑖1, . . . , 𝐼𝑖𝑘 )
of the sequence 𝐼 ∈ 𝔖𝐽 (I). In order to avoid problems with measurability, we always assume that
I 
 𝑡 ↦→ 𝔞𝑡 (𝑥) ∈ C is continuous for 𝜇-almost every 𝑥 ∈ 𝑋 , or J is countable. We also use the convention
that the supremum taken over the empty set is zero.
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Remark 2.10. Some remarks concerning the definition of oscillation semi-norms are in order.

1. Clearly, 𝑂 𝐼 ,𝐽 (𝔞𝑡 : 𝑡 ∈ J) defines a semi-norm.
2. Let I ⊆ R𝑘 be an index set such that #I ≥ 2, and let J1, J2 ⊆ I be disjoint. Then for any family

(𝔞𝑡 : 𝑡 ∈ I) ⊆ C, any 𝐽 ∈ Z+ and any 𝐼 ∈ 𝔖𝐽 (I), one has

𝑂 𝐼 ,𝐽 (𝔞𝑡 : 𝑡 ∈ J1 ∪ J2) ≤ 𝑂 𝐼 ,𝐽 (𝔞𝑡 : 𝑡 ∈ J1) + 𝑂 𝐼 ,𝐽 (𝔞𝑡 : 𝑡 ∈ J2). (2.11)

3. Let I ⊆ R𝑘 be a countable index set such that #I ≥ 2 and J ⊆ I. Then for any family (𝔞𝑡 : 𝑡 ∈ I) ⊆ C,
any 𝐽 ∈ Z+, any 𝐼 ∈ 𝔖𝐽 (I), one has

𝑂 𝐼 ,𝐽 (𝔞𝑡 : 𝑡 ∈ J) �
(∑
𝑡 ∈I

|𝔞𝑡 |2
)1/2

.

4. Let I ⊆ R𝑘 be a countable index set such that #I ≥ 2. For 𝑙 ∈ [𝑘], let p𝑙 : R𝑘 → R be the lth
coordinate projection. Note that for any family (𝔞𝑡 : 𝑡 ∈ I) ⊆ C, any 𝐽 ∈ Z+, any 𝐼 ∈ 𝔖𝐽 (I) and any
𝑙 ∈ [𝑘], one has

𝑂 𝐼 ,𝐽 (𝔞𝑡 : 𝑡 ∈ I) =
( 𝐽−1∑
𝑗=0

sup
𝑡 ∈B[𝐼 , 𝑗 ]∩I

|𝔞𝑡 − 𝔞𝐼 𝑗 |2
)1/2

�
( ∑
𝑡𝑙 ∈p𝑙 (I)

sup
(𝑡1 ,...,𝑡𝑙−1 ,𝑡𝑙+1 ,...,𝑡𝑘 ) ∈

∏
𝑖∈[𝑘 ]\{𝑙} p𝑖 (I)

(𝑡1 ,...,𝑡𝑙−1 ,𝑡𝑙 ,𝑡𝑙+1 ,...,𝑡𝑘 ) ∈I

|𝔞 (𝑡1 ,...,𝑡𝑙−1 ,𝑡𝑙 ,𝑡𝑙+1 ,...,𝑡𝑘 ) |2
)1/2

, (2.12)

where p𝑙 (I) ⊂ R is the image of I under p𝑙 . Inequality (2.12) will be repeatedly used in Section 7. It is
important to note that the parameter 𝑡 ∈ I in the definition of oscillations and the sequence 𝐼 ∈ 𝔖𝐽 (I)
both take values in I.

5. We also recall the definition of 𝜌-variations. For any I ⊆ R, any family (𝔞𝑡 : 𝑡 ∈ I) ⊆ C and any
exponent 1 ≤ 𝜌 < ∞, the 𝜌-variation semi-norm is defined to be

𝑉𝜌 (𝔞𝑡 : 𝑡 ∈ I) := sup
𝐽 ∈Z+

sup
𝑡0< · · ·<𝑡𝐽

𝑡 𝑗 ∈I

( 𝐽−1∑
𝑗=0

|𝔞𝑡 𝑗+1 − 𝔞𝑡 𝑗 |𝜌
)1/𝜌

,

where the supremum is taken over all finite increasing sequences in I.
It is clear that for any I ⊆ R such that #I ≥ 2, any 𝐽 ∈ Z+ ∪ {∞} and any sequence 𝐼 = (𝐼𝑖 : 𝑖 ∈

N≤𝐽 ) ∈ 𝔖𝐽 (I), one has

𝑂 𝐼 ,𝐽 (𝔞𝑡 : 𝑡 ∈ I) ≤ 𝑉𝜌 (𝔞𝑡 : 𝑡 ∈ I), (2.13)

whenever 1 ≤ 𝜌 ≤ 2.
6. Inequality (2.13) allows us to deduce the Rademacher–Menshov inequality for oscillations, which

asserts that for any 𝑗0, 𝑚 ∈ N so that 𝑗0 < 2𝑚 and any sequence of complex numbers (𝔞𝑘 : 𝑘 ∈ N),
any 𝐽 ∈ [2𝑚] and any 𝐼 ∈ 𝔖𝐽 ([ 𝑗0, 2𝑚)), we have

𝑂 𝐼 ,𝐽 (𝔞 𝑗 : 𝑗0 ≤ 𝑗 < 2𝑚) ≤ 𝑉2(𝔞 𝑗 : 𝑗0 ≤ 𝑗 < 2𝑚)

≤
√

2
𝑚∑
𝑖=0

( 2𝑚−𝑖−1∑
𝑗=0



 ∑
𝑘∈𝑈 𝑖

𝑗

𝑈 𝑖
𝑗 ⊆[ 𝑗0 ,2𝑚)

𝔞𝑘+1 − 𝔞𝑘


2)1/2

, (2.14)

where 𝑈𝑖
𝑗 := [ 𝑗2𝑖 , ( 𝑗 + 1)2𝑖) for any 𝑖, 𝑗 ∈ Z. The latter inequality in (2.14) immediately follows

from [51, Lemma 2.5., p. 534]. Inequality (2.14) will be used in Section 6.
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7. For any 𝑝 ∈ [1,∞] and for any family (𝔞𝑡 : 𝑡 ∈ N𝑘 ) ⊆ C of k-parameter measurable functions on X,
one has

sup
𝐽 ∈Z+

sup
𝐼 ∈𝔖𝐽 (N𝑘 )

��𝑂 𝐼 ,𝐽 (𝔞𝑡 : 𝑡 ∈ N𝑘 )
��
𝐿𝑝 (𝑋 ) ≤ 2

�� sup
𝑡 ∈N𝑘

|𝔞𝑡 |
��
𝐿𝑝 (𝑋 )

+ sup
𝐽 ∈Z+

sup
𝐼 ∈𝔖𝐽 (Z𝑘+ )

��𝑂 𝐼 ,𝐽 (𝔞𝑡 : 𝑡 ∈ Z𝑘+)
��
𝐿𝑝 (𝑋 ) .

(2.15)

This easily follows from the definition of the set 𝔖𝐽 (N𝑘 ); see (2.8).
8. For any I ⊆ R with #I ≥ 2 and any sequence 𝐼 = (𝐼𝑖 : 𝑖 ∈ N≤𝐽 ) ∈ 𝔖𝐽 (I) of length 𝐽 ∈ Z+ ∪ {∞}, we

define the diagonal sequence 𝐼 = (𝐼𝑖 : 𝑖 ∈ N≤𝐽 ) ∈ 𝔖𝐽 (I𝑘 ) by setting 𝐼𝑖 = (𝐼𝑖 , . . . , 𝐼𝑖) ∈ I𝑘 for each
𝑖 ∈ N≤𝐽 . Then for any J ⊆ I𝑘 , one has

sup
𝐼 ∈𝔖𝐽 (I)

��𝑂 𝐼 ,𝐽 (𝔞𝑡 : 𝑡 ∈ J)
��
𝐿𝑝 (𝑋 ) ≤ sup

𝐼 ∈𝔖𝐽 (I𝑘 )

��𝑂 𝐼 ,𝐽 (𝔞𝑡 : 𝑡 ∈ J)
��
𝐿𝑝 (𝑋 ) .

It is not difficult to show that oscillation semi-norms always dominate maximal functions.

Proposition 2.16. Assume that 𝑘 ∈ Z+ and let (𝔞𝑡 : 𝑡 ∈ R𝑘 ) ⊆ C be a k-parameter family of measurable
functions on X. Let I ⊆ R and #I ≥ 2. Then for every 𝑝 ∈ [1,∞], we have�� sup

𝑡 ∈(I\{sup I})𝑘
|𝔞𝑡 |

��
𝐿𝑝 (𝑋 ) ≤ sup

𝑡 ∈I𝑘
‖𝔞𝑡 ‖𝐿𝑝 (𝑋 ) + sup

𝐽 ∈Z+
sup

𝐼 ∈𝔖𝐽 (I)

��𝑂 𝐼 ,𝐽 (𝔞𝑡 : 𝑡 ∈ I𝑘 )
��
𝐿𝑝 (𝑋 ) , (2.17)

where 𝐼 ∈ 𝔖𝐽 (I𝑘 ) is the diagonal sequence corresponding to a sequence 𝐼 ∈ 𝔖𝐽 (I) as in Remark 2.10.

A remarkable feature of the oscillation semi-norms is that they imply pointwise convergence, which
is formulated precisely in the following proposition.

Proposition 2.18. Let (𝑋,B(𝑋), 𝜇) be a 𝜎-finite measure space. For 𝑘 ∈ Z+, let (𝔞𝑡 : 𝑡 ∈ N𝑘 ) ⊆ C be
a k-parameter family of measurable functions on X. Suppose that there is 𝑝 ∈ [1,∞) and a constant
𝐶𝑝 > 0 such that

sup
𝐽 ∈Z+

sup
𝐼 ∈𝔖𝐽 (N)

��𝑂 𝐼 ,𝐽 (𝔞𝑡 : 𝑡 ∈ N𝑘 )
��
𝐿𝑝 (𝑋 ) ≤ 𝐶𝑝 < ∞,

where 𝐼 ∈ 𝔖𝐽 (N𝑘 ) is the diagonal sequence corresponding to a sequence 𝐼 ∈ 𝔖𝐽 (N) as in Remark
2.10. Then the limit

lim
min{𝑡1 ,...,𝑡𝑘 }→∞

𝔞 (𝑡1 ,...,𝑡𝑘 )

exists 𝜇-almost everywhere on X.

For detailed proofs of Proposition 2.16 and Proposition 2.18, we refer to [53].

3. Basic reductions and ergodic theorems: Proof of Theorem 1.11

This section is intended to establish Theorem 1.11 for general measure-preserving systems by reducing
the matter to the integer shift system. We first briefly explain that the oscillation inequality (1.13) from
item (iv) of Theorem 1.11 implies conclusions from items (i)–(iii) of this theorem.

3.1. Proof of Theorem 1.11(iii)

Assuming Theorem 1.11(iv) with 𝜏 = 2 and invoking Proposition 2.16 (this permits us to dominate
maximal functions by oscillations), we see that for every 𝑝 ∈ (1,∞), there is a constant 𝐶𝑝 > 0 such
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that for any 𝑓 ∈ 𝐿 𝑝 (𝑋), one has�� sup
𝑀1 ,𝑀2∈D2

|𝐴𝑃
𝑀1 ,𝑀2;𝑋 𝑓 |

��
𝐿𝑝 (𝑋 ) �𝑝,𝑃 ‖ 𝑓 ‖𝐿𝑝 (𝑋 ) . (3.1)

But for any 𝑓 ≥ 0, we have also a simple pointwise bound

sup
𝑀1 ,𝑀2∈Z+

𝐴𝑃
𝑀1 ,𝑀2;𝑋 𝑓 � sup

𝑀1 ,𝑀2∈D2

𝐴𝑃
𝑀1 ,𝑀2;𝑋 𝑓 ,

which in view of (3.1) gives (1.12) as claimed.

3.2. Proof of Theorem 1.11(ii)

We fix 𝑝 ∈ (1,∞) and 𝑓 ∈ 𝐿𝑝 (𝑋). We can also assume that 𝑓 ≥ 0. Using (1.13) with 𝜏 = 21/𝑠 for every
𝑠 ∈ Z+ and invoking Proposition 2.18, we conclude that there is 𝑓 ∗𝑠 ∈ 𝐿 𝑝 (𝑋) such that

lim
min{𝑛1 ,𝑛2 }→∞

𝐴𝑃
2𝑛1/𝑠 ,2𝑛2/𝑠 ;𝑋 𝑓 (𝑥) = 𝑓 ∗𝑠 (𝑥)

𝜇-almost everywhere on X for every 𝑠 ∈ Z+. It is not difficult to see that 𝑓 ∗1 = 𝑓 ∗𝑠 for all 𝑠 ∈ Z+, since
D2 ⊆ D21/𝑠 . Now for each 𝑠 ∈ Z+ and each 𝑀1, 𝑀2 ∈ Z+, let 𝑛𝑖𝑀𝑖

∈ N be such that 2𝑛
𝑖
𝑀𝑖

/𝑠 ≤ 𝑀𝑖 <

2(𝑛𝑖𝑀𝑖
+1)/𝑠 for 𝑖 ∈ [2]. Then we may conclude

2−2/𝑠 𝑓 ∗1 (𝑥) ≤ lim inf
min{𝑀1 ,𝑀2 }→∞

𝐴𝑃
𝑀1 ,𝑀2;𝑋 𝑓 (𝑥) ≤ lim sup

min{𝑀1 ,𝑀2 }→∞
𝐴𝑃
𝑀1 ,𝑀2;𝑋 𝑓 (𝑥) ≤ 22/𝑠 𝑓 ∗1 (𝑥).

Letting 𝑠 → ∞, we obtain

lim
min{𝑀1 ,𝑀2 }→∞

𝐴𝑃
𝑀1 ,𝑀2;𝑋 𝑓 (𝑥) = 𝑓 ∗1 (𝑥)

𝜇-almost everywhere on X. This completes the proof of Theorem 1.11(ii).

3.3. Proof of Theorem 1.11(i)

Finally, pointwise convergence from Theorem 1.11(ii) combined with the maximal inequality (1.12)
and dominated convergence theorem gives norm convergence for any 𝑓 ∈ 𝐿𝑝 (𝑋) with 1 < 𝑝 < ∞. This
completes the proof of Theorem 1.11.

3.4. Proof of Theorem 1.11 in the degenerate case

It is perhaps worth remarking that the proof of Theorem 1.11 is fairly easy when 𝑃 ∈ Z[m1, m2] is
degenerate in the sense that it can be written as 𝑃(m1, m2) = 𝑃1 (m1) + 𝑃2 (m2), where 𝑃1 ∈ Z[m1] and
𝑃2 ∈ Z[m2] such that 𝑃1 (0) = 𝑃2 (0) = 0 (see (1.14)). It suffices to prove (1.13). The crucial observation
is the following identity:

𝐴𝑃1 (m1)
𝑀1;𝑋 𝐴𝑃2 (m2)

𝑀2;𝑋 𝑓 = 𝐴𝑃2 (m2)
𝑀2;𝑋 𝐴𝑃1 (m1)

𝑀1;𝑋 𝑓 = 𝐴𝑃 (m1 ,m2)
𝑀1 ,𝑀2;𝑋 𝑓 . (3.2)

Recall from [48] that for every 𝑝 ∈ (1,∞), there is 𝐶𝑝 > 0 such that for every 𝑓 = ( 𝑓 𝜄 : 𝜄 ∈ N) ∈
𝐿𝑝 (𝑋; ℓ2(N)) and 𝑖 ∈ [2], one has���(∑

𝜄∈N
sup
𝑀𝑖 ∈Z+



𝐴𝑃𝑖 (m𝑖)
𝑀𝑖 ;𝑋 𝑓 𝜄



2)1/2���
𝐿𝑝 (𝑋 )

≤ 𝐶𝑝 ‖ 𝑓 ‖𝐿𝑝 (𝑋 ;ℓ2) . (3.3)
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Moreover, from [47], it was proved that for every 𝑝 ∈ (1,∞), there is 𝐶𝑝 > 0 such that for every
𝑓 ∈ 𝐿 𝑝 (𝑋) and 𝑖 ∈ [2], one has

sup
𝐽 ∈Z+

sup
𝐼 ∈𝔖𝐽 (Z+)

��𝑂 𝐼 ,𝐽 (𝐴𝑃𝑖 (m𝑖)
𝑀𝑖 ;𝑋 𝑓 : 𝑀𝑖 ∈ Z+)‖𝐿𝑝 (𝑋 ) ≤ 𝐶𝑝 ‖ 𝑓 ‖𝐿𝑝 (𝑋 ) . (3.4)

By (3.2), for every 𝐽 ∈ Z+, 𝐼 ∈ 𝔖𝐽 (Z2
+) and 𝑗 ∈ N<𝐽 , one can write

sup
(𝑀1 ,𝑀2) ∈B[𝐼 , 𝑗 ]



𝐴𝑃 (m1 ,m2)
𝑀1 ,𝑀2;𝑋 𝑓 − 𝐴𝑃 (m1 ,m2)

𝐼 𝑗1 ,𝐼 𝑗2;𝑋 𝑓


 ≤ sup

𝑀1∈Z+



𝐴𝑃1 (m1)
𝑀1;𝑋

(
sup

𝐼 𝑗2≤𝑀2<𝐼( 𝑗+1)2

|𝐴𝑃2 (m2)
𝑀2;𝑋 𝑓 − 𝐴𝑃2 (m2)

𝐼 𝑗2;𝑋 𝑓 |
)

+ sup
𝑀2∈Z+



𝐴𝑃2 (m2)
𝑀2;𝑋

(
sup

𝐼 𝑗1≤𝑀1<𝐼( 𝑗+1)1

|𝐴𝑃1 (m1)
𝑀1;𝑋 𝑓 − 𝐴𝑃1 (m1)

𝐼 𝑗1;𝑋 𝑓 |
) 

.

Using this inequality with the vector-valued maximal inequality (3.3) and one-parameter oscillation
inequality (3.4), one obtains

sup
𝐽 ∈Z+

sup
𝐼 ∈𝔖𝐽 (Z2

+)

��𝑂 𝐼 ,𝐽 (𝐴𝑃 (m1 ,m2)
𝑀1 ,𝑀2;𝑋 𝑓 : 𝑀1, 𝑀2 ∈ Z+)‖𝐿𝑝 (𝑋 )

�
∑
𝑖∈[2]

sup
𝐽 ∈Z+

sup
𝐼 ∈𝔖𝐽 (Z+)

��𝑂 𝐼 ,𝐽 (𝐴𝑃𝑖 (m𝑖)
𝑀𝑖 ;𝑋 𝑓 : 𝑀𝑖 ∈ Z+)‖𝐿𝑝 (𝑋 ) �𝑝 ‖ 𝑓 ‖𝐿𝑝 (𝑋 ) . (3.5)

This completes the proof of Theorem 1.11 in the degenerate case. From now on we will additionally
assume that 𝑃 ∈ Z[m1, m2] is non-degenerate.

3.5. Reductions to truncated averages

We have seen that the proof of Theorem 1.11 has been reduced to proving the oscillation inequality
(1.13). We begin with certain general reductions that will simplify our further arguments. Let us fix our
measure-preserving transformations 𝑇1, . . . , 𝑇𝑑 , our polynomials P = {𝑃1, . . . , 𝑃𝑑} ⊂ Z[m1, . . . , m𝑘 ]
and define a truncated version of the average (1.8) by

�̃�P
𝑀1 ,...,𝑀𝑘 ;𝑋 𝑓 (𝑥) := E𝑚∈𝑅𝑀1 ,...,𝑀𝑘

𝑓 (𝑇𝑃1 (𝑚)
1 · · ·𝑇𝑃𝑑 (𝑚)

𝑑 𝑥), 𝑥 ∈ 𝑋, (3.6)

where

𝑅𝑀1 ,...,𝑀𝑘 := ([𝑀1] \ [𝜏−1𝑀1]) × · · · × ([𝑀𝑘 ] \ [𝜏−1𝑀𝑘 ])

is a rectangle in Z𝑘 .
We will abbreviate �̃�P

𝑀1 ,...,𝑀𝑘 ;𝑋 to �̃�P
𝑀 ;𝑋 and 𝑅𝑀1 ,...,𝑀𝑘 to 𝑅𝑀 whenever 𝑀 = (𝑀1, . . . , 𝑀𝑘 ) ∈ Z𝑘+ .

We now show that the 𝐿𝑝 (𝑋) norms of the oscillation semi-norms associated with the averages from
(1.8) and (3.6) have comparable norms in the following sense.

Proposition 3.7. Let 𝑑, 𝑘 ∈ Z+ be given. Let (𝑋,B(𝑋), 𝜇) be a 𝜎-finite measure space equipped with
a family of commuting invertible and measure-preserving transformations 𝑇1, . . . , 𝑇𝑑 : 𝑋 → 𝑋 . Let
P = {𝑃1, . . . , 𝑃𝑑} ⊂ Z[m1, . . . , m𝑘 ], 𝑀 = (𝑀1, . . . , 𝑀𝑘 ) and let 𝐴P

𝑀 ;𝑋 and �̃�P
𝑀 ;𝑋 be the corresponding

averaging operators defined respectively in (1.8) and (3.6). For every 𝜏 > 1 and every 1 ≤ 𝑝 ≤ ∞,
there is a finite constant 𝐶 := 𝐶𝑑,𝑘, 𝑝,𝜏 > 0 such that for any 𝑓 ∈ 𝐿 𝑝 (𝑋), one has�� sup

𝑀 ∈D𝑘
𝜏

|𝐴P
𝑀 ;𝑋 |

��
𝐿𝑝 (𝑋 ) ≤ 𝐶

�� sup
𝑀 ∈D𝑘

𝜏

| �̃�P
𝑀 ;𝑋 |

��
𝐿𝑝 (𝑋 ) . (3.8)
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An oscillation variant of (3.8) also holds

sup
𝐽 ∈Z+

sup
𝐼 ∈𝔖𝐽 (D𝑘

𝜏 )

��𝑂 𝐼 ,𝐽 (𝐴P
𝑀 ;𝑋 : 𝑀 ∈ D𝑘𝜏)

��
𝐿𝑝 (𝑋 )

≤ 𝐶 sup
𝐽 ∈Z+

sup
𝐼 ∈𝔖𝐽 (D𝑘

𝜏 )

��𝑂 𝐼 ,𝐽 ( �̃�P
𝑀 ;𝑋 𝑓 : 𝑀 ∈ D𝑘𝜏)

��
𝐿𝑝 (𝑋 ) + 𝐶 ‖ 𝑓 ‖𝐿𝑝 (𝑋 ) .

(3.9)

Proof. The proof will proceed in two steps. We begin with some general observations which will permit
us to simplify further arguments leading to the proofs of (3.8) and (3.9).

Step 1. Suppose that (𝔞𝑚 : 𝑚 ∈ Z𝑘+) is a k-parameter sequence of measurable functions on X. Then
for 𝑀 = (𝑀1, . . . , 𝑀𝑘 ) = (𝜏𝑛1 , . . . , 𝜏𝑛𝑘 ) ∈ D𝑘𝜏 , one can write∑

𝑚∈𝑄𝑀1 ,...,𝑀𝑘

𝔞𝑚 =
∑

(𝑙1 ,...,𝑙𝑘 ) ∈N≤𝑛1×···×N≤𝑛𝑘

∑
𝑚∈𝑅

𝜏𝑙1 ,...,𝜏𝑙𝑘

𝔞𝑚,

and ∑
(𝑙1 ,...,𝑙𝑘 ) ∈N≤𝑛1×···×N≤𝑛𝑘

|𝑅𝜏𝑙1 ,...,𝜏𝑙𝑘 |
|𝑄𝜏𝑛1 ,...,𝜏𝑛𝑘 |

�𝑘,𝜏 1.

Combining these two estimates, one sees that�� sup
𝑀 ∈D𝑘

𝜏

|E𝑚∈𝑄𝑀𝔞𝑚 |
��
𝐿𝑝 (𝑋 ) �𝑘,𝜏

�� sup
𝑀 ∈D𝑘

𝜏

|E𝑚∈𝑅𝑀𝔞𝑚 |
��
𝐿𝑝 (𝑋 ) . (3.10)

Applying (3.10) with 𝔞𝑚(𝑥) = 𝑓 (𝑇𝑃1 (𝑚)
1 · · ·𝑇𝑃𝑑 (𝑚)

𝑑 𝑥), we obtain (3.8).
Step 2. As before, let (𝔞𝑚 : 𝑚 ∈ Z𝑘+) be a k-parameter sequence of measurable functions on X. For

𝑙 ∈ N≤𝑘 and 𝑀 = (𝑀1, . . . , 𝑀𝑘 ) = (𝜏𝑛1 , . . . , 𝜏𝑛𝑘 ) ∈ D𝑘𝜏 , define the sets

𝐵𝑙
𝑀 :=

𝑙∏
𝑖=1

([𝑀𝑖] \ [𝜏−1𝑀𝑖]) ×
𝑘∏

𝑖=𝑙+1
[𝑀𝑖] and 𝐷𝑙

𝑀 :=
𝑙−1∏
𝑖=1

([𝑀𝑖] \ [𝜏−1𝑀𝑖]) × [𝜏−1𝑀𝑙] ×
𝑘∏

𝑖=𝑙+1
[𝑀𝑖] .

Note that 𝐵0
𝑀 = 𝑄𝑀 and 𝐵𝑘

𝑀 = 𝑅𝑀 , and 𝐵𝑙−1
𝑀 = 𝐵𝑙

𝑀 ∪ 𝐷𝑙
𝑀 . Moreover, for 𝑙 ∈ [𝑘], one sees

sup
𝐽 ∈Z+

sup
𝐼 ∈𝔖𝐽 (D𝑘

𝜏 )

��𝑂 𝐼 ,𝐽 (E𝑚∈𝐵𝑙−1
𝑀
𝔞𝑚 : 𝑀 ∈ D𝑘𝜏)

��
𝐿𝑝 (𝑋 )

≤ sup
𝐽 ∈Z+

sup
𝐼 ∈𝔖𝐽 (D𝑘

𝜏 )

��𝑂 𝐼 ,𝐽 (𝑢𝑀𝑙E𝑚∈𝐵𝑙
𝑀
𝔞𝑚 : 𝑀 ∈ D𝑘𝜏)

��
𝐿𝑝 (𝑋 )

+ sup
𝐽 ∈Z+

sup
𝐼 ∈𝔖𝐽 (D𝑘

𝜏 )

��𝑂 𝐼 ,𝐽 (𝑣𝑀𝑙E𝑚∈𝐷𝑙
𝑀
𝔞𝑚 : 𝑀 ∈ D𝑘𝜏)

��
𝐿𝑝 (𝑋 ) ,

(3.11)

where

𝑢𝑀𝑙 :=
|𝐵𝑙

𝑀 |
|𝐵𝑙−1

𝑀 |
=

�𝑀𝑙� − �𝜏−1𝑀𝑙�
�𝑀𝑙�

and 𝑣𝑀𝑙 :=
|𝐷𝑙

𝑀 |
|𝐵𝑙−1

𝑀 |
=

�𝜏−1𝑀𝑙�
�𝑀𝑙�

.

Considering �̃�𝑀𝑙 := 𝑢𝑀𝑙 − 1 + 𝜏−1 and �̃�𝑀𝑙 := 𝑣𝑀𝑙 − 𝜏−1, we see that∑
𝑀𝑙 ∈D𝜏

�̃�2
𝑀𝑙
�𝜏 1, and

∑
𝑀𝑙 ∈D𝜏

�̃�2
𝑀𝑙
�𝜏 1.
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Thus, using (2.12), one sees that

sup
𝐽 ∈Z+

sup
𝐼 ∈𝔖𝐽 (D𝑘

𝜏 )

��𝑂 𝐼 ,𝐽 (�̃�𝑀𝑙E𝑚∈𝐵𝑙
𝑀
𝔞𝑚 : 𝑀 ∈ D𝑘𝜏)

��
𝐿𝑝 (𝑋 ) �𝜏

�� sup
𝑀 ∈D𝑘

𝜏

|E𝑚∈𝑄𝑀𝔞𝑚 |
��
𝐿𝑝 (𝑋 ) ,

sup
𝐽 ∈Z+

sup
𝐼 ∈𝔖𝐽 (D𝑘

𝜏 )

��𝑂 𝐼 ,𝐽 (�̃�𝑀𝑙E𝑚∈𝐷𝑙
𝑀
𝔞𝑚 : 𝑀 ∈ D𝑘𝜏)

��
𝐿𝑝 (𝑋 ) �𝜏

�� sup
𝑀 ∈D𝑘

𝜏

|E𝑚∈𝑄𝑀𝔞𝑚 |
��
𝐿𝑝 (𝑋 ) .

(3.12)

By (2.15), there is 𝐶𝑝,𝜏 > 0 such that

sup
𝐽 ∈Z+

sup
𝐼 ∈𝔖𝐽 (D𝑘

𝜏 )

��𝑂 𝐼 ,𝐽 (𝑣𝑀𝑙E𝑚∈𝐷𝑙
𝑀
𝔞𝑚 : 𝑀 ∈ D𝑘𝜏)

��
𝐿𝑝 (𝑋 ) ≤ 𝐶𝑝,𝜏

�� sup
𝑀 ∈D𝑘

𝜏

|E𝑚∈𝑄𝑀𝔞𝑚 |
��
𝐿𝑝 (𝑋 )

+ sup
𝐽 ∈Z+

sup
𝐼 ∈𝔖𝐽 (D𝑘

𝜏 )

��𝑂 𝐼 ,𝐽 (𝑣𝑀𝑙E𝑚∈𝐵𝑙−1
𝑀
𝔞𝑚 : 𝑀 ∈ D𝑘𝜏)

��
𝐿𝑝 (𝑋 ) .

(3.13)

Finally, combining (3.11), (3.12) and (3.13), one obtains the following bootstrap inequality:

sup
𝐽 ∈Z+

sup
𝐼 ∈𝔖𝐽 (D𝑘

𝜏 )

��𝑂 𝐼 ,𝐽 (E𝑚∈𝐵𝑙−1
𝑀
𝔞𝑚 : 𝑀 ∈ D𝑘𝜏)

��
𝐿𝑝 (𝑋 ) ≤ 𝐶𝑝,𝜏

�� sup
𝑀 ∈D𝑘

𝜏

|E𝑚∈𝑄𝑀𝔞𝑚 |
��
𝐿𝑝 (𝑋 )

+ 𝜏−1 sup
𝐽 ∈Z+

sup
𝐼 ∈𝔖𝐽 (D𝑘

𝜏 )

��𝑂 𝐼 ,𝐽 (E𝑚∈𝐵𝑙−1
𝑀
𝔞𝑚 : 𝑀 ∈ D𝑘𝜏)

��
𝐿𝑝 (𝑋 )

+ 𝜏−1(𝜏 − 1) sup
𝐽 ∈Z+

sup
𝐼 ∈𝔖𝐽 (D𝑘

𝜏 )

��𝑂 𝐼 ,𝐽 (E𝑚∈𝐵𝑙
𝑀
𝔞𝑚 : 𝑀 ∈ D𝑘𝜏)

��
𝐿𝑝 (𝑋 ) ,

which immediately yields

sup
𝐽 ∈Z+

sup
𝐼 ∈𝔖𝐽 (D𝑘

𝜏 )

��𝑂 𝐼 ,𝐽 (E𝑚∈𝐵𝑙−1
𝑀
𝔞𝑚 : 𝑀 ∈ D𝑘𝜏)

��
𝐿𝑝 (𝑋 ) ≤ 𝐶𝑝,𝜏

�� sup
𝑀 ∈D𝑘

𝜏

|E𝑚∈𝑄𝑀𝔞𝑚 |
��
𝐿𝑝 (𝑋 )

+ sup
𝐽 ∈Z+

sup
𝐼 ∈𝔖𝐽 (D𝑘

𝜏 )

��𝑂 𝐼 ,𝐽 (E𝑚∈𝐵𝑙
𝑀
𝔞𝑚 : 𝑀 ∈ D𝑘𝜏)

��
𝐿𝑝 (𝑋 ) .

(3.14)

Iterating (3.14) k times and using (3.10) to control the maximal function, we conclude that

sup
𝐽 ∈Z+

sup
𝐼 ∈𝔖𝐽 (D𝑘

𝜏 )

��𝑂 𝐼 ,𝐽 (E𝑚∈𝑄𝑀𝔞𝑚 : 𝑀 ∈ D𝑘𝜏)
��
𝐿𝑝 (𝑋 ) ≤ 𝐶𝑝,𝜏

�� sup
𝑀 ∈D𝑘

𝜏

|E𝑚∈𝑅𝑀𝔞𝑚 |
��
𝐿𝑝 (𝑋 )

+ sup
𝐽 ∈Z+

sup
𝐼 ∈𝔖𝐽 (D𝑘

𝜏 )

��𝑂 𝐼 ,𝐽 (E𝑚∈𝑅𝑀𝔞𝑚 : 𝑀 ∈ D𝑘𝜏)
��
𝐿𝑝 (𝑋 ) .

(3.15)

Finally, using (3.15) with 𝔞𝑚 (𝑥) = 𝑓 (𝑇𝑃1 (𝑚)
1 · · ·𝑇𝑃𝑑 (𝑚)

𝑑 𝑥) and invoking Proposition 2.16 (to control the
maximal function from (3.15) by oscillation semi-norms), we obtain (3.9) as desired. �

Now using Proposition 3.7, we can reduce the oscillation inequality (1.13) from Theorem 1.11 to
establish the following result for non-degenerate polynomials in the sense of (1.14).

Theorem 3.16. Let (𝑋,B(𝑋), 𝜇) be a 𝜎-finite measure space equipped with an invertible measure-
preserving transformation 𝑇 : 𝑋 → 𝑋 . Let 𝑃 ∈ Z[m1, m2] be a non-degenerate polynomial such that
𝑃(0, 0) = 0. Let �̃�𝑃

𝑀 ;𝑋 𝑓 with 𝑀 = (𝑀1, 𝑀2) be the average defined in (3.6) with 𝑑 = 1, 𝑘 = 2 and
𝑃1 = 𝑃. If 1 < 𝑝 < ∞ and 𝜏 > 1, and D𝜏 := {𝜏𝑛 : 𝑛 ∈ N}, then one has

sup
𝐽 ∈Z+

sup
𝐼 ∈𝔖𝐽 (D2

𝜏 )

��𝑂 𝐼 ,𝐽 ( �̃�𝑃
𝑀1 ,𝑀2;𝑋 𝑓 : 𝑀1, 𝑀2 ∈ D𝜏)‖𝐿𝑝 (𝑋 ) �𝑝,𝜏,𝑃 ‖ 𝑓 ‖𝐿𝑝 (𝑋 ) . (3.17)

The implicit constant in (3.17) can be taken to depend only on 𝑝, 𝜏, 𝑃.

https://doi.org/10.1017/fmp.2023.21 Published online by Cambridge University Press

https://doi.org/10.1017/fmp.2023.21


22 J. Bourgain et al.

3.6. Reduction to the integer shift system

As mentioned in Example 1.9, the integer shift system is the most important for pointwise convergence
problems. For 𝑇 = 𝑆1, for any 𝑥 ∈ Z and for any finitely supported function 𝑓 : Z→ C, we may write

�̃�𝑃
𝑀1 ,𝑀2;Z,𝑆1

𝑓 (𝑥) = E𝑚∈𝑅𝑀1 ,𝑀2
𝑓 (𝑥 − 𝑃(𝑚1, 𝑚2)). (3.18)

We shall also abbreviate �̃�𝑃
𝑀1 ,𝑀2;Z,𝑆1

to �̃�𝑃
𝑀1 ,𝑀2;Z. In fact, we will be able to deduce Theorem 3.16 from

its integer counterpart.

Theorem 3.19. Let 𝑃 ∈ Z[m1, m2] be a non-degenerate polynomial (see (1.14)) such that 𝑃(0, 0) = 0.
Let �̃�𝑃

𝑀1 ,𝑀2;Z 𝑓 be the average defined in (3.18). If 1 < 𝑝 < ∞ and 𝜏 > 1, and D𝜏 := {𝜏𝑛 : 𝑛 ∈ N}, then
one has

sup
𝐽 ∈Z+

sup
𝐼 ∈𝔖𝐽 (D2

𝜏 )

��𝑂 𝐼 ,𝐽 ( �̃�𝑃
𝑀1 ,𝑀2;Z 𝑓 : 𝑀1, 𝑀2 ∈ D𝜏)‖ℓ𝑝 (Z) �𝑝,𝜏,𝑃 ‖ 𝑓 ‖ℓ𝑝 (Z) . (3.20)

The implicit constant in (3.20) can be taken to depend only on 𝑝, 𝜏, 𝑃.

We immediately see that Theorem 3.19 is a special case of Theorem 3.16. However, it is also a standard
matter, in view of the Calderón transference principle [19], that this implication can be reversed. So in
order to prove (3.17), it suffices to establish (3.20). This reduction is important since we can use Fourier
methods in the integer setting which are not readily available in abstract measure spaces.

From now on, we will focus our attention on establishing Theorem 3.19.

4. ‘Backwards’ Newton diagram: Proof of Theorem 3.19

The ‘backwards’ Newton diagram 𝑁𝑃 of a nontrivial polynomial 𝑃 ∈ R[m1, m2],

𝑃(𝑚1, 𝑚2) :=
∑
𝛾1 ,𝛾2

𝑐𝛾1 ,𝛾2 𝑚
𝛾1
1 𝑚

𝛾2
2 , with 𝑐0,0 = 0, (4.1)

is defined as the closed convex hull of the set⋃
(𝛾1 ,𝛾2) ∈𝑆𝑃

{(𝑥 + 𝛾1, 𝑦 + 𝛾2) ∈ R2 : 𝑥 ≤ 0, 𝑦 ≤ 0},

where 𝑆𝑃 := {(𝛾1, 𝛾2) ∈ N × N : 𝑐𝛾1 ,𝛾2 ≠ 0} denotes the set of non-vanishing coefficients of P.
Let 𝑉𝑃 ⊆ 𝑆𝑃 be the set of vertices (corner points) of 𝑁𝑃 . Suppose that 𝑉𝑃 := {𝑣1, . . . , 𝑣𝑟 }, where

𝑣 𝑗 = (𝑣 𝑗 ,1, 𝑣 𝑗 ,2) satisfies 𝑣 𝑗 ,1 < 𝑣 𝑗+1,1, and 𝑣 𝑗+1,2 < 𝑣 𝑗 ,2 for each 𝑗 ∈ [𝑟].
Let 𝜔0 = (0, 1) and 𝜔𝑟 = (1, 0) and for 𝑗 ∈ [𝑟 − 1], let 𝜔 𝑗 = (𝜔 𝑗 ,1, 𝜔 𝑗 ,2) denote a normal vector

to the edge 𝑣 𝑗𝑣 𝑗+1 := 𝑣 𝑗+1 − 𝑣 𝑗 such that 𝜔 𝑗 ,1, 𝜔 𝑗 ,2 are positive integers (the choice is not unique but it
is not an issue here). Observe that the slopes of the lines along 𝜔 𝑗 ’s are decreasing as j increases since
𝑁𝑃 is convex. The convexity of 𝑁𝑃 also yields that

𝜔 𝑗 · (𝑣 − 𝑣 𝑗 ) ≤ 0 and 𝜔 𝑗−1 · (𝑣 − 𝑣 𝑗 ) ≤ 0 (with one inequality strict), (4.2)

for all 𝑣 ∈ 𝑆𝑃 \ {𝑣 𝑗 } and 𝑗 ∈ [𝑟]. Now for 𝑗 ∈ [𝑟], let us define

𝑊 ( 𝑗) :=
⋂

𝑣 ∈𝑆𝑃\{𝑣𝑗 }
{(𝑎, 𝑏) ∈ Z+ × Z+ : (𝑎, 𝑏) · (𝑣 − 𝑣 𝑗 ) < 0},

which is the intersection of various half planes. If V𝑃 = {𝑣1}, then we simply define 𝑊 (1) = Z+ × Z+.
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Remark 4.3. Obviously, if 1 ≤ 𝑖 < 𝑗 ≤ 𝑟 , then 𝑊 (𝑖) ∩𝑊 ( 𝑗) = ∅. Indeed, if (𝑎, 𝑏) ∈ 𝑊 (𝑖) ∩𝑊 ( 𝑗), then
(𝑎, 𝑏) · (𝑣 − 𝑣𝑖) < 0 for all 𝑣 ∈ 𝑆𝑃 \ {𝑣𝑖} and (𝑎, 𝑏) · (𝑣 − 𝑣 𝑗 ) < 0 for all 𝑣 ∈ 𝑆𝑃 \ {𝑣 𝑗 }. In particular,
(𝑎, 𝑏) · (𝑣 𝑗 − 𝑣𝑖) < 0 and (𝑎, 𝑏) · (𝑣𝑖 − 𝑣 𝑗 ) < 0, which is impossible.

Lemma 4.4. For 𝑗 ∈ [𝑟], we have

𝑊 ( 𝑗) = {(𝑎, 𝑏) ∈ Z+ × Z+ : ∃𝛼,𝛽>0 (𝑎, 𝑏) = 𝛼𝜔 𝑗−1 + 𝛽𝜔 𝑗 }.

Proof. The convexity of 𝑁𝑃 implies that the normals 𝜔 𝑗−1, 𝜔 𝑗 are linearly independent; therefore, for
every (𝑎, 𝑏) ∈ Z+ × Z+, there are 𝛼, 𝛽 such that (𝑎, 𝑏) = 𝛼𝜔 𝑗−1 + 𝛽𝜔 𝑗 . We only need to show that
(𝑎, 𝑏) ∈ 𝑊 ( 𝑗) if and only if 𝛼, 𝛽 > 0. First, suppose that (𝑎, 𝑏) ∈ 𝑊 ( 𝑗). Then (𝑎, 𝑏) · (𝑣 − 𝑣 𝑗 ) < 0
for all 𝑣 ∈ 𝑆𝑃 \ {𝑣 𝑗 }. In particular, (𝑎, 𝑏) · (𝑣 𝑗+1 − 𝑣 𝑗 ) = (𝛼𝜔 𝑗−1 + 𝛽𝜔 𝑗 ) · (𝑣 𝑗+1 − 𝑣 𝑗 ) < 0. But this
implies that 𝛼𝜔 𝑗−1 · (𝑣 𝑗+1 − 𝑣 𝑗 ) < 0, since 𝜔 𝑗 · (𝑣 𝑗+1 − 𝑣 𝑗 ) = 0. This immediately gives that 𝛼 > 0,
provided that 𝑗 ∈ [𝑟 − 1], since 𝜔 𝑗−1 · (𝑣 𝑗+1 − 𝑣 𝑗 ) ≤ 0 by (4.2). When 𝑗 = 𝑟 , then 𝛼 > 0 since
𝜔𝑟 = (1, 0) and 0 < 𝑏 = (𝑎, 𝑏) · (0, 1) = (𝛼𝜔𝑟−1 + 𝛽𝜔𝑟 ) · (0, 1) = 𝛼𝜔𝑟−1 · (0, 1) = 𝛼𝜔𝑟−1,2. Similarly,
taking 𝑣 = 𝑣 𝑗−1 for 1 < 𝑗 ≤ 𝑟 , we obtain 𝛽 > 0. When 𝑗 = 1, then 𝛽 > 0 because 𝜔0 = (0, 1) and
0 < 𝑎 = (𝑎, 𝑏) · (1, 0) = (𝛼𝜔0 + 𝛽𝜔1) · (1, 0) = 𝛽𝜔1 · (1, 0) = 𝛽𝜔1,1. Conversely, if 𝛼 > 0 and 𝛽 > 0,
then for any 𝑣 ∈ 𝑆𝑃 \ {𝑣 𝑗 }, we have (𝑎, 𝑏) · (𝑣 − 𝑣 𝑗 ) = 𝛼𝜔 𝑗−1 · (𝑣 − 𝑣 𝑗 ) + 𝛽𝜔 𝑗 · (𝑣 − 𝑣 𝑗 ) < 0, since
𝜔 𝑗−1 · (𝑣 − 𝑣 𝑗 ) ≤ 0 and 𝜔 𝑗 · (𝑣 − 𝑣 𝑗 ) ≤ 0, with at least one inequality strict. �

Lemma 4.4 means that 𝑊 ( 𝑗) consists of those lattice points of Z+ × Z+ which are within the cone
centered at the origin with the boundaries determined by the lines along the normals 𝜔 𝑗−1 and 𝜔 𝑗 ,
respectively. Now for 𝑗 ∈ [𝑟], we set

𝑆( 𝑗) := {(𝑎, 𝑏) ∈ N × N : ∃𝛼≥0,𝛽≥0 (𝑎, 𝑏) = 𝛼𝜔 𝑗−1 + 𝛽𝜔 𝑗 }.

Remark 4.5. Some comments are in order.

1. Having defined the sets 𝑆( 𝑗) for 𝑗 ∈ [𝑟], it is not difficult to see that

𝑟⋃
𝑗=1

𝑆( 𝑗) = N × N. (4.6)

2. We note that for (𝑎, 𝑏) ∈ 𝑆( 𝑗), we have (𝑎, 𝑏) · (𝑣 − 𝑣 𝑗 ) ≤ 0 for all 𝑣 ∈ 𝑆𝑃 by (4.2). However, the
strict inequality may not be achieved even for 𝑣 ≠ 𝑣 𝑗 .

3. If 𝑟 ≥ 2, then by construction of the sets 𝑆( 𝑗), one sees that if (𝑎, 𝑏) ∈ 𝑆( 𝑗), then

𝜔 𝑗 ,2

𝜔 𝑗 ,1
𝑎 ≤ 𝑏 ≤

𝜔 𝑗−1,2

𝜔 𝑗−1,1
𝑎 (4.7)

for any 1 < 𝑗 < 𝑟; and if 𝑗 = 1 or 𝑗 = 𝑟 one has, respectively,

𝜔1,2

𝜔1,1
𝑎 ≤ 𝑏 < ∞, and 0 ≤ 𝑏 ≤

𝜔𝑟−1,2

𝜔𝑟−1,1
𝑎. (4.8)

4. If 𝑟 = 1 and (𝑎, 𝑏) ∈ 𝑆(1), then 0 ≤ 𝑎, 𝑏 < ∞.

Now for any given (𝑎, 𝑏) ∈ 𝑆( 𝑗), we try to determine 𝛼 and 𝛽 explicitly. Let 𝐴 𝑗 := [𝜔 𝑗−1 |𝜔 𝑗 ] be the
matrix whose column vectors are the normals 𝜔 𝑗−1, 𝜔 𝑗 . Then(

𝑎
𝑏

)
=

(
𝜔 𝑗−1,1 𝜔 𝑗 ,1
𝜔 𝑗−1,2 𝜔 𝑗 ,2

) (
𝛼
𝛽

)
.
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The convexity of 𝑁𝑃 (and the orientation we chose) ensures that det 𝐴 𝑗 < 0. Taking 𝑑 𝑗 := − det 𝐴 𝑗 > 0,
one has (

𝛼
𝛽

)
=

1
det 𝐴 𝑗

(
𝜔 𝑗 ,2 −𝜔 𝑗 ,1

−𝜔 𝑗−1,2 𝜔 𝑗−1,1

) (
𝑎
𝑏

)
=

1
𝑑 𝑗

(
−𝑎𝜔 𝑗 ,2 + 𝑏𝜔 𝑗 ,1

𝑎𝜔 𝑗−1,2 − 𝑏𝜔 𝑗−1,1

)
.

We have chosen the components of 𝜔 𝑗−1 and 𝜔 𝑗 to be non-negative integers; therefore, for 𝑗 ∈ [𝑟 − 1]
(keeping in mind that 𝛼, 𝛽 ≥ 0 and 𝑑 𝑗 > 0), we may rewrite

𝑆( 𝑗) = {(𝑎, 𝑏) ∈ N × N : ∃(𝑡1 ,𝑡2) ∈N×N (𝑎, 𝑏) = 𝑡1
𝑑 𝑗

𝜔 𝑗−1 +
𝑡2
𝑑 𝑗

𝜔 𝑗 }.

We allow 𝑡1 to be zero when 𝑗 = 𝑟 .
We now split 𝑆( 𝑗) into 𝑆1 ( 𝑗) and 𝑆2( 𝑗), where

𝑆1( 𝑗) := {(𝑎, 𝑏) ∈ 𝑆( 𝑗) : (𝑎, 𝑏) = (𝑛 + 𝑁)
𝑑 𝑗

𝜔 𝑗−1 +
𝑁

𝑑 𝑗
𝜔 𝑗 , 𝑛 ∈ N, 𝑁 ∈ N},

𝑆2 ( 𝑗) := {(𝑎, 𝑏) ∈ 𝑆( 𝑗) : (𝑎, 𝑏) = 𝑁

𝑑 𝑗
𝜔 𝑗−1 +

(𝑛 + 𝑁)
𝑑 𝑗

𝜔 𝑗 , 𝑛 ∈ N, 𝑁 ∈ N}.

We can further decompose

𝑆1 ( 𝑗) =
⋃
𝑁 ∈N

𝑆𝑁1 ( 𝑗), and 𝑆2 ( 𝑗) =
⋃
𝑁 ∈N

𝑆𝑁2 ( 𝑗),

where

𝑆𝑁1 ( 𝑗) :={(𝑎, 𝑏) ∈ 𝑆( 𝑗) : (𝑎, 𝑏) = (𝑛 + 𝑁)
𝑑 𝑗

𝜔 𝑗−1 +
𝑁

𝑑 𝑗
𝜔 𝑗 , 𝑛 ∈ N},

𝑆𝑁2 ( 𝑗) :={(𝑎, 𝑏) ∈ 𝑆( 𝑗) : (𝑎, 𝑏) = 𝑁

𝑑 𝑗
𝜔 𝑗−1 +

(𝑛 + 𝑁)
𝑑 𝑗

𝜔 𝑗 , 𝑛 ∈ N}.
(4.9)

Lemma 4.10. For each 𝑗 ∈ [𝑟], there exists 𝜎𝑗 > 0 such that for every 𝑣 ∈ 𝑆𝑃 \ {𝑣 𝑗 }, one has

(𝑎, 𝑏) · (𝑣 − 𝑣 𝑗 ) ≤ −𝜎𝑗𝑁 (4.11)

for all (𝑎, 𝑏) ∈ 𝑆𝑁1 ( 𝑗). The same conclusion is true for 𝑆𝑁2 ( 𝑗).

Proof. For every (𝑎, 𝑏) ∈ 𝑆𝑁1 ( 𝑗), we can write

(𝑎, 𝑏) = (𝑛 + 𝑁)
𝑑 𝑗

𝜔 𝑗−1 +
𝑁

𝑑 𝑗
𝜔 𝑗 =

𝑛

𝑑 𝑗
𝜔 𝑗−1 +

𝑁

𝑑 𝑗
(𝜔 𝑗 + 𝜔 𝑗−1)

for some 𝑛 ∈ N. By (4.2), we have

(𝑣 − 𝑣 𝑗 ) · (𝜔 𝑗 + 𝜔 𝑗−1) < 0

for all 𝑣 ∈ 𝑆𝑃 \ {𝑣 𝑗 }, since 𝜔 𝑗−1 and 𝜔 𝑗 are linearly independent. Taking

𝜎𝑗 := min
𝑣 ∈𝑆𝑃\{𝑣𝑗 }

1
𝑑 𝑗

(𝑣 𝑗 − 𝑣) · (𝜔 𝑗 + 𝜔 𝑗−1) > 0,
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one sees, by (4.2) again, that

(𝑎, 𝑏) · (𝑣 − 𝑣 𝑗 ) =
𝑛

𝑑 𝑗
𝜔 𝑗−1 · (𝑣 − 𝑣 𝑗 ) +

𝑁

𝑑 𝑗
(𝜔 𝑗 + 𝜔 𝑗−1) · (𝑣 − 𝑣 𝑗 ) ≤ −𝜎𝑗𝑁

for all (𝑎, 𝑏) ∈ 𝑆𝑁1 ( 𝑗). This immediately yields (4.11) and the proof is finished. �

For any 𝜏 > 1 using the decomposition (4.6), we may write

D𝜏 × D𝜏 =
𝑟⋃
𝑗=1
S𝜏 ( 𝑗), (4.12)

where

S𝜏 ( 𝑗) := {(𝜏𝑛1 , 𝜏𝑛2) ∈ D𝜏 × D𝜏 : (𝑛1, 𝑛2) ∈ 𝑆( 𝑗)}, for 𝑗 ∈ [𝑟] . (4.13)

Using (4.9), we can further write

S𝜏 ( 𝑗) =
⋃
𝑁 ∈N
S𝑁𝜏,1( 𝑗) ∪

⋃
𝑁 ∈N
S𝑁𝜏,2( 𝑗), (4.14)

where for any 𝑗 ∈ [𝑟], one has

S𝑁𝜏,1 ( 𝑗) :={(𝜏𝑛1 , 𝜏𝑛2 ) ∈ D𝜏 × D𝜏 : (𝑛1, 𝑛2) ∈ 𝑆𝑁1 ( 𝑗)},
S𝑁𝜏,2 ( 𝑗) :={(𝜏𝑛1 , 𝜏𝑛2 ) ∈ D𝜏 × D𝜏 : (𝑛1, 𝑛2) ∈ 𝑆𝑁2 ( 𝑗)}.

(4.15)

In view of decomposition (4.12), our aim will be to restrict the estimates for oscillations to sectors
from (4.13).

Theorem 4.16. Let 𝑃 ∈ Z[m1, m2] be a non-degenerate polynomial (see (1.14)) such that 𝑃(0, 0) = 0.
Let 𝑟 ∈ Z+ be the number of corners in the corresponding Newton diagram 𝑁𝑃 . Let 𝑓 ∈ ℓ𝑝 (Z) for some
1 ≤ 𝑝 ≤ ∞, and let �̃�𝑃

𝑀1 ,𝑀2;Z 𝑓 be the average defined in (3.18). If 1 < 𝑝 < ∞ and 𝜏 > 1 and 𝑗 ∈ [𝑟],
and S𝜏 ( 𝑗) is a sector from (4.13), then one has

sup
𝐽 ∈Z+

sup
𝐼 ∈𝔖𝐽 (S𝜏 ( 𝑗))

��𝑂 𝐼 ,𝐽 ( �̃�𝑃
𝑀1 ,𝑀2;Z 𝑓 : (𝑀1, 𝑀2) ∈ S𝜏 ( 𝑗))‖ℓ𝑝 (Z) �𝑝,𝜏,𝑃 ‖ 𝑓 ‖ℓ𝑝 (Z) . (4.17)

The implicit constant in (4.17) may only depend on 𝑝, 𝜏, 𝑃.

The proof of Theorem 4.16 is postponed to Section 7. However, assuming momentarily Theorem
4.16, we can derive Theorem 3.19.

Proof of Theorem 3.19. Assume that (4.17) holds for all 𝑗 ∈ [𝑟]. By (4.12) and (2.11), one has

sup
𝐽 ∈Z+

sup
𝐼 ∈𝔖𝐽 (D2

𝜏 )

��𝑂 𝐼 ,𝐽 ( �̃�𝑃
𝑀 ;Z 𝑓 : 𝑀 ∈ D2

𝜏)‖ℓ𝑝 (Z) �
∑
𝑗∈[𝑟 ]

sup
𝐽 ∈Z+

sup
𝐼 ∈𝔖𝐽 (D2

𝜏 )

��𝑂 𝐼 ,𝐽 ( �̃�𝑃
𝑀 ;Z 𝑓 : 𝑀 ∈ S𝜏 ( 𝑗))‖ℓ𝑝 (Z) .

Step 1. If suffices to show that for every 𝑗 ∈ [𝑟], every 𝐽 ∈ Z+ and every 𝐼 ∈ 𝔖𝐽 (D2
𝜏), one has���( ∑

𝑖∈N<𝐽

sup
𝑀 ∈B[𝐼 ,𝑖 ]∩S𝜏 ( 𝑗)

| �̃�𝑃
𝑀 ;Z 𝑓 − �̃�𝑃

𝐼𝑖 ;Z 𝑓 |2
)1/2���

ℓ𝑝 (Z)

�
∑
𝑗∈[𝑟 ]

sup
𝐽 ∈Z+

sup
𝐼 ∈𝔖𝐽 (S𝜏 ( 𝑗))

��𝑂 𝐼 ,𝐽 ( �̃�𝑃
𝑀 ;Z 𝑓 : 𝑀 ∈ S𝜏 ( 𝑗))

��
ℓ𝑝 (Z) . (4.18)
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We can assume that 𝐽 > 𝐶𝑟 for a large 𝐶 > 0; otherwise, the estimate in (4.18) easily follows from
maximal function estimates. Let us fix a sequence 𝐼 = (𝐼0, . . . , 𝐼𝐽 ) ∈ 𝔖𝐽 (D2

𝜏) and a sector S𝜏 ( 𝑗). Let
𝜔∗ := max{𝜔𝑖1, 𝜔𝑖2 : 𝑖 ∈ [𝑟]} and we split the set N<𝐽 into 𝑂 (𝑟) sparse sets J1, . . . , J𝑂 (𝑟 ) ⊂ N<𝐽 ,
where each J ∈ {J1, . . . , J𝑂 (𝑟 ) } satisfies the separation condition:

log𝜏 𝐼𝑖21 − log𝜏 𝐼 (𝑖1+1)1 ≥ 100𝑟𝜔∗ and log𝜏 𝐼𝑖22 − log𝜏 𝐼 (𝑖1+1)2 ≥ 100𝑟𝜔∗ (4.19)

for every 𝑖1, 𝑖2 ∈ J such that 𝑖1 < 𝑖2. Our task now is to establish (4.18) with the summation over J
satisfying (4.19) in place of N<𝐽 in the sum on the left-hand side of (4.18).

Step 2. To every element 𝐼𝑖 = (𝐼𝑖1, 𝐼𝑖2) with 𝑖 ∈ N<𝐽 in the sequence I (which say lies in the
sector S𝜏 ( 𝑗𝑖)), we associate at most one point 𝑃𝑖 ( 𝑗) ∈ S𝜏 ( 𝑗) in the following way. If 𝑗𝑖 < 𝑗 and
the box B[𝐼, 𝑖] intersects the sector S𝜏 ( 𝑗), then the box intersects the sector along the bottom edge.
We set 𝑃𝑖 ( 𝑗) = (𝐼 𝑗𝑖 , 𝐼𝑖2), where 𝐼

𝑗
𝑖 is the least element in D𝜏 such that (𝐼 𝑗𝑖 , 𝐼𝑖2) ∈ S𝜏 ( 𝑗). If 𝑗 < 𝑗𝑖

and the box B[𝐼, 𝑖] intersects the sector S𝜏 ( 𝑗), then it intersects the sector along the left edge. We set
𝑃𝑖 ( 𝑗) = (𝐼𝑖1, 𝐼

𝑗
𝑖 ), where 𝐼

𝑗
𝑖 is the least element in D𝜏 such that (𝐼𝑖1, 𝐼

𝑗
𝑖 ) ∈ S𝜏 ( 𝑗). Finally if 𝑗𝑖 = 𝑗 , we

set 𝑃𝑖 ( 𝑗) = 𝐼𝑖 . The sequence 𝑃( 𝑗) = (𝑃𝑖 ( 𝑗) : 𝑖 ∈ N≤𝐽 ′ ) forms a strictly increasing sequence lying
in 𝔖𝐽 ′ (S𝜏 ( 𝑗)) for some 𝐽 ′ ≤ 𝐽 and each 𝑃𝑖 ( 𝑗) = (𝑃𝑖1( 𝑗), 𝑃𝑖2( 𝑗)) is the least element among all the
elements (𝑀1, 𝑀2) ∈ B[𝐼, 𝑖] ∩ S𝜏 ( 𝑗).

Step 3. We now produce a sequence of length at most 𝑟+2, which will allow us to move from 𝐼𝑖 to 𝑃𝑖 ( 𝑗)
when 𝐼𝑖 ≠ 𝑃𝑖 ( 𝑗). More precisely, we claim that there exists a sequence 𝑢𝑖 := (𝑢𝑖𝑚 : 𝑚 ∈ N<𝑚𝐼𝑖

) ⊂ D2
𝜏

for some 𝑚𝐼𝑖 ∈ [𝑟 + 1], with the property that

𝑢𝑖0 � 𝑢𝑖1 � . . . � 𝑢𝑖𝑚𝐼𝑖−1, and 𝑢𝑖𝑚𝐼𝑖−1 ≺ 𝑢𝑖𝑚𝐼𝑖
, (4.20)

where (𝑢𝑖0, 𝑢𝑖𝑚𝐼𝑖
) = (𝐼𝑖 , 𝑃𝑖 ( 𝑗)) or (𝑢𝑖0, 𝑢𝑖𝑚𝐼𝑖

) = (𝑃𝑖 ( 𝑗), 𝐼𝑖). Moreover, two consecutive elements 𝑢𝑖𝑚, 𝑢𝑖𝑚+1
of this sequence belong to a unique sector S𝜏 ( 𝑗𝑢𝑖𝑚 ) except the elements 𝑢𝑖𝑚𝐼𝑖−2, 𝑢𝑖𝑚𝐼𝑖−1 and 𝑢𝑖𝑚𝐼𝑖−1, 𝑢𝑖𝑚𝐼𝑖

,
which may belong to the same sector. Suppose now that B[𝐼, 𝑖] ∩S𝜏 ( 𝑗) ≠ ∅ and 𝐼𝑖 ∈ S𝜏 ( 𝑗𝑖) and 𝑗𝑖 < 𝑗 .
Let 𝑢𝑖0 := 𝐼𝑖 be the starting point. Suppose that the elements 𝑢𝑖0 � 𝑢𝑖1 � . . . � 𝑢𝑖𝑚 have been chosen for
some 𝑚 ∈ N<𝑟 so that 𝑢𝑖𝑠 lies on the bottom boundary ray of S𝜏 ( 𝑗𝑖 + 𝑠 − 1) and 𝑢𝑖𝑠 ≺ 𝑢𝑖𝑠−1 for each
𝑠 ∈ [𝑚]. Then we take 𝑢𝑖𝑚 and move southwesterly to 𝑢𝑖𝑚+1, the nearest point on the bottom boundary
ray of S𝜏 ( 𝑗𝑖 +𝑚) such that 𝑢𝑖𝑚+1 ≺ 𝑢𝑖𝑚. Continuing this way after 𝑚𝐼𝑖 −1 = 𝑗 − 𝑗𝑖 +1 ≤ 𝑟 steps, we arrive
at 𝑢𝑖𝑚𝐼𝑖−1 ∈ S𝜏 ( 𝑗) which will allow us to reach the last point of this sequence 𝑢𝑖𝑚𝐼𝑖

:= 𝑃𝑖 ( 𝑗) as claimed
in (4.20). Assume now that B[𝐼, 𝑖] ∩ S𝜏 ( 𝑗) ≠ ∅ and 𝐼𝑖 ∈ S𝜏 ( 𝑗𝑖) and 𝑗𝑖 > 𝑗 . We start from the point
𝑢𝑖0 := 𝑃𝑖 ( 𝑗) and proceed exactly the same as in the previous case until we reach the point 𝑢𝑖𝑚𝐼𝑖

:= 𝐼𝑖 .
Step 4. To complete the proof, we use the sequence from (4.20) for each 𝑖 ∈ J and observe that���(∑

𝑖∈J
sup

𝑀 ∈B[𝐼 ,𝑖 ]∩S𝜏 ( 𝑗)
| �̃�𝑃

𝑀 ;Z 𝑓 − �̃�𝑃
𝐼𝑖 ;Z 𝑓 |2

)1/2���
ℓ𝑝 (Z)

≤
���(∑

𝑖∈J
sup

𝑀 ∈B[𝑃 ( 𝑗) ,𝑖 ]∩S𝜏 ( 𝑗)
| �̃�𝑃

𝑀 ;Z 𝑓 − �̃�𝑃
𝐼𝑖 ;Z 𝑓 |2

)1/2���
ℓ𝑝 (Z)

�𝑟
���(∑

𝑖∈J
sup

𝑀 ∈B[𝑃 ( 𝑗) ,𝑖 ]∩S𝜏 ( 𝑗)
| �̃�𝑃

𝑀 ;Z 𝑓 − �̃�𝑃
𝑃𝑖 ( 𝑗);Z 𝑓 |2

)1/2���
ℓ𝑝 (Z)

+
���(∑

𝑖∈J

∑
𝑚∈N<𝑚𝐼𝑖

| �̃�𝑃
𝑢𝑖
𝑚+1;Z 𝑓 − �̃�𝑃

𝑢𝑖𝑚;Z 𝑓 |2
)1/2���

ℓ𝑝 (Z)
.

Clearly, the first norm is dominated by the right-hand side of (4.18). The same is true for the second
norm. It follows from the fact that for two consecutive integers 𝑖1 < 𝑖2 such that B[𝐼, 𝑖1] ∩S𝜏 ( 𝑗) ≠ ∅ and
B[𝐼, 𝑖2] ∩ S𝜏 ( 𝑗) ≠ ∅, if we have 𝑢𝑖1𝑗1 and 𝑢𝑖2𝑗2 belonging to the same sector, they must satisfy 𝑢𝑖1𝑗1 ≺ 𝑢𝑖2𝑗2
by the separation condition (4.19). This completes the proof of the theorem. �
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5. Exponential sum estimates

This section is intended to establish certain double exponential sum estimates which will be used later.
We begin by recalling the classical Weyl inequality with a logarithmic loss.
Proposition 5.1. Let 𝑑 ∈ Z+, 𝑑 ≥ 2 and let 𝑃 ∈ R[m] be such that 𝑃(𝑚) := 𝑐𝑑𝑚𝑑 + . . . + 𝑐1𝑚. Then
there exists a constant 𝐶 > 0 such that for every 𝑀 ∈ Z+, the following is true. Suppose that for some
2 ≤ 𝑗 ≤ 𝑑, there are 𝑎, 𝑞 ∈ Z such that 1 ≤ 𝑞 ≤ 𝑀 𝑗 and (𝑎, 𝑞) = 1 and


𝑐 𝑗 − 𝑎

𝑞




 ≤ 1
𝑞2 .

Then for 𝜎(𝑑) := 2𝑑2 − 2𝑑 + 1, one has




 𝑀∑
𝑚=1

𝒆(𝑃(𝑚))



 ≤ 𝐶𝑀 log(2𝑀)

(
1
𝑞
+ 1

𝑀
+ 𝑞

𝑀 𝑗

) 1
𝜎 (𝑑)

. (5.2)

For the proof, we refer to [70, Theorem 1.5]. The range of summation in (5.2) can be shifted to any
segment of length M without affecting the bound. We will also recall a simple lemma from [52, Lemma
A.15, p. 53] (see also [58, Lemma 1, p. 1298]), which follows from the Dirichlet principle.
Lemma 5.3. Let 𝜃 ∈ R and 𝑄 ∈ Z \ {0}. Suppose that


𝜃 − 𝑎

𝑞




 ≤ 1
𝑞2

for some integers 0 ≤ 𝑎 < 𝑞 ≤ 𝑀 with (𝑎, 𝑞) = 1 for some 𝑀 ≥ 1. Then there is a reduced fraction
𝑎′/𝑞′ so that (𝑎′, 𝑞′) = 1 and 


𝑄𝜃 − 𝑎′

𝑞′




 ≤ 1
2𝑞′𝑀

with 𝑞/(2|𝑄 |) ≤ 𝑞′ ≤ 2𝑀 .
We now extend Weyl’s inequality in Proposition 5.1 to include the 𝑗 = 1 case.

Proposition 5.4. Let 𝑑 ∈ Z+ and let 𝑃 ∈ R[m] be such that 𝑃(𝑚) := 𝑐𝑑𝑚𝑑 + . . .+𝑐1𝑚. Then there exists
a constant 𝐶 > 0 such that for every 𝑀 ∈ Z+, the following is true. Suppose that for some 1 ≤ 𝑗 ≤ 𝑑,
there are 𝑎, 𝑞 ∈ Z such that 1 ≤ 𝑞 ≤ 𝑀 𝑗 and (𝑎, 𝑞) = 1 and


𝑐 𝑗 − 𝑎

𝑞




 ≤ 1
𝑞2 . (5.5)

Then for certain 𝜏(𝑑) ∈ Z+, one has




 𝑀∑
𝑚=1

𝒆(𝑃(𝑚))



 ≤ 𝐶𝑀 log(2𝑀)

(
1
𝑞
+ 1

𝑀
+ 𝑞

𝑀 𝑗

) 1
𝜏 (𝑑)

. (5.6)

Proof. We first assume that 𝑑 = 1. Then 𝑃(𝑚) = 𝑐1𝑚 and 𝑗 = 1. We can also assume that 𝑞 ≥ 2;
otherwise, (5.6) is obvious. Now it is easy to see that


 𝑀∑

𝑚=1
𝒆(𝑐1𝑚)




 ≤ 1
‖𝑐1‖

� 𝑞.

Thus, (5.6) holds with 𝜏(1) = 1. Now we assume that 𝑑 ≥ 2. If (5.5) holds for some 2 ≤ 𝑗 ≤ 𝑑, then
(5.6) follows from Proposition 5.1 with 𝜏(𝑑) = 𝜎(𝑑), where 𝜎(𝑑) is the exponent as in (5.2). Hence,
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we can assume that 𝑗 = 1. Define 𝜅 := min{𝑞, 𝑀/𝑞}, and let 𝜒 ∈ (0, (4𝑑)−1). We may assume that
𝜅 > 100; otherwise, (5.6) obviously follows. For every 2 ≤ 𝑗 ′ ≤ 𝑑, by Dirichlet’s principle, there is a
reduced fraction 𝑎 𝑗′/𝑞 𝑗′ such that 


𝑐 𝑗′ − 𝑎 𝑗′

𝑞 𝑗′




 ≤ 𝜅𝜒

𝑞 𝑗′𝑀 𝑗′
(5.7)

with (𝑎 𝑗′ , 𝑞 𝑗′ ) and 1 ≤ 𝑞′
𝑗 ≤ 𝑀 𝑗′𝜅−𝜒. We may assume that 1 ≤ 𝑞 𝑗′ ≤ 𝜅𝜒 for all 2 ≤ 𝑗 ′ ≤ 𝑑, since

otherwise the claim follows from (5.2) with 𝜏(𝑑) = �𝜎(𝑑)𝜒−1�. Let 𝑄 := lcm{𝑞 𝑗′ : 2 ≤ 𝑗 ′ ≤ 𝑑} ≤ 𝜅𝑑𝜒

and note that 𝑄 ≤ 𝑀 follows from the definition of 𝜅. We have




 𝑀∑
𝑚=1

𝒆(𝑃(𝑚))



 ≤ 𝑄∑

𝑟=1




 ∑
− 𝑟

𝑄 <ℓ≤ 𝑀−𝑟
𝑄

𝒆(𝑃(𝑄ℓ + 𝑟))





=
𝑄∑
𝑟=1




 ∑
𝑈<ℓ≤𝑉

𝐴ℓ𝐵ℓ




,
where 𝑈 := − 𝑟

𝑄 , 𝑉 := 𝑀−𝑟
𝑄 and 𝐴ℓ := 𝒆(𝑐1𝑄ℓ) and

𝐵ℓ := 𝒆
���

𝑑∑
𝑗′=2

𝑐 𝑗′ (𝑄ℓ + 𝑟) 𝑗′��� = 𝒆
���

𝑑∑
𝑗′=2

𝛼 𝑗′ (𝑄ℓ + 𝑟) 𝑗′ +
𝑑∑
𝑗′=2

𝑎 𝑗′

𝑞 𝑗′
𝑟 𝑗

′��� ,

where 𝛼 𝑗′ := 𝑐 𝑗′ − 𝑎 𝑗′/𝑞 𝑗′ satisfies the estimate (5.7). Using the summation by parts formula (2.1), we
obtain ∑

𝑈<ℓ≤𝑉
𝐴ℓ𝐵ℓ = 𝑆𝑉 𝐵 �𝑉 � +

∑
ℓ∈(𝑈,𝑉−1]∩Z

𝑆ℓ (𝐵ℓ − 𝐵ℓ+1),

with 𝑆ℓ :=
∑

𝑘∈(𝑈,ℓ ]∩Z 𝐴𝑘 .
From above, since 𝑄 ≤ 𝑀 , we see that

|𝐵ℓ+1 − 𝐵ℓ | � 𝜅𝜒𝑄𝑀−1.

By Lemma 5.3 (with 𝑀 = 𝑞), there is a reduced fraction 𝑎′/𝑞′ such that (𝑎′, 𝑞′) = 1 and


𝑐1𝑄 − 𝑎′

𝑞′




 ≤ 1
2𝑞𝑞′ and 𝜅1−𝑑𝜒/2 ≤ 𝑞′ ≤ 2𝑞 ≤ 2𝑀/𝜅.

Hence, 𝑞′ ≥ 𝜅1−𝑑𝜒/2 ≥ 2 and so

|𝑆ℓ | �
1

‖𝑐1𝑄‖ � 𝑞′ � 𝑀/𝜅.

Consequently, we conclude that




 𝑀∑
𝑚=1

𝒆(𝑃(𝑚))



 � 𝑀𝜅−1/2.

This implies (5.6) with 𝜏(𝑑) = 2, and the proof of Proposition 5.4 is complete. �

We shall also use the Vinogradov mean value theorem. A detailed exposition of Vinogradov’s method
can be found in [35, Section 8.5, p. 216]; see also [70]. We shall follow [35]. For each integer 𝑠 ≥ 1 and
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𝑘, 𝑁 ≥ 2 and for 𝜆1, . . . , 𝜆𝑘 ∈ Z let 𝐽𝑠,𝑘 (𝑁; 𝜆1, . . . , 𝜆𝑘 ) denote the number of solutions to the system
of k inhomogeneous equations in 2𝑠 variables given by

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
𝑥1 + . . . + 𝑥𝑠 − 𝑦1 − . . . − 𝑦𝑠 = 𝜆1
𝑥2

1 + . . . + 𝑥2
𝑠 − 𝑦2

1 − . . . − 𝑦2
𝑠 = 𝜆2

...
𝑥𝑘1 + . . . + 𝑥𝑘𝑠 − 𝑦𝑘1 − . . . − 𝑦𝑘𝑠 = 𝜆𝑘 ,

(5.8)

where 𝑥 𝑗 , 𝑦 𝑗 ∈ [𝑁] for every 𝑗 ∈ [𝑠]. The number 𝐽𝑠,𝑘 (𝑁; 𝜆1, . . . , 𝜆𝑘 ) can be expressed in terms of a
certain exponential sum. Let 𝑅𝑘 (𝑥) := (𝑥, 𝑥2, . . . , 𝑥𝑘 ) ∈ R𝑘 denote the moment curve for 𝑥 ∈ R. For
𝜉 = (𝜉1, . . . , 𝜉𝑘 ) ∈ R𝑘 , define the exponential sum

𝑆𝑘 (𝜉; 𝑁) :=
𝑁∑
𝑛=1

𝒆(𝜉 · 𝑅𝑘 (𝑛)) =
𝑁∑
𝑛=1

𝒆(𝜉1𝑛 + . . . + 𝜉𝑘𝑛𝑘 ).

One easily obtains

|𝑆𝑘 (𝜉; 𝑁) |2𝑠 =
∑

|𝜆1 | ≤𝑠𝑁
. . .

∑
|𝜆𝑘 | ≤𝑠𝑁 𝑘

𝐽𝑠,𝑘 (𝑁; 𝜆1, . . . , 𝜆𝑘 )𝒆(𝜉 · 𝜆), (5.9)

which by the Fourier inversion formula gives

𝐽𝑠,𝑘 (𝑁; 𝜆1, . . . , 𝜆𝑘 ) =
∫
[0,1)𝑘

|𝑆𝑘 (𝜉; 𝑁) |2𝑠𝒆(−𝜉 · 𝜆)𝑑𝜉. (5.10)

Moreover, from (5.10), one has

𝐽𝑠,𝑘 (𝑁; 𝜆1, . . . , 𝜆𝑘 ) ≤ 𝐽𝑠,𝑘 (𝑁) := 𝐽𝑠,𝑘 (𝑁; 0, . . . , 0), (5.11)

where the number 𝐽𝑠,𝑘 (𝑁) represents the number of solutions to the system of k homogeneous equations
in 2𝑠 variables as in (5.8) with 𝜆1 = . . . = 𝜆𝑘 = 0.

Vinogradov’s mean value theorem can be formulated as follows:

Theorem 5.12. For all integers 𝑠 ≥ 1 and 𝑘 ≥ 2 and any 𝜀 > 0, there is a constant 𝐶𝜀 > 0 such that
for every integer 𝑁 ≥ 2, one has

𝐽𝑠,𝑘 (𝑁) ≤ 𝐶𝜀
(
𝑁𝑠+𝜀 + 𝑁2𝑠− 𝑘 (𝑘+1)

2 +𝜀 ) . (5.13)

Moreover, if additionally 𝑠 > 1
2 𝑘 (𝑘 + 1), then there is a constant 𝐶 > 0 such that

𝐽𝑠,𝑘 (𝑁) ≤ 𝐶𝑁2𝑠− 𝑘 (𝑘+1)
2 . (5.14)

Apart from the 𝑁 𝜀 loss in (5.13), this bound is known to be sharp. Inequality (5.13) is fairly simple
for 𝑘 = 2 and follows from elementary estimates for the divisor function. The conclusion of Theorem
5.12 for 𝑘 ≥ 3, known as Vinogradov’s mean value theorem, was a central problem in analytic number
theory and had been open until recently. The cubic case 𝑘 = 3 was solved by Wooley [69] using the
efficient congruencing method. The case for any 𝑘 ≥ 3 was solved by the first author with Demeter and
Guth [17] using the decoupling method. Not long afterwards, Wooley [68] also showed that the efficient
congruencing method can be used to solve the Vinogradov mean value conjecture for all 𝑘 ≥ 3. In fact,
later we will only use (5.14), which easily follows from (5.13); the details can be found in [17, Section 5].

https://doi.org/10.1017/fmp.2023.21 Published online by Cambridge University Press

https://doi.org/10.1017/fmp.2023.21


30 J. Bourgain et al.

5.1. Double Weyl’s inequality

Let 𝐾1, 𝐾2 ∈ N, 𝑀1, 𝑀2 ∈ Z+ satisfy 𝐾1 < 𝑀1 and 𝐾2 < 𝑀2. Let 𝑄 ∈ R[m1, m2] be given and define
double exponential sums by

𝑆𝐾1 ,𝑀1 ,𝐾2 ,𝑀2 (𝑄) :=
𝑀1∑

𝑚1=𝐾1+1

𝑀2∑
𝑚2=𝐾2+1

𝒆(𝑄(𝑚1, 𝑚2)), (5.15)

𝑆1
𝐾1 ,𝑀1 ,𝐾2 ,𝑀2

(𝑄) :=
𝑀1∑

𝑚1=𝐾1+1




 𝑀2∑
𝑚2=𝐾2+1

𝒆(𝑄(𝑚1, 𝑚2))



, (5.16)

𝑆2
𝐾1 ,𝑀1 ,𝐾2 ,𝑀2

(𝑄) :=
𝑀2∑

𝑚2=𝐾2+1




 𝑀1∑
𝑚1=𝐾1+1

𝒆(𝑄(𝑚1, 𝑚2))



. (5.17)

If 𝐾1 = 𝐾2 = 0, we will abbreviate (5.15), (5.16) and (5.17), respectively, to

𝑆𝑀1 ,𝑀2 (𝑄), 𝑆1
𝑀1 ,𝑀2

(𝑄), and 𝑆2
𝑀1 ,𝑀2

(𝑄). (5.18)

By the triangle inequality, we have

|𝑆𝐾1 ,𝑀1 ,𝐾2 ,𝑀2 (𝑄) | ≤ 𝑆1
𝐾1 ,𝑀1 ,𝐾2 ,𝑀2

(𝑄), and |𝑆𝐾1 ,𝑀1 ,𝐾2 ,𝑀2 (𝑄) | ≤ 𝑆2
𝐾1 ,𝑀1 ,𝐾2 ,𝑀2

(𝑄). (5.19)

We now provide estimates for (5.15), (5.16) and (5.17) in the spirit of Proposition 5.1 above. We first
recall a technical lemma from [39, Chapter IV, Lemma 5, p. 82].

Lemma 5.20. Let 𝛼 ∈ R and suppose that there are 𝑎 ∈ Z, 𝑞 ∈ Z+ such that (𝑎, 𝑞) = 1 and


𝛼 − 𝑎

𝑞




 ≤ 1
𝑞2 .

Then for every 𝛽 ∈ R, 𝑈 > 0 and 𝑃 ≥ 1, one has

𝑃∑
𝑛=1

min
{
𝑈,

1
‖𝛼𝑛 + 𝛽‖

}
≤ 6

(
1 + 𝑃

𝑞

)
(𝑈 + 𝑞 log 𝑞). (5.21)

Estimate (5.21) will be useful in the proof of the following counterpart of Weyl’s inequality for
double sums.

Proposition 5.22. Let 𝑑1, 𝑑2 ∈ Z+ and 𝑄 ∈ R[m1, m2] be such that

𝑄(𝑚1, 𝑚2) :=
𝑑1∑
𝛾1=0

𝑑2∑
𝛾2=0

𝑐𝛾1 ,𝛾2 𝑚
𝛾1
1 𝑚

𝛾2
2 , and 𝑐0,0 = 0.

Then there exists a constant 𝐶 > 0 such that for every 𝐾1, 𝐾2 ∈ N, 𝑀1, 𝑀2 ∈ Z+ satisfying 𝐾1 ≤ 𝑀1
and 𝐾2 ≤ 𝑀2, the following holds. Suppose that for some 1 ≤ 𝜌1 ≤ 𝑑1 and 1 ≤ 𝜌2 ≤ 𝑑2, there are
𝑎𝜌1 ,𝜌2 ∈ Z, 𝑞𝜌1 ,𝜌2 ∈ Z+ such that (𝑎𝜌1 ,𝜌2 , 𝑞𝜌1 ,𝜌2) = 1 and


𝑐𝜌1 ,𝜌2 −

𝑎𝜌1 ,𝜌2

𝑞𝜌1 ,𝜌2




 ≤ 1
𝑞2
𝜌1 ,𝜌2

. (5.23)
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Set 𝑘𝑖 := 𝑑𝑖 (𝑑𝑖 + 1) for 𝑖 ∈ [2], 𝑀− := min(𝑀𝜌1
1 , 𝑀

𝜌2
2 ) and 𝑀+ := max(𝑀𝜌1

1 , 𝑀
𝜌2
2 ). Then for 𝑖 ∈ [2],

𝑆𝑖𝐾1 ,𝑀1 ,𝐾2 ,𝑀2
(𝑄) ≤ 𝐶𝑀1𝑀2

(
1

𝑀−
+

𝑞𝜌1 ,𝜌2 log 𝑞𝜌1 ,𝜌2

𝑀
𝜌1
1 𝑀

𝜌2
2

+ 1
𝑞𝜌1 ,𝜌2

+
log 𝑞𝜌1 ,𝜌2

𝑀+

) 1
4𝑘1𝑘2

. (5.24)

In view of (5.19), estimates (5.24) clearly hold for |𝑆𝐾1 ,𝑀1 ,𝐾2 ,𝑀2 (𝑄) |.

Remark 5.25. The bracketed expression in (5.24) is equal to min(𝐴, 𝐵) where

𝐴 =
1

𝑀
𝜌2
2

+
𝑞𝜌1 ,𝜌2 log 𝑞𝜌1 ,𝜌2

𝑀
𝜌1
1 𝑀

𝜌2
2

+ 1
𝑞𝜌1 ,𝜌2

+
log 𝑞𝜌1 ,𝜌2

𝑀
𝜌1
1

and

𝐵 =
1

𝑀
𝜌1
1

+
𝑞𝜌1 ,𝜌2 log 𝑞𝜌1 ,𝜌2

𝑀
𝜌1
1 𝑀

𝜌2
2

+ 1
𝑞𝜌1 ,𝜌2

+
log 𝑞𝜌1 ,𝜌2

𝑀
𝜌2
2

.

Multi-parameter exponential sums were extensively investigated over the years. The best source about
this subject is [1]. However, here we need bounds as in (5.24), which will allow us to gain logarithmic
factors on minor arcs (see Proposition 5.37) in contrast to polynomial factors, which were obtained in [1].
We prove Proposition 5.22 by giving an argument based on an iterative application of the Vinogradov
mean value theorem.

Proof of Proposition 5.22. We only prove (5.24) for 𝑖 = 1. The proof of (5.24) for 𝑖 = 2 can be obtained
similarly by symmetry. To prove inequality (5.24) when 𝑖 = 1, we shall follow [35, Section 8.5., p. 216]
and proceed in five steps.

Step 1. For 𝑖 ∈ [2], let us define the 𝑑𝑖-dimensional box

B𝑑𝑖 (𝑀𝑖) :=
( 𝑑𝑖∏
𝑗=1

[−𝑘𝑖𝑀
𝑗
𝑖 , 𝑘𝑖𝑀

𝑗
𝑖 ]

)
∩ Z𝑑𝑖 .

Observe that

𝑄(𝑚1, 𝑚2) =
𝑑2∑
𝛾2=0

𝑐𝛾2 (𝑚1)𝑚𝛾2
2 = 𝑐(𝑚1) · 𝑅𝑑2 (𝑚2) + 𝑐0 (𝑚1),

where for 𝛾2 ∈ [𝑑2] ∪ {0}, one has

𝑐(𝑚1) := (𝑐1 (𝑚1), . . . , 𝑐𝑑2 (𝑚1)) and 𝑐𝛾2 (𝑚1) :=
𝑑1∑
𝛾1=0

𝑐𝛾1 ,𝛾2 𝑚
𝛾1
1 .

Recall that 𝑅𝑑2 (𝑚2) = (𝑚2, 𝑚2
2, . . . , 𝑚𝑑2

2 ). By (5.16), we note that

𝑆1
𝐾1 ,𝑀1 ,𝐾2 ,𝑀2

(𝑄) ≤ 𝑆1
𝑀1 ,𝑀2

(𝑄) + 𝑆1
𝑀1 ,𝐾2

(𝑄) � max
𝑁2∈[𝑀2 ]

𝑆1
𝑀1 ,𝑁2

(𝑄).
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For any 𝑘2 ∈ Z+, by Hölder’s inequality and by (5.9), we obtain

𝑆1
𝐾1 ,𝑀1 ,𝐾2 ,𝑀2

(𝑄)2𝑘2 � 𝑀2𝑘2−1
1 max

𝑁2∈[𝑀2 ]

𝑀1∑
𝑚1=1

|𝑆𝑑2 (𝑐(𝑚1); 𝑁2) |2𝑘2

= 𝑀2𝑘2−1
1 max

𝑁2∈[𝑀2 ]

∑
𝑢∈B𝑑2 (𝑁2)

𝐽𝑘2 ,𝑑2 (𝑁2; 𝑢)
𝑀1∑
𝑚1=1

𝒆(𝑐(𝑚1) · 𝑢).
(5.26)

Step 2. We see that

𝑐(𝑚1) · 𝑢 =
𝑑1∑
𝛾1=0

𝑑2∑
𝛾2=1

𝑐𝛾1 ,𝛾2𝑢𝛾2 𝑚
𝛾1
1 = 𝛽1 (𝑢) · 𝑅𝑑1 (𝑚1) + 𝛽1

0 (𝑢),

where for 𝑢 = (𝑢1, . . . , 𝑢𝑑2) ∈ Z𝑑2 and 𝛾1 ∈ [𝑑1] ∪ {0} we set

𝛽1 (𝑢) := (𝛽1
1 (𝑢), . . . , 𝛽1

𝑑1
(𝑢)) and 𝛽1

𝛾1 (𝑢) :=
𝑑2∑
𝛾2=1

𝑐𝛾1 ,𝛾2𝑢𝛾2 .

Similarly, for 𝑣 = (𝑣1, . . . , 𝑣𝑑1) ∈ Z𝑑1 and 𝛾2 ∈ [𝑑2] ∪ {0}, we also set

𝛽2 (𝑣) := (𝛽2
1 (𝑣), . . . , 𝛽2

𝑑2
(𝑣)) and 𝛽2

𝛾2 (𝑣) :=
𝑑1∑
𝛾1=1

𝑐𝛾1 ,𝛾2 𝑣𝛾1 .

This implies, raising both sides of (5.26) to power 2𝑘1 for any 𝑘1 ∈ Z+, that

𝑆1
𝐾1 ,𝑀1 ,𝐾2 ,𝑀2

(𝑄)4𝑘1𝑘2 � 𝑀4𝑘1𝑘2−2𝑘1
1 max

𝑁2∈[𝑀2 ]

( ∑
𝑢∈B𝑑2 (𝑁2)

𝐽𝑘2 ,𝑑2 (𝑁2; 𝑢) |𝑆𝑑1 (𝛽1 (𝑢); 𝑀1) |
)2𝑘1

� 𝑀4𝑘1𝑘2−2𝑘1
1 𝑀4𝑘1𝑘2−2𝑘2

2 max
𝑁2∈[𝑀2 ]

∑
𝑢∈B𝑑2 (𝑁2)

𝐽𝑘2 ,𝑑2 (𝑁2; 𝑢) |𝑆𝑑1 (𝛽1 (𝑢); 𝑀1) |2𝑘1 .

(5.27)

In (5.27), we used Hölder’s inequality and∑
𝑢∈B𝑑2 (𝑁2)

𝐽𝑘2 ,𝑑2 (𝑁2; 𝑢) = 𝑁2𝑘2
2 .

Step 3. For 𝑣 = (𝑣1, . . . , 𝑣𝑑1 ) ∈ Z𝑑1 , we have

𝛽1 (𝑢) · 𝑣 =
𝑑2∑
𝛾2=1

𝑑1∑
𝛾1=1

𝑐𝛾1 ,𝛾2 𝑣𝛾1𝑢𝛾2 = 𝛽2 (𝑣) · 𝑢. (5.28)

Applying (5.9) and (5.11) to the last sum in (5.27), we obtain

max
𝑁2∈[𝑀2 ]

∑
𝑢∈B𝑑2 (𝑁2)

𝐽𝑘2 ,𝑑2 (𝑁2; 𝑢) |𝑆𝑑1 (𝛽1 (𝑢); 𝑀1) |2𝑘1

≤ 𝐽𝑘2 ,𝑑2 (𝑀2)
∑

𝑢∈B𝑑2 (𝑀2)
|𝑆𝑑1 (𝛽1 (𝑢); 𝑀1) |2𝑘1
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= 𝐽𝑘2 ,𝑑2 (𝑀2)
∑

𝑢∈B𝑑2 (𝑀2)

∑
𝑣 ∈B𝑑1 (𝑀1)

𝐽𝑘1 ,𝑑1 (𝑀1; 𝑣)𝒆(𝛽1 (𝑢) · 𝑣)

≤ 𝐽𝑘1 ,𝑑1 (𝑀1)𝐽𝑘2 ,𝑑2 (𝑀2)
∑

𝑣 ∈B𝑑1 (𝑀1)



 ∑
𝑢∈B𝑑2 (𝑀2)

𝒆(𝛽2 (𝑣) · 𝑢)


, (5.29)

where we used (5.28) in the last inequality. In a slightly more involved process, we now obtain a different
estimate for the last sum in (5.27). We apply (5.9) twice to obtain

max
𝑁2∈[𝑀2 ]

∑
𝑢∈B𝑑2 (𝑁2)

𝐽𝑘2 ,𝑑2 (𝑁2; 𝑢) |𝑆𝑑1 (𝛽1 (𝑢); 𝑀1) |2𝑘1

= max
𝑁2∈[𝑀2 ]

∑
𝑢∈B𝑑2 (𝑁2)

∑
𝑣 ∈B𝑑1 (𝑀1)

𝐽𝑘2 ,𝑑2 (𝑁2; 𝑢)𝐽𝑘1 ,𝑑1 (𝑀1; 𝑣)𝒆(𝛽1 (𝑢) · 𝑣)

= max
𝑁2∈[𝑀2 ]

∑
𝑣 ∈B𝑑1 (𝑀1)

𝐽𝑘1 ,𝑑1 (𝑀1; 𝑣)
∑

𝑢∈B𝑑2 (𝑁2)
𝐽𝑘2 ,𝑑2 (𝑁2; 𝑢)𝒆(𝛽2 (𝑣) · 𝑢)

= max
𝑁2∈[𝑀2 ]

∑
𝑣 ∈B𝑑1 (𝑀1)

𝐽𝑘1 ,𝑑1 (𝑀1; 𝑣) |𝑆𝑑2 (𝛽2 (𝑣); 𝑁2) |2𝑘2 ,

where we used (5.28) in the penultimate equality. Hence, by (5.9), (5.11) and (5.28),

max
𝑁2∈[𝑀2 ]

∑
𝑢∈B𝑑2 (𝑁2)

𝐽𝑘2 ,𝑑2 (𝑁2; 𝑢) |𝑆𝑑1 (𝛽1 (𝑢); 𝑀1) |2𝑘1

≤ 𝐽𝑘1 ,𝑑1 (𝑀1) max
𝑁2∈[𝑀2 ]

∑
𝑣 ∈B𝑑1 (𝑀1)

|𝑆𝑑2 (𝛽2 (𝑣); 𝑁2) |2𝑘2

= 𝐽𝑘1 ,𝑑1 (𝑀1) max
𝑁2∈[𝑀2 ]

∑
𝑢∈B𝑑2 (𝑁2)

𝐽𝑘2 ,𝑑2 (𝑁2; 𝑢)
∑

𝑣 ∈B𝑑1 (𝑀1)
𝒆(𝛽1 (𝑢) · 𝑣)

≤ 𝐽𝑘1 ,𝑑1 (𝑀1)𝐽𝑘2 ,𝑑2 (𝑀2)
∑

𝑢∈B𝑑2 (𝑀2)



 ∑
𝑣 ∈B𝑑1 (𝑀1)

𝒆(𝛽1 (𝑢) · 𝑣)


. (5.30)

Step 4. In this step, we prove (for 𝑞 = 𝑞𝜌1 ,𝜌2 )

∑
𝑢∈B𝑑2 (𝑀2)



 ∑
𝑣 ∈B𝑑1 (𝑀1)

𝒆(𝛽1 (𝑢) · 𝑣)


 � 2∏

𝑗=1
𝑀

𝑑𝑗 (𝑑𝑗+1)
2

𝑗

(
1

𝑀
𝜌2
2

+ 𝑞 log 𝑞

𝑀
𝜌1
1 𝑀

𝜌2
2

+ 1
𝑞
+ log 𝑞

𝑀
𝜌1
1

)
(5.31)

and

∑
𝑣 ∈B𝑑1 (𝑀1)



 ∑
𝑢∈B𝑑2 (𝑀2)

𝒆(𝛽2 (𝑣) · 𝑢)


 � 2∏

𝑗=1
𝑀

𝑑𝑗 (𝑑𝑗+1)
2

𝑗

(
1

𝑀
𝜌1
1

+ 𝑞 log 𝑞

𝑀
𝜌1
1 𝑀

𝜌2
2

+ 1
𝑞
+ log 𝑞

𝑀
𝜌2
2

)
. (5.32)

We only establish (5.31). The symmetric bound (5.32) is similar. The exponential sum

∑
𝑣 ∈B𝑑1 (𝑀1)

𝒆(𝛽1 (𝑢) · 𝑣) =
𝑑1∏
𝛾1=1

∑
|𝑣𝛾1 | ≤𝑘1𝑀

𝛾1
1

𝒆(𝛽1
𝛾1 (𝑢)𝑣𝛾1)
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is a product of geometric series which we can easily evaluate to conclude

∑
𝑢∈B𝑑2 (𝑀2)



 ∑
𝑣 ∈B𝑑1 (𝑀1)

𝒆(𝛽1 (𝑢) · 𝑣)


 � ∑

𝑢∈B𝑑2 (𝑀2)

𝑑1∏
𝛾1=1

min
{
2𝑑1𝑀

𝛾1
1 ,

1
‖𝛽1

𝛾1 (𝑢)‖

}

≤ (2𝑑1𝑀1)
𝑑1 (𝑑1+1)

2 −𝜌1
∑

𝑢∈B𝑑2 (𝑀2)
min

{
2𝑑1𝑀

𝜌1
1 ,

1
‖𝛽1

𝜌1 (𝑢)‖

}
.

Since (5.23) holds and

𝛽1
𝜌1 (𝑢) = 𝑐𝜌1 ,𝜌2𝑢𝜌2 + 𝛽(𝑢), where 𝛽(𝑢) :=

𝑑2∑
𝛾2=1
𝛾2≠𝜌2

𝑐𝜌1 ,𝛾2𝑢𝛾2 ,

we can apply (5.21) with 𝑃 = 𝑘2𝑀
𝜌2
2 , 𝑈 = 2𝑑1𝑀

𝜌1
1 and 𝑞 = 𝑞𝜌1 ,𝜌2 and obtain

∑
|𝑢𝜌2 | ≤𝑘2𝑀

𝜌2
2

min
{
2𝑑1𝑀

𝜌1
1 ,

1
‖𝛽1

𝜌1 (𝑢)‖

}
� 𝑀

𝜌1
1 + 𝑞 log 𝑞 +

𝑀
𝜌1
1 𝑀

𝜌2
2

𝑞
+ 𝑀

𝜌2
2 log 𝑞

� 𝑀
𝜌1
1 𝑀

𝜌2
2

(
1

𝑀
𝜌2
2

+ 𝑞 log 𝑞

𝑀
𝜌1
1 𝑀

𝜌2
2

+ 1
𝑞
+ log 𝑞

𝑀
𝜌1
1

)
.

Hence

∑
𝑢∈B𝑑2 (𝑀2)



 ∑
𝑣 ∈B𝑑1 (𝑀1)

𝒆(𝛽1 (𝑢) · 𝑣)


 � ( 2∏

𝑗=1
𝑀

𝑑𝑗 (𝑑𝑗+1)
2

𝑗

) (
1

𝑀
𝜌2
2

+ 𝑞 log 𝑞

𝑀
𝜌1
1 𝑀

𝜌2
2

+ 1
𝑞
+ log 𝑞

𝑀
𝜌1
1

)
,

establishing (5.31).
Step 5. We use the bound (5.31) in (5.30) to conclude

𝑆1
𝐾1 ,𝑀1 ,𝐾2 ,𝑀2

(𝑄)4𝑘1𝑘2 � 𝑀4𝑘1𝑘2−2𝑘1
1 𝑀4𝑘1𝑘2−2𝑘2

2 𝐽𝑘1 ,𝑑1 (𝑀1)𝐽𝑘2 ,𝑑2 (𝑀2)

× 𝑀
𝑑1 (𝑑1+1)

2
1 𝑀

𝑑2 (𝑑2+1)
2

2

(
1

𝑀
𝜌2
2

+ 𝑞 log 𝑞

𝑀
𝜌1
1 𝑀

𝜌2
2

+ 1
𝑞
+ log 𝑞

𝑀
𝜌1
1

)
.

From Vinogradov’s mean value theorem (or more precisely from (5.14) with 𝑠 = 𝑘𝑖 := 𝑑𝑖 (𝑑𝑖 + 1) and
𝑘 = 𝑑𝑖 for 𝑖 ∈ [2]), we conclude from (5.14), 𝐽𝑘𝑖 ,𝑑𝑖 (𝑀𝑖) ≤ 𝐶𝑀3𝑘𝑖/2

𝑖 , 𝑖 = 1, 2 and so

𝑆1
𝐾1 ,𝑀1 ,𝑀2 ,𝑀2

(𝑄)4𝑘1𝑘2 � 𝑀4𝑘1𝑘2
1 𝑀4𝑘1𝑘2

2

(
1

𝑀
𝜌2
2

+ 𝑞 log 𝑞

𝑀
𝜌1
1 𝑀

𝜌2
2

+ 1
𝑞
+ log 𝑞

𝑀
𝜌1
1

)
.

In a similar way, using (5.32) in (5.29), we also have

𝑆1
𝐾1 ,𝑀1 ,𝑀2 ,𝑀2

(𝑄)4𝑘1𝑘2 � 𝑀4𝑘1𝑘2
1 𝑀4𝑘1𝑘2

2

(
1

𝑀
𝜌1
1

+ 𝑞 log 𝑞

𝑀
𝜌1
1 𝑀

𝜌2
2

+ 1
𝑞
+ log 𝑞

𝑀
𝜌2
2

)
.

Therefore, 𝑆1
𝐾1 ,𝑀1 ,𝑀2 ,𝑀2

(𝑄)4𝑘1𝑘2 is bounded from above by the minimum of these two bounds. By
Remark 5.25, this completes the proof of Proposition 5.22. �
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5.2. Double Weyl’s inequality in the Newton diagram sectors

Throughout this subsection, we assume that 𝑃 ∈ Z[m1, m2] and 𝑃(0, 0) = 0. Moreover, we assume that
P is non-degenerate in the sense of (1.14); see the remark below Theorem 1.11. Then for every 𝜉 ∈ R,
we define a corresponding polynomial 𝑃𝜉 ∈ R[m1, m2] by setting

𝑃𝜉 (𝑚1, 𝑚2) := 𝜉𝑃(𝑚1, 𝑚2). (5.33)

It is clear to see that the backwards Newton diagrams of P and 𝑃𝜉 are the same 𝑁𝑃 = 𝑁𝑃𝜉 . Let 𝑟 ∈ Z+
be the number of vertices in the backwards Newton diagram 𝑁𝑃 . In view of (4.7) and (4.8) from Remark
4.5 for 𝑟 ≥ 2, we have

log 𝑀1 � log 𝑀2 if (𝑀1, 𝑀2) ∈ S𝜏 (1),
log 𝑀1 � log 𝑀2 if (𝑀1, 𝑀2) ∈ S𝜏 ( 𝑗) for 1 < 𝑗 < 𝑟,

log 𝑀2 � log 𝑀1 if (𝑀1, 𝑀2) ∈ S𝜏 (𝑟).
(5.34)

Consequently, we may define a quantity 𝑀∗
𝑟 , 𝑗 as follows. If 𝑟 = 1, we simply set

𝑀∗
1,1 := 𝑀1 ∨ 𝑀2 if (𝑀1, 𝑀2) ∈ S𝜏 (1) = D𝜏 × D𝜏 . (5.35)

If 𝑟 ≥ 2, we set

𝑀∗
𝑟 , 𝑗 :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑀2 if (𝑀1, 𝑀2) ∈ S𝜏 (1) for 𝑗 = 1,

𝑀1 ∨ 𝑀2 if (𝑀1, 𝑀2) ∈ S𝜏 ( 𝑗) for 1 < 𝑗 < 𝑟,

𝑀1 if (𝑀1, 𝑀2) ∈ S𝜏 (𝑟) for 𝑗 = 𝑟.

(5.36)

The quantity log 𝑀∗
𝑟 , 𝑗 will always allow us to extract the larger parameter (larger up to a multiplicative

constant as in (5.34)) from log 𝑀1 and log 𝑀2. We estimate |𝑆𝐾1 ,𝑀1 ,𝐾2 ,𝑀2 (𝑃𝜉 ) | in terms of log 𝑀∗
𝑟 , 𝑗 ,

whenever (𝑀1, 𝑀2) ∈ S𝜏 ( 𝑗) for 𝑗 ∈ [𝑟], and (𝐾1, 𝐾2) ∈ N2 satisfying 𝑀1 � 𝐾1 ≤ 𝑀1 and 𝑀2 � 𝐾2 ≤
𝑀2.
Proposition 5.37. Let 𝑃𝜉 ∈ R[m1, m2] be the polynomial in (5.33) corresponding to a polynomial
𝑃 ∈ Z[m1, m2] with the properties above. Let 𝑟 ∈ Z+ be the number of vertices in the backwards Newton
diagram 𝑁𝑃 . Let 𝜏 > 1, 𝛼 > 1, 𝑗 ∈ [𝑟] be given. Let 𝑣 𝑗 = (𝑣 𝑗 ,1, 𝑣 𝑗 ,2) be the vertex of the backwards
Newton diagram 𝑁𝑃 . Then there exists a constant 𝛽0 := 𝛽0 (𝛼) > 𝛼 such that for every 𝛽 ∈ (𝛽0,∞)∩Z+,
we find a constant 0 < 𝐶 = 𝐶 (𝛼, 𝛽0, 𝛽, 𝑗 , 𝜏, 𝑃) < ∞ such that for every (𝑀1, 𝑀2) ∈ S𝜏 ( 𝑗) and
(𝐾1, 𝐾2) ∈ N2 satisfying 𝑀1 � 𝐾1 ≤ 𝑀1 and 𝑀2 � 𝐾2 ≤ 𝑀2 the following holds. Suppose that there
are 𝑎 ∈ Z, 𝑞 ∈ Z+ such that (𝑎, 𝑞) = 1 and

(log 𝑀∗
𝑟 , 𝑗 )𝛽 � 𝑞 ≤ 𝑀

𝑣𝑗,1
1 𝑀

𝑣𝑗,2
2 (log 𝑀∗

𝑟 , 𝑗 )−𝛽 , (5.38)

and 


𝜉 − 𝑎

𝑞




 ≤ (log 𝑀∗
𝑟 , 𝑗 )𝛽

𝑞𝑀
𝑣𝑗,1
1 𝑀

𝑣𝑗,2
2

, (5.39)

where 𝑀∗
𝑟 , 𝑗 is defined in (5.36). Then one has

|𝑆𝐾1 ,𝑀1 ,𝐾2 ,𝑀2 (𝑃𝜉 ) | ≤ 𝐶𝑀1𝑀2 (log 𝑀∗
𝑟 , 𝑗 )−𝛼 . (5.40)

Proof. We note that the following three scenarios may occur when 𝑟 > 1:
1. If 𝑗 = 1, we have 𝑣1,1 = 0 or 𝑣1 ∈ Z+ × Z+. In this case, we also have log 𝑀1 � log 𝑀2.
2. If 𝑗 = 𝑟 , we have 𝑣𝑟 ,2 = 0 or 𝑣𝑟 ∈ Z+ × Z+. In this case, we also have log 𝑀1 � log 𝑀2.
3. If 1 < 𝑗 < 𝑟 , we have 𝑣 𝑗 ∈ Z+ × Z+. In this case, we also have log 𝑀1 � log 𝑀2.
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Note that if 𝑟 = 1, then S𝜏 (1) = D𝜏 × D𝜏 and 𝑣1 ∈ Z+ × Z+, since P is non-degenerate in the sense of
(1.14). Throughout the proof, in the case of 𝑟 = 1, we will additionally assume that log 𝑀1 ≤ log 𝑀2.
Taking into account (5.35) and (5.36), we can also assume that log 𝑀1 ∨ log 𝑀2 is sufficiently large
(i.e., log 𝑀1 ∨ log 𝑀2 > 𝐶0, where 𝐶0 = 𝐶0 (𝛼, 𝛽0, 𝑗 , 𝜏, 𝑃) > 0 is a large absolute constant). Otherwise,
inequality (5.40) follows. The proof will be divided into three steps.

Step 1. We first establish (5.40) when 𝑗 = 1 and 𝑣1,1 = 0 or 𝑗 = 𝑟 and 𝑣𝑟 ,2 = 0. Suppose that 𝑗 = 1
and 𝑣1,1 = 0 holds. The case when 𝑗 = 𝑟 and 𝑣𝑟 ,2 = 0 can be proved in a similar way, so we omit the
details. As we have seen above, log 𝑀1 � log 𝑀2. By (5.38) and (5.39), we obtain


𝜉 − 𝑎

𝑞




 ≤ 1
𝑞2 .

Applying Lemma 5.3 with 𝑄 = 𝑐0,𝑣1,2 and 𝑀 = 𝑞, we may find a fraction 𝑎′/𝑞′ such that (𝑎′, 𝑞′) = 1
and 𝑞/(2𝑐0,𝑣1,2 ) ≤ 𝑞′ ≤ 2𝑞 and 


𝑐0,𝑣1,2 𝜉 − 𝑎′

𝑞′




 ≤ 1
2𝑞′𝑞

≤ 1
(𝑞′)2 .

Thus, by Proposition 5.4, noting that 𝑣1,2 ≥ 1, we obtain

|𝑆𝐾1 ,𝑀1 ,𝐾2 ,𝑀2 (𝑃𝜉 ) | ≤ 𝑆1
𝐾1 ,𝑀1 ,𝐾2 ,𝑀2

(𝑃𝜉 )

� 𝑀1𝑀2 log(𝑀2)
(

1
𝑞′ +

1
𝑀2

+ 𝑞′

𝑀
𝑣1,2
2

) 1
𝜏 (deg 𝑃)

� 𝑀1𝑀2 (log 𝑀∗
𝑟 , 𝑗 )

− 𝛽
𝜏 (deg 𝑃) +1,

since log 𝑀∗
𝑟 , 𝑗 � log 𝑀2. It suffices to take 𝛽 > 𝜏(deg 𝑃) (𝛼 + 1) and the claim in (5.40) follows.

Step 2. We now establish (5.40) when 1 ≤ 𝑗 ≤ 𝑟 and 𝑣 𝑗 ∈ Z+ × Z+ (note that when 1 < 𝑗 < 𝑟 ,
we automatically have 𝑣 𝑗 ∈ Z+ × Z+). If 𝑟 = 1, then we assume that log 𝑀1 ≤ log 𝑀2. If 𝑟 ≥ 2, we
will assume that 1 ≤ 𝑗 < 𝑟 , which gives that log 𝑀1 � log 𝑀2. The case when 𝑗 = 𝑟 can be proved
in much the same way (with the difference that log 𝑀1 � log 𝑀2), we omit the details. In this step, we
additionally assume that 𝑀1 ≤ (log 𝑀∗

𝑟 , 𝑗 )𝜒 for some 0 < 𝜒 < 𝛽/(8 deg 𝑃) with 𝛽 to be specified later.
Notice that (5.38) and (5.39) imply 


𝜉 − 𝑎

𝑞




 ≤ 1
𝑞2 .

By (5.38) and 𝑀1 ≤ (log 𝑀∗
𝑟 , 𝑗 )𝜒, we conclude

(log 𝑀∗
𝑟 , 𝑗 )𝛽 ≤ 𝑞 ≤ 𝑀

𝑣𝑗,2
2 (log 𝑀∗

𝑟 , 𝑗 )−3𝛽/4

since 𝜒 < 𝛽/(8 deg 𝑃). We note that the polynomial P can be written as

𝑃(𝑚1, 𝑚2) = 𝑃𝑣𝑗,1 (𝑚1)𝑚
𝑣𝑗,2
2 +

∑
(𝛾1 ,𝛾2) ∈𝑆𝑃
𝛾2≠𝑣𝑗,2

𝑐𝛾1 ,𝛾2 𝑚
𝛾1
1 𝑚

𝛾2
2 ,

where 𝑃𝑣𝑗,1 ∈ Z[m1] and deg 𝑃𝑣𝑗,1 = 𝑣 𝑗 ,1.
Observe that for every 1 ≤ 𝑚1 ≤ 𝑀1 ≤ (log 𝑀∗

𝑟 , 𝑗 )𝜒, one has

|𝑃𝑣𝑗,1 (𝑚1) | ≤ #𝑆𝑃 max
(𝛾1 ,𝛾2) ∈𝑆𝑃

|𝑐𝛾1 ,𝛾2 |𝑀
deg 𝑃
1 �𝑃 (log 𝑀∗

𝑟 , 𝑗 )𝛽/4.
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Applying Lemma 5.3 with 𝑀 = 𝑀
𝑣𝑗,2
2 (log 𝑀∗

𝑟 , 𝑗 )−3𝛽/4 and 𝑄 = 𝑃𝑣𝑗,1 (𝑚1) for each 𝐾1 < 𝑚1 ≤ 𝑀1

(noting that 𝑃𝑣𝑗,1 (𝑚1) ≠ 0 for large 𝑚1), we find a fraction 𝑎′/𝑞′ so that (𝑎′, 𝑞′) = 1 and (log 𝑀∗
𝑟 , 𝑗 )3𝛽/4 �

𝑞′ ≤ 2𝑀
𝑣𝑗,2
2 (log 𝑀∗

𝑟 , 𝑗 )−3𝛽/4 and




𝑃𝑣𝑗,1 (𝑚1)𝜉 − 𝑎′

𝑞′




 ≤ (log 𝑀∗
𝑟 , 𝑗 )3𝛽/4

2𝑞′𝑀
𝑣𝑗,2
2

≤ 1
(𝑞′)2 .

We apply Proposition 5.4 for each 1 ≤ 𝑚1 ≤ 𝑀1, noting that 𝑣 𝑗 ,2 ≥ 1, to bound




 𝑀2∑
𝑚2=𝐾2+1

𝒆(𝑃𝜉 (𝑚1, 𝑚2))



 � 𝑀2 log(𝑀2)

(
1
𝑞′ +

1
𝑀2

+ 𝑞′

𝑀
𝑣𝑗,2
2

) 1
𝜏 (deg 𝑃)

� 𝑀2 (log 𝑀∗
𝑟 , 𝑗 )

− 3𝛽
4𝜏 (deg 𝑃) +1,

since log 𝑀∗
𝑟 , 𝑗 � log 𝑀2 for 𝑗 ∈ [𝑟 − 1]. It suffices to take 𝛽 > 4

3 𝜏(deg 𝑃) (𝛼 + 1) and (5.40) follows.
Step 3. As in the previous step, 1 ≤ 𝑗 < 𝑟 (or 𝑟 = 1 and log 𝑀1 ≤ log 𝑀2) and we now assume

that (log 𝑀∗
𝑟 , 𝑗 )𝜒 ≤ 𝑀1 � 𝑀2 for some 0 < 𝜒 < 𝛽/(8 deg 𝑃), which will be further adjusted. The case

when 𝑗 = 𝑟 can be established in a similar fashion keping in mind that log 𝑀1 � log 𝑀2. In fact, we
take 𝜒 := 𝛽/(16 deg 𝑃) + 1, which forces 𝛽 > 16 deg 𝑃.

Applying Lemma 5.3 with 𝑄 = 𝑐𝑣𝑗,1 ,𝑣𝑗,2 and 𝑀 = 𝑞, we find a fraction 𝑎′/𝑞′ so that (𝑎′, 𝑞′) = 1 and
(log 𝑀∗

𝑟 , 𝑗 )𝛽 �𝑃 𝑞(2𝑄)−1 ≤ 𝑞′ ≤ 2𝑞 and




𝑐𝑣𝑗,1 ,𝑣𝑗,2 𝜉 − 𝑎′

𝑞′




 ≤ 1
(𝑞′)2 .

From Proposition 5.22, we obtain (with 𝑀− = min(𝑀 𝑣𝑗,1
1 , 𝑀

𝑣𝑗,2
2 ) and 𝑀+ = max(𝑀 𝑣𝑗,1

1 , 𝑀
𝑣𝑗,2
2 ))

|𝑆𝐾1 ,𝑀1 ,𝐾2 ,𝑀2 (𝑃𝜉 ) | � 𝑀1𝑀2

(
1

𝑀−
+ 𝑞′ log 𝑞′

𝑀
𝑣𝑗,1
1 𝑀

𝑣𝑗,2
2

+ 1
𝑞′ +

log 𝑞′

𝑀+

) 1
4(1+deg 𝑃)5

� 𝑀1𝑀2 (log 𝑀∗
𝑟 , 𝑗 )

− 𝛽

64(1+deg 𝑃)5 .

Taking 𝛽 > 64(1 + deg 𝑃)5(𝛼 + 1), we obtain (5.40). This completes the proof of Proposition 5.37. �

5.3. Estimates for double complete exponential sums

In this subsection, we provide estimates for double complete exponential sums in the spirit of Gauss.
We begin with a well-known bound which is also a simple consequence of Proposition 5.22.

Lemma 5.41 [1]. Let 𝑃 ∈ Q[m1, m2] be a polynomial as in (4.1) and let 𝑎𝛾1 ,𝛾2 ∈ Z and 𝑞 ∈ Z+ satisfy
𝑐𝛾1 ,𝛾2 = 𝑎𝛾1 ,𝛾2/𝑞 for each (𝛾1, 𝛾2) ∈ 𝑆𝑃 such that

gcd({𝑎𝛾1 ,𝛾2 : (𝛾1, 𝛾2) ∈ 𝑆𝑃} ∪ {𝑞}) = 1.

Consider the exponential sum 𝑆𝑞,𝑞 from (5.18). Then there are 𝐶 > 0 and 𝛿 ∈ (0, 1) such that

|𝑆𝑞,𝑞 (𝑃) | ≤ 𝐶𝑞2−𝛿 (5.42)

holds. The constant C can be taken to depend only on the degree of P.
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We now derive simple consequences of Lemma 5.41 for exponential sums that arise in the proof of
our main result. Let 𝑃 ∈ Z[m1, m2] be such that

𝑃(𝑚1, 𝑚2) :=
∑

(𝛾1 ,𝛾2) ∈𝑆𝑃

𝑐𝑃𝛾1 ,𝛾2 𝑚
𝛾1
1 𝑚

𝛾2
2 , (5.43)

where 𝑐𝑃(0,0) = 0. We additionally assume that P is non-degenerate (see the remark below Theorem
1.11). That is, we have 𝑆𝑃 ∩ (Z+ × Z+) ≠ ∅. Using the definition of 𝑃𝜉 from (5.33), we define the
complete exponential sum by

𝐺 (𝑎/𝑞) :=
1
𝑞2

𝑞∑
𝑟1=1

𝑞∑
𝑟2=1

𝒆(𝑃𝑎/𝑞 (𝑟1, 𝑟2)), 𝑎/𝑞 ∈ Q, (5.44)

and we also have partial complete exponential sums defined by

𝐺1
𝑚1 (𝑎/𝑞) :=

1
𝑞

𝑞∑
𝑟2=1

𝒆(𝑃𝑎/𝑞 (𝑚1, 𝑟2)), 𝑎/𝑞 ∈ Q, 𝑚1 ∈ Z,

𝐺2
𝑚2 (𝑎/𝑞) :=

1
𝑞

𝑞∑
𝑟1=1

𝒆(𝑃𝑎/𝑞 (𝑟1, 𝑚2)), 𝑎/𝑞 ∈ Q, 𝑚2 ∈ Z.

(5.45)

Proposition 5.46. Let 𝑃 ∈ Z[m1, m2] be a polynomial as in (5.43) which is non-degenerate (that is,
𝑆𝑃 ∩ (Z+ × Z+) ≠ ∅). Then there is 𝐶𝑃 > 0 and 𝛿 ∈ (0, 1) such that the following inequalities hold. If
𝑎/𝑞 ∈ Q and (𝑎, 𝑞) = 1, then

|𝐺 (𝑎/𝑞) | ≤ 𝐶𝑃 𝑞−𝛿 . (5.47)

Moreover, for every sufficiently large 𝐾1, 𝑀1 ∈ Z+ depending on P, one has

1
𝑀1

𝑀1∑
𝑚1=𝐾1+1

|𝐺1
𝑚1 (𝑎/𝑞) | ≤ 𝐶𝑃 𝑞−𝛿 , (5.48)

and similarly, for every sufficiently large 𝐾2, 𝑀2 ∈ Z+ depending on P, one has

1
𝑀2

𝑀2∑
𝑚2=𝐾2+1

|𝐺2
𝑚2 (𝑎/𝑞) | ≤ 𝐶𝑃 𝑞−𝛿 . (5.49)

Proof. We prove Proposition 5.46 in two steps.
Step 1. In this step, we establish (5.47). Fix 𝑎/𝑞 ∈ Q such that (𝑎, 𝑞) = 1. For any (𝛾1, 𝛾2) ∈ 𝑆𝑃 , we

let 𝑎𝛾1 ,𝛾2 := 𝑎𝑐𝑃𝛾1 ,𝛾2/(𝑐
𝑃
𝛾1 ,𝛾2 , 𝑞) and 𝑞𝛾1 ,𝛾2 := 𝑞/(𝑐𝑃𝛾1 ,𝛾2 , 𝑞). Now with this notation, we see that

𝑃𝑎/𝑞 (𝑟1, 𝑟2) = 𝑄(𝑟1, 𝑟2) :=
𝑑1∑
𝛾1=0

𝑑2∑
𝛾2=0

𝑎𝛾1 ,𝛾2

𝑞𝛾1 ,𝛾2

𝑟
𝛾1
1 𝑟

𝛾2
2 ,

for some integers 𝑑1, 𝑑2 ≥ 1. Furthermore, 𝐺 (𝑎/𝑞) = 𝑞−2𝑆𝑞,𝑞 (𝑄); see (5.44). We take (𝜌1, 𝜌2) ∈
𝑆𝑃 ∩ (Z+ × Z+) ≠ ∅ and use (5.42), which yields

|𝐺 (𝑎/𝑞) | = 𝑞−2 |𝑆𝑞,𝑞 (𝑄) | �𝑃 𝑞−𝛿 .

This completes the proof of (5.47).
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Step 2. We only prove (5.48); the proof of (5.49) is exactly the same. We fix 𝑎/𝑞 ∈ Q such that
(𝑎, 𝑞) = 1, and we also fix (𝜌1, 𝜌2) ∈ 𝑆𝑃 ∩ (Z+ ×Z+) ≠ ∅. Using Lemma 5.3, we find a reduced fraction
𝑎𝜌1 ,𝜌2/𝑞𝜌1 ,𝜌2 so that (𝑎𝜌1 ,𝜌2 , 𝑞𝜌1 ,𝜌2) = 1 and




𝑎𝑐𝑃𝜌1 ,𝜌2

𝑞
−

𝑎𝜌1 ,𝜌2

𝑞𝜌1 ,𝜌2




 ≤ 1
2𝑞𝜌1 ,𝜌2 𝑞

with 𝑞/(2𝑐𝜌1 ,𝜌2) ≤ 𝑞𝜌1 ,𝜌2 ≤ 2𝑞. We fix 𝜒 > 0 and assume first that 𝑀1 ≥ 𝑞𝜒. Appealing to inequality
(5.24) with 𝑀2 = 𝑞, we obtain for some 𝛿 ∈ (0, 1) that

1
𝑀1

𝑀1∑
𝑚1=𝐾1+1

|𝐺1
𝑚1 (𝑎/𝑞) | �𝑃 𝑞−𝛿 .

We now establish a similar bound assuming that 𝑀1 < 𝑞𝜒 for a sufficiently small 𝜒 > 0, which will
be specified momentarily. Our polynomial P from (5.43) can be rewritten as

𝑃(𝑚1, 𝑚2) =
𝑑2∑
𝛾2=1

𝑃𝛾2 (𝑚1)𝑚𝛾2
2 + 𝑃0 (𝑚1),

for some 𝑑2 ≥ 1 where 𝑃𝛾2 ∈ Z[m1] and deg 𝑃𝛾2 ≤ deg 𝑃. Take 0 < 𝜒 < 1
10 deg 𝑃 and observe that for

every 1 ≤ 𝛾2 ≤ 𝑑2 and for every 1 ≤ 𝑚1 ≤ 𝑀1 ≤ 𝑞𝜒, one has

|𝑃𝛾2 (𝑚1) | ≤ #𝑆𝑃 max
(𝛾1 ,𝛾2) ∈𝑆𝑃

|𝑐𝛾1 ,𝛾2 |𝑀
deg 𝑃
1 ≤ 𝑞1/4, (5.50)

whenever q is sufficiently large in terms of the coefficients of P.
Assume first that 𝑑2 ≥ 2, and we may take 𝜌2 = 𝑑2. Applying Lemma 5.3 with 𝑄 = 𝑃𝜌2 (𝑚1) for

each 𝐾1 < 𝑚1 ≤ 𝑀1 (noting that 𝑃𝜌2 (𝑚1) ≠ 0 for sufficiently large 𝑚1 ≥ 𝐾1), we find a fraction 𝑎′/𝑞′

so that (𝑎′, 𝑞′) = 1 and 1
2 𝑞3/4 ≤ 𝑞′ ≤ 2𝑞 and


𝑃𝜌2 (𝑚1)

𝑎

𝑞
− 𝑎′

𝑞′




 ≤ 1
2𝑞′𝑞

≤ 1
(𝑞′)2 .

Then we apply Proposition 5.4 for each 𝐾1 < 𝑚1 ≤ 𝑀1, which gives

|𝐺1
𝑚1 (𝑎/𝑞) | � log(2𝑞)

(
1
𝑞′ +

1
𝑞
+ 𝑞′

𝑞𝑑2

) 1
𝜏 (𝑑2 )

� (log 𝑞)𝑞− 3
4𝜏 (𝑑2 ) � 𝑞−𝛿 ,

for some 𝛿 ∈ (0, 1) and (5.48) follows, since 𝑑2 ≥ 2.
Assume now that 𝑑2 = 1. Then

1
𝑀1

𝑀1∑
𝑚1=𝐾1+1

|𝐺1
𝑚1 (𝑎/𝑞) | = 1

𝑀1
#{𝐾1 < 𝑚1 ≤ 𝑀1 : 𝑃1 (𝑚1) ≡ 0 mod 𝑞} = 0,

in view of (5.50), which ensures that {𝑚1 ∈ [𝑀1] : 𝑃1(𝑚1) ≡ 0 mod 𝑞} = ∅. �

6. Multi-parameter Ionescu–Wainger theory

One of the most important ingredients in our argument is the Ionescu–Wainger multiplier theorem [34]
(see also [46]), and its vector-valued variant from [52] (see also [62]). We begin with recalling the
results from [34] and [52] and fixing necessary notation and terminology.
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6.1. Ionescu–Wainger multiplier theorem

Let P be the set of all prime numbers, and let 𝜌 ∈ (0, 1) be a sufficiently small absolute constant. We
then define the natural number

𝐷 := 𝐷𝜌 := �2/𝜌� + 1,

and for any integer 𝑙 ∈ N, set

𝑁0 := 𝑁 (𝑙)
0 := �2𝜌𝑙/2� + 1, and 𝑄0 := 𝑄 (𝑙)

0 := (𝑁0!)𝐷 .

We also define the set

𝑃≤𝑙 :=
{
𝑞 = 𝑄𝑤 : 𝑄 |𝑄0 and 𝑤 ∈ 𝑊≤𝑙 ∪ {1}

}
,

where

𝑊≤𝑙 :=
⋃

𝑘∈[𝐷 ]

⋃
(𝛾1 ,...,𝛾𝑘 ) ∈[𝐷 ]𝑘

{
𝑝
𝛾1
1 · · · 𝑝

𝛾𝑘
𝑘 : 𝑝1, . . . , 𝑝𝑘 ∈ (𝑁 (𝑙)

0 , 2𝑙] ∩ P are distinct
}
.

In other words, 𝑊≤𝑙 is the set of all products of prime factors from (𝑁 (𝑙)
0 , 2𝑙] ∩ P of length at most D,

at powers between 1 and D.

Remark 6.1. For every 𝜌 ∈ (0, 1), there exists a large absolute constant 𝐶𝜌 ≥ 1 such that the following
elementary facts about the sets 𝑃≤𝑙 hold:

(i) If 𝑙1 ≤ 𝑙2, then 𝑃≤𝑙1 ⊆ 𝑃≤𝑙2 .
(ii) One has [2𝑙] ⊆ 𝑃≤𝑙 ⊆ [2𝐶𝜌2𝜌𝑙 ].

(iii) If 𝑞 ∈ 𝑃≤𝑙 , then all factors of q also lie in 𝑃≤𝑙 .
(iv) One has 𝑄≤𝑙 := lcm(𝑃≤𝑙) � 2𝐶𝜌2𝑙 .

By property (i), it makes sense to define 𝑃𝑙 := 𝑃≤𝑙\𝑃≤𝑙−1, with the convention that 𝑃≤𝑙 is empty for
negative l. From property (ii), for all 𝑞 ∈ 𝑃𝑙 , we have

2𝑙−1 < 𝑞 ≤ 2𝐶𝜌2𝜌𝑙 . (6.2)

Let 𝑑 ∈ Z+ and define 1-periodic sets

Σ𝑑
≤𝑙 :=

{ 𝑎

𝑞
∈ (Q ∩ T)𝑑 : 𝑞 ∈ 𝑃≤𝑙 and (𝑎, 𝑞) = 1

}
, and Σ𝑑

𝑙 := Σ𝑑
≤𝑙\Σ

𝑑
≤𝑙−1, (6.3)

where (𝑎, 𝑞) = (𝑎1, . . . , 𝑎𝑑 , 𝑞) = 1 for any 𝑎 = (𝑎1, . . . , 𝑎𝑑) ∈ Z𝑑 . Then by (6.2), we see

#Σ𝑑
≤𝑙 ≤ 2𝐶𝜌 (𝑑+1)2𝜌𝑙 . (6.4)

Let 𝑘 ∈ Z+ be fixed. For any finite family of fractions Σ ⊆ (T ∩ Q)𝑘 and a measurable function
𝔪 : R𝑘 → 𝐵 taking its values in a separable Banach space B which is supported on the unit cube
[−1/2, 1/2)𝑘 , define a 1-periodic extension of 𝔪 by

ΘΣ [𝔪] (𝜉) :=
∑
𝑎/𝑞∈Σ

𝔪(𝜉 − 𝑎/𝑞), 𝜉 ∈ T𝑘 .
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We will also need to introduce the notion of Γ-lifted extensions of 𝔪. For 𝑑 ∈ Z+ consider Γ :=
{𝑖1, . . . , 𝑖𝑘 } ⊆ [𝑑] of size 𝑘 ∈ [𝑑]. We define a Γ-lifted 1-periodic extension of 𝔪 by

ΘΓ
Σ [𝔪] (𝜉) :=

∑
𝑎/𝑞∈Σ

𝔪(𝜉𝑖1 − 𝑎1/𝑞, . . . , 𝜉𝑖𝑘 − 𝑎𝑘/𝑞), for 𝜉 = (𝜉1, . . . , 𝜉𝑑) ∈ T𝑑 .

We now recall the following vector-valued Ionescu–Wainger multiplier theorem from [52, 62].

Theorem 6.5. Let 𝑑 ∈ Z+ be given. For every 𝜌 ∈ (0, 1) and for every 𝑝 ∈ (1,∞), there exists an
absolute constant 𝐶𝑝,𝜌,𝑑 > 0, that depends only on p, 𝜌 and d, such that, for every 𝑙 ∈ N, the following
holds. Let 0 < 𝜀𝑙 ≤ 2−10𝐶𝜌22𝜌𝑙 , and let 𝔪 : R𝑑 → 𝐿(𝐻0, 𝐻1) be a measurable function supported on
𝜀𝑙 [−1/2, 1/2)𝑑 , with values in the space 𝐿(𝐻0, 𝐻1) of bounded linear operators between separable
Hilbert spaces 𝐻0 and 𝐻1. Let

A𝑝 := ‖𝑇R𝑑 [𝔪]‖𝐿𝑝 (R𝑑 ;𝐻0)→𝐿𝑝 (R𝑑 ;𝐻1) . (6.6)

Then the 1-periodic multiplier

ΘΣ𝑑
≤𝑙
[𝔪] (𝜉) =

∑
𝑎/𝑞∈Σ𝑑

≤𝑙

𝔪(𝜉 − 𝑎/𝑞) for 𝜉 ∈ T𝑑 , (6.7)

where Σ𝑑
≤𝑙 is the set of all reduced fractions in (6.3), satisfies

‖𝑇Z𝑑 [ΘΣ𝑑
≤𝑙
[𝔪]] 𝑓 ‖ℓ𝑝 (Z𝑑 ;𝐻1) ≤ 𝐶𝑝,𝜌,𝑑A𝑝 ‖ 𝑓 ‖ℓ𝑝 (Z𝑑 ;𝐻0) (6.8)

for every 𝑓 ∈ ℓ𝑝 (Z𝑑; 𝐻0).

The advantage of applying Theorem 6.5 is that one can directly transfer square function estimates
from the continuous to the discrete setting, which will be useful in Section 7. The hypothesis (6.6),
unlike the support hypothesis, is scale-invariant, in the sense that the constant A𝑝 does not change when
𝔪 is replaced by 𝔪(𝐴·) for any invertible linear transformation 𝐴 : R𝑑 → R𝑑 .

Theorem 6.5 was originally established by Ionescu and Wainger [34] in the scalar-valued setting with
an extra factor (𝑙 + 1)𝐷 in the right-hand side of (6.8). Their proof is based on an intricate inductive
argument that exploits super-orthogonality phenomena. A slightly different proof with factor (𝑙 + 1) in
(6.8) was given in [46]. The latter proof, instead of induction as in [34], used certain recursive arguments,
which clarified the role of the underlying square functions and orthogonalities (see also [52, Section
2]). The theorem in the context of super-orthogonality phenomena is discussed in a survey by Pierce
[55] in a much broader context. Finally, we refer to the recent paper of Tao [62], where Theorem 6.5 as
stated above, with a uniform constant A𝑝 , is established.

For future reference, we also recall the sampling principle of Magyar–Stein–Wainger from [44],
which was an important ingredient in the proof of Theorem 6.5.

Proposition 6.9. Let 𝑑 ∈ Z+ be given. There exists an absolute constant 𝐶 > 0 such that the following
holds. Let 𝑝 ∈ [1,∞] and 𝑞 ∈ Z+, and let 𝐵1, 𝐵2 be finite-dimensional Banach spaces. Let 𝔪 : R𝑑 →
𝐿(𝐵1, 𝐵2) be a bounded operator-valued function supported on [−1/2, 1/2)𝑑/𝑞 and let 𝔪𝑞

per be the
periodic multiplier

𝔪𝑞
per (𝜉) :=

∑
𝑛∈Z𝑑

𝔪(𝜉 − 𝑛/𝑞), 𝜉 ∈ T𝑑 .

Then

‖𝑇Z𝑑 [𝔪
𝑞
per]‖ℓ𝑝 (Z𝑑 ;𝐵1)→ℓ𝑝 (Z𝑑 ;𝐵2) ≤ 𝐶‖𝑇R𝑑 [𝔪]‖𝐿𝑝 (R𝑑 ;𝐵1)→𝐿𝑝 (R𝑑 ;𝐵2) .
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The proof can be found in [44, Corollary 2.1, pp. 196]. We also refer to [50] for a generalization of
Proposition 6.9 to real interpolation spaces. We emphasize that 𝐵1 and 𝐵2 are general (finite dimensional)
Banach spaces in Proposition 6.9, in contrast to the Hilbert space-valued multipliers appearing in
Theorem 6.5, and so Proposition 6.9 includes maximal function formulations and can also accommodate
oscillation semi-norms.

6.2. One-parameter semi-norm variant of Theorem 6.5

Let Λ := {𝜆1, . . . , 𝜆𝑘 } ⊂ Z+ be a set of size 𝑘 ∈ Z+ of natural exponents, and consider the associated
one-parameter family of dilations which for every 𝑥 ∈ R𝑘 , is defined by

(0,∞) 
 𝑡 ↦→ 𝑡 ◦ 𝑥 := (𝑡𝜆1𝑥1, . . . , 𝑡𝜆𝑘 𝑥𝑘 ) ∈ R𝑘 .

Let Υ := (Υ𝑛 : R𝑘 → C : 𝑛 ∈ N) be a sequence of measurable functions which define a positive
sequence of operators in the sense that for every 𝑛 ∈ N, one has

𝑇R𝑘 [Υ𝑛] 𝑓 ≥ 0 if 𝑓 ≥ 0. (6.10)

Furthermore, suppose there exist 𝐶Υ > 0, 0 < 𝛿Υ < 1 and 1 < 𝜏 ≤ 2 such that for every 𝜉 ∈ R𝑘 and
𝑛 ∈ N, one has

|Υ𝑛 (𝜉) | ≤ 𝐶Υ min
{
1, |𝜏𝑛 ◦ 𝜉 |−𝛿Υ

}
, (6.11)

|Υ𝑛 (𝜉) − 1| ≤ 𝐶Υ min
{
1, |𝜏𝑛 ◦ 𝜉 | 𝛿Υ

}
. (6.12)

The condition (6.10) implies that the operator 𝑇R𝑘 [Υ𝑛] 𝑓 = 𝑓 ∗ 𝜇𝑛 is convolution with positive measure
𝜇𝑛 and condition (6.12) implies Υ𝑛 (0) = 1 and so each 𝜇𝑛 is a probability measure. Hence, for every
𝑝 ∈ [1,∞),

𝐴Υ
𝑝 := sup

𝑛∈N
‖𝑇R𝑘 [Υ𝑛]‖𝐿𝑝 (R𝑘 )→𝐿𝑝 (R𝑘 ) ≤ 1. (6.13)

In this generality, 𝐿 𝑝 (R𝑘 ) estimates with 1 < 𝑝 ≤ ∞ for the maximal function sup𝑛∈N |𝑇R𝑘 [Υ𝑛] 𝑓 (𝑥) |
were obtained in [22] and corresponding r-variational and jump inequalites were established in [38]
(see also [51]). Here we extend these results further.

For 𝑑 ∈ Z+, consider Γ := {𝑖1, . . . , 𝑖𝑘 } ⊆ [𝑑] of size 𝑘 ∈ [𝑑] and define a Γ-lifted sequence of
measurable functions ΥΓ := (ΥΓ

𝑛 : R𝑑 → C : 𝑛 ∈ N) by setting

ΥΓ
𝑛 (𝜉) := Υ𝑛 (𝜉𝑖1 , . . . , 𝜉𝑖𝑘 ) for 𝜉 = (𝜉1, . . . , 𝜉𝑑) ∈ R𝑑 .

Our first main result is the following one-parameter semi-norm variant of Theorem 6.5.

Theorem 6.14. Let 𝑑 ∈ Z+ and Γ ⊆ [𝑑] of size 𝑘 ∈ [𝑑] be given. Let Υ = (Υ𝑛 : R𝑘 → C : 𝑛 ∈ N)
be a sequence of measurable functions satisfying conditions (6.10), (6.11) and (6.12), and let ΥΓ :=
(ΥΓ

𝑛 : R𝑑 → C : 𝑛 ∈ N) be the corresponding Γ-lifted sequence. For every 𝜌 ∈ (0, 1) and for every
𝑝 ∈ (1,∞), there exists an absolute constant 0 < 𝐶 = 𝐶 (𝑑, 𝑝, 𝜌, 𝜏, Γ, 𝐴Υ

𝑝 , 𝐶Υ) < ∞ such that for every
integer 𝑙 ∈ N and 𝑚 ≤ −10𝐶𝜌22𝜌𝑙 , the following holds. If

suppΥ𝑛 ⊆ 2𝑚 [−1/2, 1/2)𝑘 for all 𝑛 ∈ N, (6.15)
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then for every 𝑓 = ( 𝑓 𝜄 : 𝜄 ∈ N) ∈ ℓ𝑝 (Z𝑑; ℓ2(N)), one has

sup
𝐽 ∈Z+

sup
𝐼 ∈𝔖𝐽 (N)

����(∑
𝜄∈N

𝑂 𝐼 ,𝐽
(
𝑇Z𝑑

[
ΘΣ𝑑

≤𝑙
[ΥΓ

𝑛𝜂Γ𝑐

≤𝑚]
]

𝑓 𝜄 : 𝑛 ∈ N
)2
)1/2

����
ℓ𝑝 (Z𝑑)

≤ 𝐶 (𝑙 + 1)‖ 𝑓 ‖ℓ𝑝 (Z𝑑 ;ℓ2 (N)) ,

(6.16)

with ΘΣ𝑑
≤𝑙

defined in (6.7). In particular, (6.16) implies the maximal estimate

����(∑
𝜄∈N

sup
𝑛∈N



𝑇Z𝑑 [ΘΣ𝑑
≤𝑙
[ΥΓ

𝑛𝜂Γ𝑐

≤𝑚]
]

𝑓 𝜄


2)1/2

����
ℓ𝑝 (Z𝑑)

≤ 𝐶 (𝑙 + 1)‖ 𝑓 ‖ℓ𝑝 (Z𝑑 ;ℓ2 (N)) .

Some remarks about Theorem 6.14 are in order.

1. Theorem 6.14 is a semi-norm variant of the Ionescu–Wainger [34] theorem for oscillations. The proof
below works also for r-variations or jumps in place of oscillations as well as for norms corresponding
to real interpolation spaces. We refer to [50] for definitions.

2. In practice, Theorem 6.14 will be applied with Γ = [𝑑]. However, the concept of Γ-lifted sequences
is introduced here for further references.

3. A careful inspection of the proof below allows us to show that the conclusion of Theorem 6.14 also
holds in R𝑑 . For every 𝑑 ∈ Z+, every sequence Υ = (Υ𝑛 : R𝑑 → C : 𝑛 ∈ Z) of measurable functions
satisfying conditions (6.10), (6.11), (6.12) and (6.13), and for every 𝑝 ∈ (1,∞), there exists a constant
𝐶 > 0 such that for every 𝑓 = ( 𝑓 𝜄 : 𝜄 ∈ N) ∈ 𝐿 𝑝 (R𝑑; ℓ2(N)), one has

sup
𝐽 ∈Z+

sup
𝐼 ∈𝔖𝐽 (Z)

����(∑
𝜄∈N

𝑂 𝐼 ,𝐽
(
𝑇R𝑑 [Υ𝑛] 𝑓 𝜄 : 𝑛 ∈ Z

)2
)1/2

����
𝐿𝑝 (R𝑑)

≤ 𝐶‖ 𝑓 ‖𝐿𝑝 (R𝑑 ;ℓ2 (N)) . (6.17)

An important feature of our approach is that we do not need to invoke the corresponding inequality
for martingales in the proof. This stands in a sharp contrast to variants of inequality (6.17) involving
r-variations, where all arguments to the best of our knowledge use the corresponding r-variational
inequalities for martingales.

Proof of Theorem 6.14. Fix 𝑝 ∈ (1,∞) and a sequence 𝑓 = ( 𝑓 𝜄 : 𝜄 ∈ N) ∈ ℓ2(Z𝑑; ℓ2(N)) ∩
ℓ𝑝 (Z𝑑; ℓ2(N)). For each 𝑙 ∈ N, define an integer

𝜅𝑙 :=
⌊ (

100𝐶𝜌 + log2(𝛿Υ log2 𝜏)−1) (𝑙 + 1)
⌋
+ 2, (6.18)

where 𝐶𝜌 is the constant from Remark 6.1; see property (iv). By (2.17), it only suffices to establish
(6.16), which will follow from the oscillation inequalities, respectively, for small scales

sup
𝐽 ∈Z+

sup
𝐼 ∈𝔖𝐽 (N<2𝜅𝑙 )

����(∑
𝜄∈N

𝑂 𝐼 ,𝐽
(
𝑇Z𝑑

[
ΘΣ𝑑

≤𝑙
[ΥΓ

𝑛𝜂Γ𝑐

≤𝑚]
]

𝑓 𝜄 : 𝑛 ∈ N<2𝜅𝑙

)2
)1/2

����
ℓ𝑝 (Z𝑑)

� (𝑙 + 1)‖ 𝑓 ‖ℓ𝑝 (Z𝑑 ;ℓ2 (N)) ,

(6.19)

and large scales

sup
𝐽 ∈Z+

sup
𝐼 ∈𝔖𝐽 (N≥2𝜅𝑙 )

����(∑
𝜄∈N

𝑂 𝐼 ,𝐽
(
𝑇Z𝑑

[
ΘΣ𝑑

≤𝑙
[ΥΓ

𝑛𝜂Γ𝑐

≤𝑚]
]

𝑓 𝜄 : 𝑛 ∈ N≥2𝜅𝑙

)2
)1/2

����
ℓ𝑝 (Z𝑑)

� ‖ 𝑓 ‖ℓ𝑝 (Z𝑑 ;ℓ2 (N)) .

(6.20)
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Step 1. We now prove inequality (6.19). We fix 𝐽 ∈ Z+ and a sequence 𝐼 ∈ 𝔖𝐽 (N<2𝜅𝑙 ). Then, by the
Rademacher–Menshov inequality (2.14), we see that����(∑

𝜄∈N
𝑂 𝐼 ,𝐽

(
𝑇Z𝑑

[
ΘΣ𝑑

≤𝑙
[ΥΓ

𝑛𝜂Γ𝑐

≤𝑚]
]

𝑓 𝜄 : 𝑛 ∈ N<2𝜅𝑙

)2
)1/2

����
ℓ𝑝 (Z𝑑)

�
𝜅𝑙∑
𝑣=0

����(∑
𝜄∈N

2𝜅𝑙−𝑣−1∑
𝑢=0



 ∑
𝑛∈𝑈 𝑣

𝑢

𝑇Z𝑑
[
ΘΣ𝑑

≤𝑙
[(ΥΓ

𝑛+1 − ΥΓ
𝑛 )𝜂Γ𝑐

≤𝑚]
]

𝑓 𝜄


2)1/2

����
ℓ𝑝 (Z𝑑)

,

where 𝑈𝑣
𝑢 = [𝑢2𝑣 , (𝑢 + 1)2𝑣 ) ∩ Z. Hence, it suffices to prove����(∑
𝜄∈N

2𝜅𝑙−𝑣−1∑
𝑢=0



 ∑
𝑛∈𝑈 𝑣

𝑢

𝑇Z𝑑
[
ΘΣ𝑑

≤𝑙
[(ΥΓ

𝑛+1 − ΥΓ
𝑛 )𝜂Γ𝑐

≤𝑚]
]

𝑓 𝜄


2)1/2

����
ℓ𝑝 (Z𝑑)

� ‖ 𝑓 ‖ℓ𝑝 (Z𝑑 ;ℓ2 (N)) , (6.21)

uniformly in v. By Theorem 6.5 and by our choice of 𝜅𝑙 in (6.18), since 𝑚 ≤ −10𝐶𝜌22𝜌𝑙 , (6.21) will
follow if for every sequence ( 𝑓 𝜄 : 𝜄 ∈ N) ∈ 𝐿2 (R𝑑; ℓ2(N)) ∩ 𝐿 𝑝 (R𝑑; ℓ2(N)),����(∑

𝜄∈N

2𝜅𝑙−𝑣−1∑
𝑢=0



 ∑
𝑛∈𝑈 𝑣

𝑢

𝑇R𝑑 [(ΥΓ
𝑛+1 − ΥΓ

𝑛 )𝜂Γ𝑐

≤𝑚] 𝑓 𝜄


2)1/2

����
𝐿𝑝 (R𝑑)

� ‖ 𝑓 ‖𝐿𝑝 (R𝑑 ;ℓ2 (N)) (6.22)

holds uniformly in v.
To prove inequality (6.22), in view of Lemma 2.3, it suffices to show that for every 𝑝 ∈ (1,∞) and

for every 𝑓 ∈ 𝐿𝑝 (R𝑑), one has

sup
(𝜔𝑢) ∈{−1,1}N

���2𝜅𝑙−𝑣−1∑
𝑢=0

𝜔𝑢

[
𝑇R𝑑 [(ΥΓ

(𝑢+1)2𝑣 − ΥΓ
𝑢2𝑣 )𝜂Γ𝑐

≤𝑚] 𝑓
]���

𝐿𝑝 (R𝑑)
�𝑝 ‖ 𝑓 ‖𝐿𝑝 (R𝑑) , (6.23)

unformly in 𝑣 ∈ [0, 𝜅𝑙] and l. The proof of (6.23), using conditions (6.10), (6.11), (6.12) and (6.13),
follows from standard Littlewood–Paley theory as developed in [22]. We refer, for instance, to [51] for
details in this context.

Step 2. We now prove inequality (6.20). By the support condition (6.15), we may write (see property
(iv) from Remark 6.1)

𝑇Z𝑑
[
ΘΣ𝑑

≤𝑙
[ΥΓ

𝑛𝜂Γ𝑐

≤𝑚]
]
= 𝑇Z𝑑

[
ΘΣ𝑑

≤𝑙
[ΥΓ

𝑛 (1 − 𝜂Γ
≤−22𝐶𝜌𝑙 )𝜂Γ𝑐

≤𝑚]
]
+ 𝑇Z𝑑

[
ΘΣ𝑑

≤𝑙
[ΥΓ

𝑛𝜂Γ
≤−22𝐶𝜌𝑙𝜂

Γ𝑐

≤𝑚]
]
,

where 𝜂Γ
≤−22𝐶𝜌𝑙

:=
∏

𝑖∈Γ 𝜂 (𝑖)
≤−22𝐶𝜌𝑙

, (see definition (2.2)). The proof of (6.20) will be complete if
we show (6.20) with 𝑇Z𝑑

[
ΘΣ𝑑

≤𝑙
[ΥΓ

𝑛 (1 − 𝜂Γ
≤−22𝐶𝜌𝑙

)𝜂Γ𝑐

≤𝑚]
]
, and 𝑇Z𝑑

[
ΘΣ𝑑

≤𝑙
[ΥΓ

𝑛𝜂Γ
≤−22𝐶𝜌𝑙

𝜂Γ𝑐

≤𝑚]
]

in place
of 𝑇Z𝑑

[
ΘΣ𝑑

≤𝑙
[ΥΓ

𝑛𝜂Γ𝑐

≤𝑚]
]
. To establish (6.20) with 𝑇Z𝑑

[
ΘΣ𝑑

≤𝑙
[ΥΓ

𝑛 (1 − 𝜂Γ
≤−22𝐶𝜌𝑙

)𝜂Γ𝑐

≤𝑚]
]
, it suffices to

prove that for every 𝑝 ∈ (1,∞), there exists 𝛿𝑝 ∈ (0, 1) such that for every 𝑛 ≥ 2𝜅𝑙 and every
𝑓 = ( 𝑓 𝜄 : 𝜄 ∈ N) ∈ ℓ2(Z𝑑; ℓ2(N)) ∩ ℓ𝑝 (Z𝑑; ℓ2(N)), one has����(∑

𝜄∈N



𝑇Z𝑑 [ΘΣ𝑑
≤𝑙
[ΥΓ

𝑛 (1 − 𝜂Γ
≤−22𝐶𝜌𝑙 )𝜂Γ𝑐

≤𝑚]
]

𝑓 𝜄


2)1/2

����
ℓ𝑝 (Z𝑑)

� 𝜏−𝛿𝑝𝑛‖ 𝑓 ‖ℓ𝑝 (Z𝑑 ;ℓ2 (N)) . (6.24)

Inequality (6.24), in view of Lemma 2.3 and Theorem 6.5, can be reduced to showing that for every
𝑝 ∈ (1,∞), there exists 𝛿𝑝 ∈ (0, 1) such that

‖𝑇R𝑑 [ΥΓ
𝑛 (1 − 𝜂Γ

≤−22𝐶𝜌𝑙 )𝜂Γ𝑐

≤𝑚] 𝑓 ‖𝐿𝑝 (R𝑑) � 𝜏−𝛿𝑝𝑛‖ 𝑓 ‖𝐿𝑝 (R𝑑) (6.25)
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holds for every 𝑛 ≥ 2𝜅𝑙 . By interpolation, it suffices to prove (6.25) for 𝑝 = 2 and by Plancherel’s
theorem, this reduces to showing that

|ΥΓ
𝑛 (𝜉) (1 − 𝜂Γ

≤−22𝐶𝜌𝑙 (𝜉))𝜂Γ𝑐

≤𝑚(𝜉) | � 𝜏−𝛿Υ𝑛/2

holds uniformly in 𝜉 for all 𝑛 ≥ 2𝜅𝑙 . This follows from the definition of 𝜅𝑙 and (6.11).
Step 3. We now establish (6.20) with 𝑇Z𝑑

[
ΘΣ𝑑

≤𝑙
[ΥΓ

𝑛𝜂Γ
≤−22𝐶𝜌𝑙

𝜂Γ𝑐

≤𝑚]
]

in place of 𝑇Z𝑑
[
ΘΣ𝑑

≤𝑙
[ΥΓ

𝑛𝜂Γ𝑐

≤𝑚]
]
.

Taking 𝑄≤𝑙 from property (iv), note that

𝑇Z𝑑
[
ΘΣ𝑑

≤𝑙
[ΥΓ

𝑛𝜂Γ
≤−22𝐶𝜌𝑙𝜂

Γ𝑐

≤𝑚]
]
= 𝑇Z𝑑

[
ΘΓ
𝑄−1

≤𝑙 [𝑄≤𝑙 ]𝑘
[ΥΓ

𝑛𝜂Γ
≤−22𝐶𝜌𝑙 ]

]
𝑇Z𝑑

[
ΘΣ𝑑

≤𝑙
[𝜂 [𝑑 ]

≤𝑚]
]
.

Using this factorization, it suffices to show that����(∑
𝜄∈N



𝑇Z𝑑 [ΘΣ𝑑
≤𝑙
[𝜂 [𝑑 ]

≤𝑚]
]

𝑓 𝜄


2)1/2

����
ℓ𝑝 (Z𝑑)

� ‖ 𝑓 ‖ℓ𝑝 (Z𝑑 ;ℓ2 (N)) , (6.26)

and

sup
𝐽 ∈Z+

sup
𝐼 ∈𝔖𝐽 (N≥2𝜅𝑙 )

����(∑
𝜄∈N

𝑂 𝐼 ,𝐽
(
𝑇Z𝑑

[
ΘΓ
𝑄−1

≤𝑙 [𝑄≤𝑙 ]𝑘
[ΥΓ

𝑛𝜂Γ
≤−22𝐶𝜌𝑙 ]

]
𝑓 𝜄 : 𝑛 ∈ N≥2𝜅𝑙

)2
)1/2

����
ℓ𝑝 (Z𝑑)

� ‖ 𝑓 ‖ℓ𝑝 (Z𝑑 ;ℓ2 (N)) .

(6.27)

By Lemma 2.3 and Theorem 6.5, the bound (6.26) follows from��𝑇R𝑑 [𝜂 [𝑑 ]
≤𝑚] 𝑓

��
𝐿𝑝 (R𝑑) �𝑝 ‖ 𝑓 ‖𝐿𝑝 (R𝑑) ,

which clearly holds for all 𝑝 ∈ [1,∞]. To prove (6.27), we can use the sampling principle formulated in
Proposition 6.9 to reduce matters to proving

sup
𝐽 ∈Z+

sup
𝐼 ∈𝔖𝐽 (N≥2𝜅𝑙 )

����(∑
𝜄∈N

𝑂 𝐼 ,𝐽
(
𝑇R𝑘 [Υ𝑛] 𝑓 𝜄 : 𝑛 ∈ N≥2𝜅𝑙

)2
)1/2

����
𝐿𝑝 (R𝑘 )

� ‖ 𝑓 ‖𝐿𝑝 (R𝑘 ;ℓ2 (N)) . (6.28)

To do this, we carefully choose the finite dimensional Banach spaces 𝐵1 and 𝐵2 in Proposition 6.9 to
accommodate the oscillation semi-norm 𝑂 𝐼 ,𝐽 . See the remark after Proposition 6.9.

Step 4. Let 𝜂 be a smooth function with 1[−1,1]𝑘 ≤ 𝜂 ≤ 1[−𝜏,𝜏 ]𝑘 and set 𝜒𝑛 (𝜉) := 𝜂(𝜏−𝑛 ◦ 𝜉) Using
conditions (6.10), (6.11), (6.12) and (6.13), we see that Theorem B in [22] implies����( ∑

𝑛∈N



𝑇R𝑘 [Υ𝑛 − 𝜒−𝑛] 𝑓


2)1/2

����
𝐿𝑝 (R𝑘 )

� ‖ 𝑓 ‖𝐿𝑝 (R𝑘 ) (6.29)

for 1 < 𝑝 < ∞ since |Υ𝑛 (𝜉) − 𝜒−𝑛 (𝜉) | � min(|𝜏𝑛 ◦ 𝜉 |, |𝜏𝑛 ◦ 𝜉 |−1) 𝛿Υ and both maximal functions
sup𝑛∈N |𝑇R𝑘 [Υ𝑛] 𝑓 | and sup𝑛∈N |𝑇R𝑘 [𝜒−𝑛] 𝑓 | are both bounded on all 𝐿𝑞 (R𝑘 ) for all 1 < 𝑞 < ∞.

Using Lemma 2.3, we see that inequality (6.29) reduces (6.28) to proving

sup
𝐽 ∈Z+

sup
𝐼 ∈𝔖𝐽 (N)

����(∑
𝜄∈N

𝑂 𝐼 ,𝐽
(
𝑇R𝑘 [𝜒𝑛] 𝑓 𝜄 : 𝑛 ∈ Z

)2
)1/2

����
𝐿𝑝 (R𝑘 )

� ‖ 𝑓 ‖𝐿𝑝 (R𝑘 ;ℓ2 (N)) . (6.30)

To prove (6.30), we note that for every 𝑚 < 𝑛, we have

𝜒𝑚𝜒𝑛 = 𝜒𝑚.
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We fix 𝐽 ∈ Z+ and a sequence 𝐼 ∈ 𝔖𝐽 (N). Then

𝑂 𝐼 ,𝐽
(
𝑇R𝑘 [𝜒𝑛] 𝑓 𝜄 : 𝑛 ∈ N

)
�

( 𝐽−1∑
𝑗=0

sup
𝐼 𝑗 ≤𝑛<𝐼 𝑗+1



𝑇R𝑘 [𝜒𝑛 − 𝜒𝐼 𝑗 ] 𝑓 𝜄


2)1/2

=
( 𝐽−1∑
𝑗=0

sup
𝐼 𝑗<𝑛<𝐼 𝑗+1



𝑇R𝑘 [𝜒𝑛]𝑇R𝑘 [𝜒𝐼 𝑗+1 − 𝜒𝐼 𝑗 ] 𝑓 𝜄


2)1/2

≤
(∑
𝑗∈N

sup
𝑛∈Z

(
𝜑𝑛 ∗



𝑇R𝑘 [𝜒𝐼 𝑗+1 − 𝜒𝐼 𝑗 ] 𝑓 𝜄


)2

)1/2
,

where 𝜑𝑛 (𝑥) := |𝑇R𝑘 [𝜒𝑛] (𝑥) |. Using this estimate and the Fefferman-Stein vector-valued maximal
function estimate (see [57]), we conclude that

sup
𝐽 ∈Z+

sup
𝐼 ∈𝔖𝐽 (N)

����(∑
𝜄∈N

𝑂 𝐼 ,𝐽
(
𝑇R𝑘 [𝜒𝑛] 𝑓 𝜄 : 𝑛 ∈ Z

)2
)1/2

����
𝐿𝑝 (R𝑘 )

≤ sup
𝐼 ∈𝔖∞ (N)

����(∑
𝜄∈N

∑
𝑗∈N

sup
𝑛∈Z

(
𝜑𝑛 ∗



𝑇R𝑘 [𝜒𝐼 𝑗+1 − 𝜒𝐼 𝑗 ] 𝑓 𝜄


)2

)1/2
����
𝐿𝑝 (R𝑘 )

�𝑝 sup
𝐼 ∈𝔖∞ (N)

����(∑
𝜄∈N

∑
𝑗∈N



𝑇R𝑘 [𝜒𝐼 𝑗+1 − 𝜒𝐼 𝑗 ] 𝑓 𝜄


2)1/2

����
𝐿𝑝 (R𝑘 )

. (6.31)

As above, using Theorem B in [22], we see that for every 𝑝 ∈ (1,∞),

sup
𝐼 ∈𝔖∞ (N)

����(∑
𝑗∈N



𝑇R𝑘 [𝜒𝐼 𝑗+1 − 𝜒𝐼 𝑗 ] 𝑓


2)1/2

����
𝐿𝑝 (R𝑘 )

�𝑝 ‖ 𝑓 ‖𝐿𝑝 (R𝑘 ) . (6.32)

Then invoking (6.32) and Lemma 2.3, we obtain

sup
𝐼 ∈𝔖∞ (N)

����(∑
𝜄∈N

∑
𝑗∈N



𝑇R𝑘 [𝜒𝐼 𝑗+1 − 𝜒𝐼 𝑗 ] 𝑓 𝜄


2)1/2

����
𝐿𝑝 (R𝑘 )

�𝑝 ‖ 𝑓 ‖𝐿𝑝 (R𝑘 ;ℓ2 (N)) . (6.33)

Combining (6.31) with (6.33), we obtain the desired claim in (6.30), and this completes the proof of
Theorem 6.14. �

6.3. Multi-parameter semi-norm variant of Theorem 6.5

We will generalize Theorem 6.14 to the multi-parameter setting for a class of multipliers arising in our
question. We formulate our main result in the two-parameter setting, but all arguments are adaptable to
multi-parameter settings.

Let 𝑃 ∈ R[m1, m2] be a polynomial with deg 𝑃 ≥ 2 such that

𝑃(𝑚1, 𝑚2) :=
∑

(𝛾1 ,𝛾2) ∈𝑆𝑃

𝑐𝛾1 ,𝛾2 𝑚
𝛾1
1 𝑚

𝛾2
2 , (6.34)

where 𝑐 (0,0) = 0. In addition, we assume that P is non-degenerate in the sense that 𝑆𝑃 ∩ (Z+ × Z+) ≠ ∅;
see the remark below Theorem 1.11. Let 𝑟 ∈ Z+ be the number of vertices in the backwards Newton
diagram 𝑁𝑃 corresponding to the polynomial P from (6.34). For any vertex 𝑣 𝑗 = (𝑣 𝑗 ,1, 𝑣 𝑗 ,2) of 𝑁𝑃 , we
denote the associated monomial by

𝑃 𝑗 (𝑚1, 𝑚2) := 𝑐 (𝑣𝑗,1 ,𝑣𝑗,2)𝑚
𝑣𝑗,1
1 𝑚

𝑣𝑗,2
2 . (6.35)
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From Section 4 (see Remark 4.5), we know that 𝑃 𝑗 is the main monomial in the sector 𝑆( 𝑗)
for 𝑗 ∈ [𝑟].

We fix the lacunarity factor 𝜏 > 1. Throughout this subsection, we allow all the implied constants to
depend on 𝜏. For real numbers 𝑀1, 𝑀2 ≥ 1 and 𝜉 ∈ R, we consider the multiplier

𝔪𝑃
𝑀1 ,𝑀2

(𝜉) :=
1

(1 − 𝜏−1)2

∫ 1

𝜏−1

∫ 1

𝜏−1
𝒆(𝑃𝜉 (𝑀1𝑦1, 𝑀2𝑦2))𝑑𝑦1𝑑𝑦2, (6.36)

where recall 𝑃𝜉 ∈ R[m1, m2] is defined as 𝑃𝜉 (𝑚1, 𝑚2) = 𝜉𝑃(𝑚1, 𝑚2).
As an application of Theorem 6.14, we obtain the following two-parameter oscillation inequality.

Theorem 6.37. Let 𝜏 > 1 be given and let (𝔪𝑃
𝑀1 ,𝑀2

: (𝑀1, 𝑀2) ∈ D𝜏 × D𝜏) be the two-parameter
sequence of multipliers from (6.36) corresponding to the polynomial P from (6.34). Let 𝑟 ∈ Z+ be the
number of vertices in the backwards Newton diagram 𝑁𝑃 . For every 𝜌 ∈ (0, 1) and 𝑝 ∈ (1,∞) and any
𝑗 ∈ [𝑟], there exists an absolute constant 0 < 𝐶 = 𝐶 (𝑝, 𝜌, 𝜏, 𝑗 , 𝑃) < ∞ such that for every integers
𝑙 ∈ N and 𝑚 ≤ −10𝐶𝜌22𝜌𝑙 and for every 𝑓 = ( 𝑓 𝜄 : 𝜄 ∈ N) ∈ ℓ𝑝 (Z; ℓ2(N)), one has

sup
𝐽 ∈Z+

sup
𝐼 ∈𝔖𝐽 (S𝜏 ( 𝑗))

����(∑
𝜄∈N

𝑂 𝐼 ,𝐽
(
𝑇Z

[
ΘΣ≤𝑙 [𝔪𝑃

𝑀1 ,𝑀2
𝜂≤𝑚]

]
𝑓 𝜄 : (𝑀1, 𝑀2) ∈ S𝜏 ( 𝑗)

)2
)1/2

����
ℓ𝑝 (Z)

≤ 𝐶 (𝑙 + 1)‖ 𝑓 ‖ℓ𝑝 (Z;ℓ2 (N)) ,

(6.38)

with ΘΣ≤𝑙 defined in (6.7). In particular, (6.38) also implies the maximal estimate����(∑
𝜄∈N

sup
(𝑀1 ,𝑀2) ∈S𝜏 ( 𝑗)



𝑇Z [ΘΣ≤𝑙 [𝔪𝑃
𝑀1 ,𝑀2

𝜂≤𝑚]
]

𝑓 𝜄


2)1/2

����
ℓ𝑝 (Z)

≤ 𝐶 (𝑙 + 1)‖ 𝑓 ‖ℓ𝑝 (Z;ℓ2 (N)) .

Some remarks about Theorem 6.37 are in order.

1. Theorem 6.37 is the simplest instance of a multi-parameter oscillation variant of the Ionescu–Wainger
theorem [34]. More general variants of Theorem 6.37 can be also proved. For instance, an analogue
of Theorem 6.37 for the following multipliers

𝔪𝑃
𝑀1 ,𝑀2

(𝜉1, 𝜉2, 𝜉3) =
∫ 1

0

∫ 1

0
𝒆(𝜉1 (𝑀1𝑦1) + 𝜉2 (𝑀2𝑦2) + 𝜉3𝑃(𝑀1𝑦1, 𝑀2𝑦2))𝑑𝑦1𝑑𝑦2

can be established using the methods of the paper. However, this goes beyond the scope of this paper
and will be discussed in the future.

2. In contrast to the one-parameter theory, it is not clear whether multi-parameter r-variational or jump
counterparts of Theorem 6.37 are available. As far as we know, it is not even clear if there are useful
multi-parameter definitions of r-variational or jump semi-norms. From this point of view, the multi-
parameter oscillation semi-norm is an invaluable tool allowing us to handle pointwise convergence
problems in the multi-parameter setting.

3. A careful inspection of the proof allows us to establish an analogue of Theorem 6.37 in the continuous
setting. Namely, for every 𝑝 ∈ (1,∞), there is a constant 𝐶 > 0 such that for every 𝑓 = ( 𝑓 𝜄 : 𝜄 ∈
N) ∈ 𝐿𝑝 (R; ℓ2(N)), one has

sup
𝐽 ∈Z+

sup
𝐼 ∈𝔖𝐽 (S𝜏 ( 𝑗))

����(∑
𝜄∈N

𝑂 𝐼 ,𝐽
(
𝑇R [𝔪𝑃

𝑀1 ,𝑀2
] 𝑓 𝜄 : (𝑀1, 𝑀2) ∈ S𝜏 ( 𝑗)

)2
)1/2

����
𝐿𝑝 (R)

≤ 𝐶‖ 𝑓 ‖𝐿𝑝 (R;ℓ2 (N)) .

Proof of Theorem 6.37. We will only prove Theorem 6.37 for 𝑗 = 𝑟 = 1 or for 1 ≤ 𝑗 < 𝑟 with 𝑟 ≥ 2.
The same argument can be used to prove the case for 𝑗 = 𝑟 . In view of (2.17), it suffices to prove (6.38).
We divide the proof into two steps to make the argument clearer.
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Step 1. We prove that for every 𝑝 ∈ (1,∞) and every 𝑓 = ( 𝑓 𝜄 : 𝜄 ∈ N) ∈ ℓ𝑝 (Z; ℓ2(N)), one has����( ∑
(𝑀1 ,𝑀2) ∈S𝜏 ( 𝑗)

∑
𝜄∈N



𝑇Z [ΘΣ≤𝑙 [(𝔪𝑃
𝑀1 ,𝑀2

−𝔪𝑃 𝑗

𝑀1 ,𝑀2
)𝜂≤𝑚]

]
𝑓 𝜄


2)1/2

����
ℓ𝑝 (Z)

� ‖ 𝑓 ‖ℓ𝑝 (Z;ℓ2 (N)) .

Using (4.14) and (4.15), it suffices to prove that for every 𝑝 ∈ (1,∞), there is 𝜎𝑗 , 𝑝 ∈ (0, 1) such that
for every 𝑁 ∈ N, 𝑖 ∈ [2] and every 𝑓 = ( 𝑓 𝜄 : 𝜄 ∈ N) ∈ ℓ𝑝 (Z; ℓ2(N)), one has����( ∑

(𝑀1 ,𝑀2) ∈S𝑁𝜏,𝑖 ( 𝑗)

∑
𝜄∈N



𝑇Z [ΘΣ≤𝑙 [(𝔪𝑃
𝑀1 ,𝑀2

−𝔪𝑃 𝑗

𝑀1 ,𝑀2
)𝜂≤𝑚]

]
𝑓 𝜄


2)1/2

����
ℓ𝑝 (Z)

� 𝜏−𝜎 𝑗,𝑝𝑁 ‖ 𝑓 ‖ℓ𝑝 (Z;ℓ2 (N)) .

(6.39)

We only prove (6.39) for 𝑖 = 1, as the proof for 𝑖 = 2 is the same. By the construction of the sets S𝑁𝜏,1( 𝑗)
(see definition (4.15)), the problem becomes a one-parameter problem. Indeed, if (𝑀1, 𝑀2) ∈ S𝑁𝜏,1( 𝑗),
then (𝑀1, 𝑀2) = (𝜏𝑛1 , 𝜏𝑛2) and

(𝑛1, 𝑛2) =
𝑛

𝑑 𝑗
𝜔 𝑗−1 +

𝑁

𝑑 𝑗
(𝜔 𝑗 + 𝜔 𝑗−1) for some 𝑛 ∈ Z+.

Defining (𝑛𝑘1 , 𝑛𝑘2 ) := 𝑘
𝑑 𝑗

𝜔 𝑗−1 + 𝑁
𝑑 𝑗
(𝜔 𝑗 + 𝜔 𝑗−1) for any 𝑘 ∈ Z+, inequality (6.39) can be written as

����( ∑
𝑘∈Z+

∑
𝜄∈N



𝑇Z [ΘΣ≤𝑙 [(𝔪𝑃

𝜏
𝑛𝑘1 ,𝜏

𝑛𝑘2
−𝔪𝑃 𝑗

𝜏
𝑛𝑘1 ,𝜏

𝑛𝑘2
)𝜂≤𝑚]

]
𝑓 𝜄


2)1/2

����
ℓ𝑝 (Z)

� 𝜏−𝜎 𝑗,𝑝𝑁 ‖ 𝑓 ‖ℓ𝑝 (Z;ℓ2 (N)) .

By Lemma 2.3 and Theorem 6.5, it suffices to prove that for every 𝑝 ∈ (1,∞), there is 𝜎𝑗 , 𝑝 ∈ (0, 1)
such that for every 𝑁 ∈ N and 𝑓 ∈ 𝐿𝑝 (R), one has

sup
(𝜀𝑘 :𝑘∈Z+) ∈{0,1}Z+

���∑
𝑘∈Z+

𝜀𝑘𝑇R
[
(𝔪𝑃

𝜏
𝑛𝑘1 ,𝜏

𝑛𝑘2
−𝔪𝑃 𝑗

𝜏
𝑛𝑘1 ,𝜏

𝑛𝑘2
)
]

𝑓
���
𝐿𝑝 (R)

� 𝜏−𝜎 𝑗,𝑝𝑁 ‖ 𝑓 ‖𝐿𝑝 (R) . (6.40)

By (6.34), (6.35) and Lemma 4.10, we obtain

|𝑃(𝜏𝑛1 𝑦1, 𝜏𝑛2 𝑦2) − 𝑃 𝑗 (𝜏𝑛1 𝑦1, 𝜏𝑛2 𝑦2) | ≤
∑

(𝛾1 ,𝛾2) ∈𝑆𝑃\{𝑣𝑗 }
|𝑐𝛾1 ,𝛾2 |𝜏 (𝛾1 ,𝛾2) ·(𝑛1 ,𝑛2) |𝑦1 |𝛾1 |𝑦2 |𝛾2

≤ ( sup
𝑣 ∈𝑆𝑃

|𝑐𝑣 |)𝜏 (𝑛1 ,𝑛2) ·𝑣𝑗
∑

𝑣 ∈𝑆𝑃\{𝑣𝑗 }
𝜏 (𝑛1 ,𝑛2) ·(𝑣−𝑣𝑗 )

≤ #𝑆𝑃 ( sup
𝑣 ∈𝑆𝑃

|𝑐𝑣 |)𝜏 (𝑛1 ,𝑛2) ·𝑣𝑗 𝜏−𝜎 𝑗𝑁

whenever |𝑦1 |, |𝑦2 | ≤ 1, with 𝜎𝑗 > 0 defined in (4.11). Consequently, we have

|𝔪𝑃

𝜏
𝑛𝑘1 ,𝜏

𝑛𝑘2
(𝜉) −𝔪𝑃 𝑗

𝜏
𝑛𝑘1 ,𝜏

𝑛𝑘2
(𝜉) | �𝑃 𝜏−𝜎 𝑗𝑁 (𝜏 (𝑛𝑘1 ,𝑛

𝑘
2 ) ·𝑣𝑗 |𝜉 |). (6.41)

Moreover, by van der Corput’s lemma (Proposition 2.6), we can find a 𝛿0 ∈ (0, 1) such that

|𝔪𝑃

𝜏
𝑛𝑘1 ,𝜏

𝑛𝑘2
(𝜉) −𝔪𝑃 𝑗

𝜏
𝑛𝑘1 ,𝜏

𝑛𝑘2
(𝜉) | �𝑃 (𝜏 (𝑛𝑘1 ,𝑛

𝑘
2 ) ·𝑣𝑗 |𝜉 |)−𝛿0 (6.42)
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for sufficiently large 𝑁 ∈ N. A convex combination of (6.41) and (6.42) gives

|𝔪𝑃

𝜏
𝑛𝑘1 ,𝜏

𝑛𝑘2
(𝜉) −𝔪𝑃 𝑗

𝜏
𝑛𝑘1 ,𝜏

𝑛𝑘2
(𝜉) | �𝑃 𝜏−𝜎

′
𝑗𝑁 min

{
(𝜏 (𝑛𝑘1 ,𝑛

𝑘
2 ) ·𝑣𝑗 |𝜉 |) 𝛿′0 , (𝜏 (𝑛𝑘1 ,𝑛

𝑘
2 ) ·𝑣𝑗 |𝜉 |)−𝛿′0

}
, (6.43)

for some 𝛿′0, 𝜎′
𝑗 ∈ (0, 1).

Using (6.43) and Plancherel’s theorem, we obtain (6.40) for 𝑝 = 2. Standard Littlewood–Paley theory
arguments (see, for example, Theorem D in [22]) allows us then to obtain (6.40) for all 𝑝 ∈ (1,∞).

Step 2. The argument from the first step allows us to reduce matters to proving

sup
𝐽 ∈Z+

sup
𝐼 ∈𝔖𝐽 (D2

𝜏 )

����(∑
𝜄∈N

𝑂 𝐼 ,𝐽
(
𝑇Z

[
ΘΣ≤𝑙 [𝔪𝑃 𝑗

𝑀1 ,𝑀2
𝜂≤𝑚]

]
𝑓 𝜄 : (𝑀1, 𝑀2) ∈ D2

𝜏

)2
)1/2

����
ℓ𝑝 (Z)

� (𝑙 + 1)‖ 𝑓 ‖ℓ𝑝 (Z;ℓ2 (N)) .

We define a new one-parameter multiplier

𝔤𝑃
𝑗

𝑀 (𝜉) :=
1

(1 − 𝜏−1)2

∫ 1

𝜏−1

∫ 1

𝜏−1
𝒆(𝑐 (𝑣𝑗,1 ,𝑣𝑗,2)𝑀𝜉𝑦

𝑣𝑗,1
1 𝑦

𝑣𝑗,2
2 )𝑑𝑦1𝑑𝑦2.

Observe that by Theorem 6.14, we obtain

sup
𝐽 ∈Z+

sup
𝐼 ∈𝔖𝐽 (D2

𝜏 )

����(∑
𝜄∈N

𝑂 𝐼 ,𝐽
(
𝑇Z

[
ΘΣ≤𝑙 [𝔪𝑃 𝑗

𝑀1 ,𝑀2
𝜂≤𝑚]

]
𝑓 𝜄 : (𝑀1, 𝑀2) ∈ D2

𝜏

)2
)1/2

����
ℓ𝑝 (Z)

≤ sup
𝐽 ∈Z+

sup
𝐼 ∈𝔖𝐽 (D𝜏 )

����(∑
𝜄∈N

𝑂 𝐼 ,𝐽
(
𝑇Z

[
ΘΣ≤𝑙𝔤

𝑃 𝑗

𝑀 𝜂≤𝑚
]

𝑓 𝜄 : 𝑀 ∈ D𝜏
)2
)1/2

����
ℓ𝑝 (Z)

� (𝑙 + 1)‖ 𝑓 ‖ℓ𝑝 (Z;ℓ2 (N)) .

This completes the proof of the theorem. �

7. Two-parameter circle method: Proof of Theorem 4.16

Throughout this section, 𝜏 > 1 is fixed, and we allow all the implied constants to depend on 𝜏. Let
𝑃 ∈ Z[m1, m2] be a polynomial obeying 𝑃(0, 0) = 0, which is non-degenerate in the sense that
𝑆𝑃 ∩ (Z+ × Z+) ≠ ∅; see (1.14). For every real number 𝑁 ≥ 1, define

𝜒𝑁 (𝑥) :=
1

| (𝜏−1𝑁, 𝑁] ∩ Z|
1(𝜏−1𝑁 ,𝑁 ] (𝑥), 𝑥 ∈ R.

For every real number 𝑀1, 𝑀2 ≥ 1 and 𝜉 ∈ R, we consider the multiplier

𝑚𝑀1 ,𝑀2 (𝜉) :=
∑
𝑚1∈Z

∑
𝑚2∈Z

𝒆(𝑃𝜉 (𝑚1, 𝑚2))𝜒𝑀1 (𝑚1)𝜒𝑀2 (𝑚2),

with 𝑃𝜉 (𝑚1, 𝑚2) = 𝜉𝑃(𝑚1, 𝑚2). The corresponding partial multipliers are defined by

𝑚1
𝑚1 ,𝑀2

(𝜉) :=
∑
𝑚2∈Z

𝒆(𝑃𝜉 (𝑚1, 𝑚2))𝜒𝑀2 (𝑚2), 𝑚1 ∈ Z,

𝑚2
𝑀1 ,𝑚2

(𝜉) :=
∑
𝑚1∈Z

𝒆(𝑃𝜉 (𝑚1, 𝑚2))𝜒𝑀1 (𝑚1), 𝑚2 ∈ Z.
(7.1)
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We fix further notation and terminology. For functions 𝐺 : Q ∩ T → C, 𝔪 : T → C, a finite set
Σ ⊂ Q ∩ T, any 𝑛 ∈ Z and any 𝜉 ∈ T, we define the following 1-periodic multiplier:

ΦΣ
≤𝑛 [𝐺,𝔪] (𝜉) :=

∑
𝑎/𝑞∈Σ

𝐺 (𝑎/𝑞)𝔪(𝜉 − 𝑎/𝑞)𝜂≤𝑛 (𝜉 − 𝑎/𝑞). (7.2)

In a similar way, for any 𝑙 ∈ N, 𝑛 ∈ Z, any 𝜉 ∈ T, we define the following projection multipliers
(recall the definition of Σ≤𝑙 := Σ1

≤𝑙 from (6.3))

Δ ≤𝑙,≤𝑛 (𝜉) :=
∑

𝑎/𝑞∈Σ≤𝑙

𝜂≤𝑛 (𝜉 − 𝑎/𝑞), and Δ𝑐
≤𝑙,≤𝑛 (𝜉) := 1 − Δ ≤𝑙,≤𝑛 (𝜉).

All these multipliers will be applied with different choices of parameters. For 𝛽 > 0, 𝑀1, 𝑀2, 𝑀 > 0,
𝑁 ≥ 0, and 𝑣 = (𝑣1, 𝑣2) ∈ Z2, we define

𝑙𝛽 (𝑀) := log2
(
(log𝜏 𝑀)𝛽

)
, and 𝑛𝑣𝑀1 ,𝑀2

(𝑁) := log2(𝑀
𝑣1
1 𝑀 𝑣2

2 ) − 𝑁. (7.3)

Using (7.3), we also set

𝑛
𝑣,𝛽
𝑀1 ,𝑀2

(𝑀) := 𝑛𝑣𝑀1 ,𝑀2
(𝑙𝛽 (𝑀)) = log2(𝑀

𝑣1
1 𝑀 𝑣2

2 (log𝜏 𝑀)−𝛽). (7.4)

Definitions (7.3) and (7.4) will be applied with 𝑣 ∈ Z2 being a vertex of the backwards Newton diagram
𝑁𝑃 . In this section, we shall abbreviate 𝔪𝑃

𝑀1 ,𝑀2
to

𝔪𝑀1 ,𝑀2 (𝜉) :=
1

(1 − 𝜏−1)2

∫ 1

𝜏−1

∫ 1

𝜏−1
𝒆(𝑃𝜉 (𝑀1𝑦1, 𝑀2𝑦2))𝑑𝑦1𝑑𝑦2, 𝜉 ∈ R.

We also define the following two partial multipliers:

𝔪1
𝑚1 ,𝑀2

(𝜉) :=
1

1 − 𝜏−1

∫ 1

𝜏−1
𝒆(𝑃𝜉 (𝑚1, 𝑀2𝑦2))𝑑𝑦2, 𝜉 ∈ R, 𝑚1 ∈ Z,

𝔪2
𝑀1 ,𝑚2

(𝜉) :=
1

1 − 𝜏−1

∫ 1

𝜏−1
𝒆(𝑃𝜉 (𝑀1𝑦1, 𝑚2))𝑑𝑦1, 𝜉 ∈ R, 𝑚2 ∈ Z.

(7.5)

Our main result of this section is Theorem 7.6, which is a restatement of Theorem 4.16.

Theorem 7.6. Let 𝑟 ∈ Z+ be the number of vertices in the backwards Newton diagram 𝑁𝑃 . Then for
every 𝑝 ∈ (1,∞) and 𝑗 ∈ [𝑟] and for every 𝑓 ∈ ℓ𝑝 (Z), one has

sup
𝐽 ∈Z+

sup
𝐼 ∈𝔖𝐽 (S𝜏 ( 𝑗))

‖𝑂 𝐼 ,𝐽 (𝑇Z [𝑚𝑀1 ,𝑀2 ] 𝑓 : (𝑀1, 𝑀2) ∈ S𝜏 ( 𝑗))‖ℓ𝑝 (Z) �𝑝,𝜏 ‖ 𝑓 ‖ℓ𝑝 (Z) . (7.7)

The proof of Theorem 7.6 is divided into several steps. We apply iteratively the classical circle
method, taking into account the geometry of the backwards Newton diagram 𝑁𝑃 .

7.1. Preliminaries

The number of vertices 𝑟 ∈ Z+ in the backwards Newton diagram 𝑁𝑃 is fixed. Let 𝑣 𝑗 = (𝑣 𝑗 ,1, 𝑣 𝑗 ,2)
denote the vertex of 𝑁𝑃 corresponding to 𝑗 ∈ [𝑟].

It suffices to establish inequality (7.7) for 𝑗 = 𝑟 = 1 assuming additionally that log 𝑀1 ≤ log 𝑀2
when (𝑀1, 𝑀2) ∈ S𝜏 (1), or for any 𝑟 ≥ 2 and any 1 ≤ 𝑗 < 𝑟 . Both cases ensure that

log 𝑀1 � log 𝑀2 whenever (𝑀1, 𝑀2) ∈ S𝜏 ( 𝑗), (7.8)
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which means that 𝑀1 ≤ 𝑀
𝐾 𝑗

2 for some 𝐾 𝑗 > 0; see Remark 4.5. The case when 𝑗 = 𝑟 with 𝑟 ≥ 2 can be
proved in much the same way, with the difference that log 𝑀1 � log 𝑀2 whenever (𝑀1, 𝑀2) ∈ S𝜏 (𝑟).
We only outline the most important changes, omitting the details, which can be easily adjusted using
the arguments below.

From now on, 𝑝 ∈ (1,∞) is fixed and we let 𝑝0 ∈ (1, 2) be such that 𝑝 ∈ (𝑝0, 𝑝′
0). The proof will

involve several parameters that have to be suitably adjusted to 𝑝 ∈ (𝑝0, 𝑝′
0).

We begin by setting

𝜃𝑝 :=
(

1
𝑝0

− 1
min{𝑝, 𝑝′}

) (
1
𝑝0

− 1
2

)−1
∈ (0, 1).

We will take

𝛼 > 100 𝜃−1
𝑝 , and 𝛽 > 1000 max

{
𝛿−1, (1 + deg 𝑃)5} (𝛼 + 1), (7.9)

where 𝛽 ∈ Z+ plays the role of the parameter 𝛽 ∈ Z+ from Proposition 5.37, and 𝛿 ∈ (0, 1) is the
parameter that arises in the complete sum estimates; see Proposition 5.46.

Finally, we need the parameter 𝜌 > 0, introduced in the Ionescu–Wainger multiplier theorem (see
Theorem 6.5 as well as Theorem 6.14 and Theorem 6.37), to satisfy

𝜌𝛽 <
1

1000
. (7.10)

7.2. Minor arc estimates

We first establish the minor arcs estimates.

Claim 7.11. For every 1 ≤ 𝑗 < 𝑟 and for every (𝑀1, 𝑀2) ∈ S𝜏 ( 𝑗), one has

‖𝑇Z [𝑚𝑀1 ,𝑀2Δ
𝑐

≤𝑙𝛽 (𝑀2) ,≤−𝑛
𝑣𝑗 ,𝛽

𝑀1 ,𝑀2
(𝑀2)

] 𝑓 ‖ℓ2 (Z) �𝜏 (log 𝑀2)−𝛼‖ 𝑓 ‖ℓ2 (Z) , 𝑓 ∈ ℓ2(Z), (7.12)

with 𝛼 as in (7.9). The same estimate holds when 𝑗 = 𝑟 = 1, as long as log 𝑀1 ≤ log 𝑀2.

The case 𝑗 = 𝑟 ≥ 2 requires a minor modification. Keeping in mind that log 𝑀2 � log 𝑀1, it suffices
to establish an analogue of (7.12). Namely, one has

‖𝑇Z [𝑚𝑀1 ,𝑀2Δ
𝑐

≤𝑙𝛽 (𝑀1) ,≤−𝑛
𝑣𝑗 ,𝛽

𝑀1 ,𝑀2
(𝑀1)

] 𝑓 ‖ℓ2 (Z) �𝜏 (log 𝑀1)−𝛼‖ 𝑓 ‖ℓ2 (Z) , 𝑓 ∈ ℓ2(Z).

Proof of Claim 7.11. Since log 𝑀1 � log 𝑀2, one has log 𝑀∗
𝑟 , 𝑗 � log 𝑀2, where 𝑀∗

𝑟 , 𝑗 was defined in
(5.36). We can also assume that 𝑀2 is a large number. To prove (7.12), by Plancherel’s theorem, it
suffices to show for every 𝜉 ∈ T that

|𝑚𝑀1 ,𝑀2 (𝜉)Δ𝑐

≤𝑙𝛽 (𝑀2) ,≤−𝑛
𝑣𝑗 ,𝛽

𝑀1 ,𝑀2
(𝑀2)

(𝜉) | � (log 𝑀2)−𝛼 . (7.13)

For this purpose, we use Dirichlet’s principle to find a rational fraction 𝑎0/𝑞0 such that (𝑎0, 𝑞0) = 1 and

1 ≤ 𝑞0 ≤ 𝐶𝑀
𝑣𝑗,1
1 𝑀

𝑣𝑗,2
2 log(𝑀∗

𝑟 , 𝑗 )−𝛽 = 𝐶2𝑛
𝑣𝑗 ,𝛽

𝑀1 ,𝑀2
(𝑀 ∗

𝑟, 𝑗 ) and




𝜉 − 𝑎0
𝑞0




 ≤ log(𝑀∗
𝑟 , 𝑗 )𝛽

𝑞0𝐶𝑀
𝑣𝑗,1
1 𝑀

𝑣𝑗,2
2

≤ 1
𝑞2

0
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for a large constant 𝐶 > 1 to be specified later. If 𝑞0 < log(𝑀2)𝛽 , then 𝑎0/𝑞0 ∈ Σ≤𝑙𝛽 (𝑀2) and
consequently the left-hand side of (7.13) vanishes (if 𝐶 > 1 is large enough) and there is nothing
to prove. Thus, we can assume that log(𝑀∗

𝑟 , 𝑗 )𝛽 � 𝑞0 � 𝑀
𝑣𝑗,1
1 𝑀

𝑣𝑗,2
2 log(𝑀∗

𝑟 , 𝑗 )−𝛽 . We now can apply
Proposition 5.37 and obtain (7.13) as claimed. �

7.3. Major arcs estimates

Recalling (7.2), we begin with a simple approximation formula.

Lemma 7.14. Suppose that 1 ≤ 𝑗 < 𝑟 and (𝑀1, 𝑀2) ∈ S𝜏 ( 𝑗). Then for every 0 ≤ 𝑙, 𝑙 ′ ≤ 𝑙𝛽 (𝑀2) and
(𝑀 ′

1, 𝑀 ′
2) ∈ S𝜏 ( 𝑗) and 𝑚1 � 𝑀 ′

1 such that 1 ≤ 𝑀 ′
1 ≤ 𝑀1 and 2𝐶𝜌2𝜌𝑙 ≤ 𝑀 ′

2 ≤ 𝑀2, one has

𝑚1
𝑚1 ,𝑀

′
2
(𝜉)Δ ≤𝑙,≤−𝑛

𝑣𝑗
𝑀1 ,𝑀2

(𝑙′) (𝜉) = ΦΣ≤𝑙

≤−𝑛
𝑣𝑗
𝑀1 ,𝑀2

(𝑙′)
[𝐺1

𝑚1 ,𝔪
1
𝑚1 ,𝑀

′
2
] (𝜉) + 𝑂 (2𝐶𝜌2𝜌𝑙 (𝑀 ′

2)
−1), (7.15)

where 𝑛𝑣𝑀1 ,𝑀2
(𝑁), 𝐺1

𝑚1 , 𝑚1
𝑚1 ,𝑀2

and 𝔪1
𝑚1 ,𝑀2

were defined respectively in (7.4), (5.45), (7.1) and (7.5).
In particular, (7.15) immediately yields

𝑚𝑀 ′
1 ,𝑀

′
2
(𝜉)Δ ≤𝑙,≤−𝑛

𝑣𝑗
𝑀1 ,𝑀2

(𝑙′) (𝜉) =
∑
𝑚1∈Z

ΦΣ≤𝑙

≤−𝑛
𝑣𝑗
𝑀1 ,𝑀2

(𝑙′)
[𝐺1

𝑚1 ,𝔪
1
𝑚1 ,𝑀

′
2
] (𝜉)𝜒𝑀 ′

1
(𝑚1)

+ 𝑂 (2𝐶𝜌2𝜌𝑙 (𝑀 ′
2)

−1).
(7.16)

The same claims hold when 𝑗 = 𝑟 = 1, as long as log 𝑀1 ≤ log 𝑀2.

A similar conclusion holds when 𝑗 = 𝑟 ≥ 2. Taking into account that log 𝑀2 � log 𝑀1 whenever
(𝑀1, 𝑀2) ∈ S𝜏 (𝑟) and assuming that 0 ≤ 𝑙, 𝑙 ′ ≤ 𝑙𝛽 (𝑀1), one has for every (𝑀 ′

1, 𝑀 ′
2) ∈ S𝜏 ( 𝑗) and

𝑚2 � 𝑀 ′
2 satisfying 2𝐶𝜌2𝜌𝑙 ≤ 𝑀 ′

1 ≤ 𝑀1 and 1 ≤ 𝑀 ′
2 ≤ 𝑀2 that

𝑚2
𝑀 ′

1 ,𝑚2
(𝜉)Δ ≤𝑙,≤−𝑛

𝑣𝑗
𝑀1 ,𝑀2

(𝑙′) (𝜉) = ΦΣ≤𝑙

≤−𝑛
𝑣𝑗
𝑀1 ,𝑀2

(𝑙′)
[𝐺2

𝑚2 ,𝔪
2
𝑀 ′

1 ,𝑚2
] (𝜉) + 𝑂 (2𝐶𝜌2𝜌𝑙 (𝑀 ′

1)
−1). (7.17)

In particular, (7.17) yields

𝑚𝑀 ′
1 ,𝑀

′
2
(𝜉)Δ ≤𝑙,≤−𝑛

𝑣𝑗
𝑀1 ,𝑀2

(𝑙′) (𝜉) =
∑
𝑚2∈Z

ΦΣ≤𝑙

≤−𝑛
𝑣𝑗
𝑀1 ,𝑀2

(𝑙′)
[𝐺2

𝑚2 ,𝔪
2
𝑀 ′

1 ,𝑚2
] (𝜉)𝜒𝑀 ′

2
(𝑚2) + 𝑂 (2𝐶𝜌2𝜌𝑙 (𝑀 ′

1)
−1).

Proof of Lemma 7.14. For every 𝑎/𝑞 ∈ Σ≤𝑙 , we note

𝒆(𝑃𝜉 (𝑚1, 𝑚2)) = 𝒆(𝑃𝜉−𝑎/𝑞 (𝑚1, 𝑞𝑚 + 𝑟2))𝒆(𝑃𝑎/𝑞 (𝑚1, 𝑟2)), (7.18)

whenever 𝑚1 ∈ Z, 𝑚2 = 𝑞𝑚 + 𝑟2 and 𝑟2 ∈ Z𝑞 . Then, by (7.18), since 𝑞 ≤ 2𝐶𝜌2𝜌𝑙 ≤ 𝑀 ′
2, we have

∑
𝑚2∈Z

𝒆(𝑃𝜉 (𝑚1, 𝑚2))𝜒𝑀 ′
2
(𝑚2) =

𝑞∑
𝑟2=1

𝒆(𝑃𝑎/𝑞 (𝑚1, 𝑟2))
∑
𝑚∈Z

𝒆(𝑃𝜉−𝑎/𝑞 (𝑚1, 𝑞𝑚 + 𝑟2))𝜒𝑀 ′
2
(𝑞𝑚 + 𝑟2).

(7.19)

The summation in m ranges over 𝑚∗ ≤ 𝑚 ≤ 𝑚∗∗, where 𝑚∗/𝑚∗∗ is minimal/maximal with respect to
𝜏−1𝑀 ′

2 ≤ 𝑞𝑚 + 𝑟2 ≤ 𝑀 ′
2. We will use Lemma 2.7 to compare

the sum
∑

𝑚∗<𝑚≤𝑚∗∗

𝒆( 𝑓 (𝑚)) to the integral
∫ 𝑚∗∗

𝑚∗

𝒆( 𝑓 (𝑠))𝑑𝑠,
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where 𝑓 (𝑚) = 𝑃𝜉−𝑎/𝑞 (𝑚1, 𝑞𝑚 + 𝑟2)). Suppose that 𝑎/𝑞 ∈ Σ≤𝑙 approximates 𝜉 in the following sense:




𝜉 − 𝑎

𝑞




 ≤ (log𝜏 𝑀2)𝛽

𝑀
𝑣𝑗,1
1 𝑀

𝑣𝑗,2
2

. (7.20)

From the definition of Σ≤𝑙 , we see that 𝑞 ≤ 2𝐶𝜌2𝜌𝑙 . Therefore, by (7.20), the derivative 𝑓 ′ satisfies

| 𝑓 ′(𝑚) | � 𝑞 |𝜉 − 𝑎/𝑞 | (𝑀 ′
1)
𝑣𝑗,1 (𝑀 ′

2)
𝑣𝑗,2−1 � 𝑞(log𝜏 𝑀2)𝛽𝑀−1

2 < 1/2

since 𝑣 𝑗 ,2 ≥ 1, log2 𝑞 � 2𝜌𝑙𝛽 (𝑀2) ≤ (log𝜏 𝑀2)𝜌𝛽 and 𝜌𝛽 ≤ 1/10 by (7.10). By Lemma 2.7, we have




𝑞 ∑
𝑚∗ ≤𝑚≤𝑚∗∗

𝒆(𝑃𝜉−𝑎/𝑞 (𝑚1, 𝑞𝑚 + 𝑟2)) −
∫ 𝑀 ′

2

𝜏−1𝑀 ′
2

𝒆(𝑃𝜉−𝑎/𝑞 (𝑚1, 𝑡))𝑑𝑡



 � 𝑞,

and hence by (7.19), we obtain


 ∑
𝑚2∈Z

𝒆(𝑃𝜉 (𝑚1, 𝑚2))𝜒𝑀 ′
2
(𝑚2) − 𝐺1

𝑚1 (𝑎/𝑞)𝔪1
𝑚1 ,𝑀

′
2
(𝜉 − 𝑎/𝑞)




 � 𝑞(𝑀 ′
2)

−1,

which by 𝑞 ≤ 2𝐶𝜌2𝜌𝑙 proves (7.15) as desired. �

For 𝑖 ∈ [2] and 𝑗 ∈ [𝑟] let 𝑀𝑐
1 = 𝑀2, 𝑀𝑐

2 = 𝑀1,

S𝑖𝜏 ( 𝑗) := {𝑀𝑖 ∈ D𝜏 : (𝑀1, 𝑀2) ∈ S𝜏 ( 𝑗) for some 𝑀𝑐
𝑖 }

and for 𝑀1, 𝑀2 ∈ D𝜏 we also let

S1
𝜏 ( 𝑗 ; 𝑀2) :={𝑀1 ∈ D𝜏 : (𝑀1, 𝑀2) ∈ S𝜏 ( 𝑗)},
S2
𝜏 ( 𝑗 ; 𝑀1) :={𝑀2 ∈ D𝜏 : (𝑀1, 𝑀2) ∈ S𝜏 ( 𝑗)}.

7.4. Changing scale estimates

In our next step, we will have to change the scale (or more precisely, we will truncate the size of
denominators of fractions in Σ≤𝑙𝛽 (𝑀2) ) to make the approximation estimates with respect to the first
variable possible.

We formulate the change of scale argument as follows.

Claim 7.21. For every 1 ≤ 𝑗 < 𝑟 and for every 𝑀1 ∈ S1
𝜏 ( 𝑗), one has

‖ sup
𝑀2∈S2

𝜏 ( 𝑗;𝑀1)
|𝑇Z [𝑔𝑀2

𝑀1 ,𝑀2
− ℎ𝑀1

𝑀1 ,𝑀2
] 𝑓 |‖ℓ2 (Z) �𝜏 (log 𝑀1)−𝛼‖ 𝑓 ‖ℓ2 (Z) , 𝑓 ∈ ℓ2(Z), (7.22)

with 𝛼 as in (7.9), where

𝑔𝑁𝑀1 ,𝑀2
:= 𝑚𝑀1 ,𝑀2Δ ≤𝑙𝛽 (𝑁 ) ,≤−𝑛

𝑣𝑗 ,𝛽

𝑀1 ,𝑀2
(𝑁 )

, 𝑁 ≥ 1,

ℎ𝑁𝑀1 ,𝑀2
(𝜉) :=

∑
𝑚1∈Z

Φ
Σ≤𝑙𝛽 (𝑁 )

≤−𝑛
𝑣𝑗 ,𝛽

𝑀1 ,𝑀2
(𝑁 )

[𝐺1
𝑚1 ,𝔪

1
𝑚1 ,𝑀2

] (𝜉)𝜒𝑀1 (𝑚1), 𝑁 ≥ 1.
(7.23)

The same estimate holds when 𝑗 = 𝑟 = 1, as long as log 𝑀1 ≤ log 𝑀2.
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The case 𝑗 = 𝑟 ≥ 2 requires a minor modification. Keeping in mind that log 𝑀2 � log 𝑀1, it suffices
to establish an analogue of (7.22). Namely, for every 𝑀2 ∈ S2

𝜏 ( 𝑗), one has

‖ sup
𝑀1∈S1

𝜏 ( 𝑗;𝑀2)
|𝑇Z [𝑔𝑀1

𝑀1 ,𝑀2
− ℎ𝑀2

𝑀1 ,𝑀2
] 𝑓 |‖ℓ2 (Z) �𝜏 (log 𝑀2)−𝛼‖ 𝑓 ‖ℓ2 (Z) . (7.24)

We only present the proof of (7.22); inequality (7.24) can be proved in a similar way.

Proof of Claim 7.21. The proof will proceed in several steps.
Step 1. Using (7.16) from Lemma 7.14, we have

‖𝑇Z [𝑔𝑀2
𝑀1 ,𝑀2

− ℎ𝑀2
𝑀1 ,𝑀2

] 𝑓 ‖ℓ2 (Z) �𝜏 𝑀−1/2
2 ‖ 𝑓 ‖ℓ2 (Z) . (7.25)

Hence, by (7.25), it suffices to prove (with 𝛼 as in (7.9)) that for every 𝑀1 ∈ S1
𝜏 ( 𝑗), one has

‖ sup
𝑀2∈S2

𝜏 ( 𝑗;𝑀1)
|𝑇Z [ℎ𝑀2

𝑀1 ,𝑀2
− ℎ𝑀1

𝑀1 ,𝑀2
] 𝑓 |‖ℓ2 (Z) �𝜏 (log 𝑀1)−𝛼‖ 𝑓 ‖ℓ2 (Z) , 𝑓 ∈ ℓ2(Z). (7.26)

Step 2. To prove (7.26), we define for any 𝑠 ∈ N a new multiplier by

ℎ𝑁𝑀1 ,𝑀2 ,𝑠
(𝜉) :=

∑
𝑚1∈Z

ΦΣ𝑠

≤−𝑛
𝑣𝑗 ,𝛽

𝑀1 ,𝑀2
(𝑁 )

[𝐺1
𝑚1 ,𝔪

1
𝑚1 ,𝑀2

] (𝜉)𝜒𝑀1 (𝑚1). (7.27)

In view of (7.8), we may assume that 𝑙𝛽 (𝑀1) < 𝑙𝛽 (𝑀2). Then one can write

ℎ𝑀2
𝑀1 ,𝑀2

(𝜉) − ℎ𝑀1
𝑀1 ,𝑀2

(𝜉) =
∑

0≤𝑠≤𝑙𝛽 (𝑀1)

(
ℎ𝑀2
𝑀1 ,𝑀2 ,𝑠

(𝜉) − ℎ𝑀1
𝑀1 ,𝑀2 ,𝑠

(𝜉)
)
+

∑
𝑙𝛽 (𝑀1)<𝑠≤𝑙𝛽 (𝑀2)

ℎ𝑀2
𝑀1 ,𝑀2 ,𝑠

(𝜉).

For sufficiently large 𝑠 ∈ N, if 𝑙𝛽 (𝑀1) ≥ 𝑠, then by (7.8) we have log𝜏 𝑀2 ≥ 𝐾−1
𝑗 2𝑠/𝛽 ≥ 2𝑠/(2𝛽) .

Similarly, if 𝑙𝛽 (𝑀2) ≥ 𝑠, then log𝜏 𝑀2 ≥ 2𝑠/(2𝛽) . Thus, we set 𝑁𝑠 := 𝜏2𝑠/(2𝛽) for any 𝑠 ∈ N and let

S̃2
𝜏,𝑀1

( 𝑗 ; 𝑠) := {𝑀2 ∈ S2
𝜏 ( 𝑗 ; 𝑀1) : 𝑀2 ≥ 𝑁𝑠}.

The proof will be finished if we can show (with 𝛼 and 𝛿 as in (7.9)) that for every 𝑓 ∈ ℓ2(Z) and for
every 𝑀1 ∈ S1

𝜏 ( 𝑗), and 0 ≤ 𝑠 ≤ 𝑙𝛽 (𝑀1), one has

‖ sup
𝑀2∈S̃2

𝜏,𝑀1
( 𝑗;𝑠)

|𝑇Z [ℎ𝑀2
𝑀1 ,𝑀2 ,𝑠

− ℎ𝑀1
𝑀1 ,𝑀2 ,𝑠

] 𝑓 |‖ℓ2 (Z) �𝜏 2−𝛿𝑠 (log 𝑀1)−𝛼‖ 𝑓 ‖ℓ2 (Z) , (7.28)

and moreover, for every 𝑠 ∈ N, one also has

‖ sup
𝑀2∈S̃2

𝜏,𝑀1
( 𝑗;𝑠)

|𝑇Z [ℎ𝑀2
𝑀1 ,𝑀2 ,𝑠

] 𝑓 |‖ℓ2 (Z) �𝜏 𝑠2−𝛿𝑠 ‖ 𝑓 ‖ℓ2 (Z) . (7.29)

Then summing (7.29) over 𝑠 ≥ 𝑙𝛽 (𝑀1), we obtain the desired claim by (7.9).
Step 3. We now establish (7.28). If 𝑁 ∈ {𝑀1, 𝑀2} and (𝑀1, 𝑀2) ∈ S𝜏 ( 𝑗), then for 𝑀2 ≥ 𝑁𝑠 , we

note that

𝜂
≤−𝑛

𝑣𝑗 ,𝛽

𝑀1 ,𝑀2
(𝑁 )

(𝜉) = 𝜂
≤−𝑛

𝑣𝑗 ,𝛽

𝑀1 ,𝑀2
(𝑁 )

(𝜉)𝜂
≤−𝑛

𝑣𝑗 ,𝛽

𝑀1 ,𝑀2
(𝑁 )+1

(𝜉)

= 𝜂
≤−𝑛

𝑣𝑗 ,𝛽

𝑀1 ,𝑀2
(𝑁 )

(𝜉)𝜂
≤−𝑛

𝑣𝑗 ,𝛽

𝑀1 ,𝑁𝑠
(𝑁𝑠)+1

(𝜉),
(7.30)
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since 1 ≤ 𝑗 < 𝑟 and 𝑣 𝑗 ,2 ≠ 0. Using (7.30), we may write

ΦΣ𝑠

≤−𝑛
𝑣𝑗 ,𝛽

𝑀1 ,𝑀2
(𝑁 )

[𝐺1
𝑚1 ,𝔪

1
𝑚1 ,𝑀2

] (𝜉)

= ΦΣ≤𝑠

≤−𝑛
𝑣𝑗 ,𝛽

𝑀1 ,𝑁𝑠
(𝑁𝑠)+2

[1,𝔪1
𝑚1 ,𝑀2

𝜂
≤−𝑛

𝑣𝑗 ,𝛽

𝑀1 ,𝑀2
(𝑁 )

] (𝜉) ×ΦΣ𝑠

≤−𝑛
𝑣𝑗 ,𝛽

𝑀1 ,𝑁𝑠
(𝑁𝑠)+1

[𝐺1
𝑚1 , 1] (𝜉),

(7.31)

for sufficiently large s such that 0 ≤ 𝑠 ≤ 𝑙𝛽 (𝑀1), which in turn guarantees that 𝑀2 > 𝑁𝑠 as we have
seen in the previous step. Denote

𝐼 (𝑚1, 𝑀2) := 𝑇Z

⎡⎢⎢⎢⎢⎣Φ
Σ≤𝑠

≤−𝑛
𝑣𝑗 ,𝛽

𝑀1 ,𝑁𝑠
(𝑁𝑠)+2

[
1,

𝑙𝛽 (𝑀2)−1∑
𝑁=𝑙𝛽 (𝑀1)

𝔪1
𝑚1 ,𝑀2

D𝑁
(
𝜂≤−𝑛

𝑣𝑗
𝑀1 ,𝑀2

(𝑁 )
) ]⎤⎥⎥⎥⎥⎦ ,

where (see definitions (7.3) and (7.4))

D𝑁
(
𝜂≤−𝑛

𝑣𝑗
𝑀1 ,𝑀2

(𝑁 )
)

:= 𝜂≤−𝑛
𝑣𝑗
𝑀1 ,𝑀2

(𝑁+1) − 𝜂≤−𝑛
𝑣𝑗
𝑀1 ,𝑀2

(𝑁 ) .

Using the factorization from (7.31), one sees

‖ sup
𝑀2∈S̃2

𝜏,𝑀1
( 𝑗;𝑠)

|𝑇Z [ℎ𝑀2
𝑀1 ,𝑀2 ,𝑠

− ℎ𝑀1
𝑀1 ,𝑀2 ,𝑠

] 𝑓 |‖ℓ2 (Z)

≤
∑
𝑚1∈Z

‖𝐼 (𝑚1, 𝑀2)‖ℓ2 (Z)→ℓ2 (Z;ℓ∞𝑀2
(S̃2

𝜏,𝑀1
( 𝑗;𝑠))) 𝜒𝑀1 (𝑚1)

���𝑇Z [ΦΣ𝑠

≤−𝑛
𝑣𝑗 ,𝛽

𝑀1 ,𝑁𝑠
(𝑁𝑠)+1

[𝐺1
𝑚1 , 1]

]
𝑓
���
ℓ2 (Z)

.

Using the Ionescu–Wainger multiplier theory (see Theorem 6.5), we conclude that

sup
𝑚1∈(𝜏−1𝑀1 ,𝑀1 ]∩Z

‖𝐼 (𝑚1, 𝑀2)‖ℓ2 (Z)→ℓ2 (Z;ℓ∞𝑀2
(S̃2

𝜏,𝑀1
( 𝑗;𝑠))) �𝜏 (log 𝑀1)−𝛼

with 𝛼 as in (7.9), since using standard square function continuous arguments we have

����( ∑
𝑀2∈S̃2

𝜏,𝑀1
( 𝑗;𝑠)




𝑇R [ 𝑙𝛽 (𝑀2)−1∑
𝑁=𝑙𝛽 (𝑀1)

𝔪1
𝑚1 ,𝑀2

D𝑁
(
𝜂≤−𝑛

𝑣𝑗
𝑀1 ,𝑀2

(𝑁 )
) ]

𝑓



2)1/2����

𝐿2 (R)
� (log 𝑀1)−𝛼‖ 𝑓 ‖𝐿2 (R) .

Thus, by the Cauchy–Schwarz inequality, Plancherel’s theorem and inequality (5.48), we obtain

‖ sup
𝑀2∈S̃2

𝜏,𝑀1
( 𝑗;𝑠)

|𝑇Z [ℎ𝑀2
𝑀1 ,𝑀2 ,𝑠

− ℎ𝑀1
𝑀1 ,𝑀2 ,𝑠

] 𝑓 |‖ℓ2 (Z)

� (log 𝑀1)−𝛼
���( ∑

𝑚1∈Z
𝜒𝑀1 (𝑚1)



𝑇Z [ΦΣ𝑠

≤−𝑛
𝑣𝑗 ,𝛽

𝑀1 ,𝑁𝑠
(𝑁𝑠)+1

[𝐺1
𝑚1 , 1]

]
𝑓


2)1/2���

ℓ2 (Z)

�𝜏 2−𝛿𝑠 (log 𝑀1)−𝛼‖ 𝑓 ‖ℓ2 (Z)

with 𝛼 and 𝛿 as in (7.9), which yields (7.28).
Step 4. We now establish (7.29). Using notation from the previous step and denoting

𝐽 (𝑚1, 𝑀2) := 𝑇Z

[
ΦΣ≤𝑠

≤−𝑛
𝑣𝑗 ,𝛽

𝑀1 ,𝑁𝑠
(𝑁𝑠)+2

[
1,𝔪1

𝑚1 ,𝑀2
𝜂
≤𝑛

𝑣𝑗 ,𝛽

𝑀1 ,𝑀2
(𝑀2)

) ] ]
,
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and again using the factorization from (7.31), one sees

‖ sup
𝑀2∈S̃2

𝜏,𝑀1
( 𝑗;𝑠)

|𝑇Z [ℎ𝑀2
𝑀1 ,𝑀2 ,𝑠

] 𝑓 |‖ℓ2 (Z) ≤
∑
𝑚1∈Z

‖𝐽 (𝑚1, 𝑀2)‖ℓ2 (Z)→ℓ2 (Z;ℓ∞𝑀2
(S̃2

𝜏,𝑀1
( 𝑗;𝑠))) 𝜒𝑀1 (𝑚1)

×
���𝑇Z [ΦΣ𝑠

≤−𝑛
𝑣𝑗 ,𝛽

𝑀1 ,𝑁𝑠
(𝑁𝑠)+1

[𝐺1
𝑚1 , 1]

]
𝑓
���
ℓ2 (Z)

.

Using the Ionescu–Wainger multiplier theory (see Theorem 6.14), we conclude that

sup
𝑚1∈(𝜏−1𝑀1 ,𝑀1 ]∩Z

‖𝐽 (𝑚1, 𝑀2)‖ℓ2 (Z)→ℓ2 (Z;ℓ∞𝑀2
(S̃2

𝜏,𝑀1
( 𝑗;𝑠))) �𝜏 𝑠.

Then proceeding as in the previous step, we obtain (7.29). This completes the proof of Claim 7.21. �

7.5. Transition estimates

Our aim will be to understand the final approximation, which will allow us to apply the oscillation
Ionescu–Wainger theory (see Theorem 6.37) from Section 6.

Claim 7.32. For every 1 ≤ 𝑗 < 𝑟 and for every 𝑀1 ∈ S1
𝜏 ( 𝑗), one has�� sup

𝑀2∈S2
𝜏 ( 𝑗;𝑀1)



𝑇Z [ℎ𝑀1
𝑀1 ,𝑀2

− ℎ̃𝑀1
𝑀1 ,𝑀2

]
𝑓


��
ℓ2 (Z) �𝜏 (log 𝑀1)−𝛼‖ 𝑓 ‖ℓ2 (Z) , 𝑓 ∈ ℓ2(Z), (7.33)

with 𝛼 as in (7.9), where ℎ𝑁𝑀1 ,𝑀2
was defined in (7.23) and

ℎ̃𝑁𝑀1 ,𝑀2
:= Φ

Σ≤𝑙𝛽 (𝑁 )

≤−𝑛
𝑣𝑗 ,𝛽

𝑀1 ,𝑀2
(𝑁 )

[𝐺,𝔪𝑀1 ,𝑀2], 𝑁 ≥ 1. (7.34)

The same estimate holds when 𝑗 = 𝑟 = 1, as long as log 𝑀1 ≤ log 𝑀2.

The case 𝑗 = 𝑟 ≥ 2 requires a minor modification. Keeping in mind that log 𝑀2 � log 𝑀1, it suffices
to establish an analogue of (7.33). Namely, one has�� sup

𝑀1∈S1
𝜏 ( 𝑗;𝑀2)



𝑇Z [ℎ𝑀2
𝑀1 ,𝑀2

− ℎ̃𝑀2
𝑀1 ,𝑀2

]
𝑓


��
ℓ2 (Z) �𝜏 (log 𝑀2)−𝛼‖ 𝑓 ‖ℓ2 (Z) , 𝑓 ∈ ℓ2(Z). (7.35)

We only present the proof of (7.33); inequality (7.35) can be proved in a similar way.

Proof of Claim 7.32. The proof will proceed in several steps as before. Write

ℎ𝑀1
𝑀1 ,𝑀2

− ℎ̃𝑀1
𝑀1 ,𝑀2

=
∑

0≤𝑠≤𝑙𝛽 (𝑀1)
ℎ𝑀1
𝑀1 ,𝑀2 ,𝑠

− ℎ̃𝑀1
𝑀1 ,𝑀2 ,𝑠

,

where ℎ𝑀1
𝑀1 ,𝑀2 ,𝑠

was defined in (7.27) and

ℎ̃𝑀1
𝑀1 ,𝑀2 ,𝑠

:= ΦΣ𝑠

≤−𝑛
𝑣𝑗 ,𝛽

𝑀1 ,𝑀2
(𝑀1)

[𝐺,𝔪𝑀1 ,𝑀2 ] . (7.36)

Then it suffices to show that for sufficiently large s such that 0 ≤ 𝑠 ≤ 𝑙𝛽 (𝑀1), we have�� sup
𝑀2∈S2

𝜏 ( 𝑗;𝑀1)



𝑇Z [ℎ𝑀1
𝑀1 ,𝑀2 ,𝑠

− ℎ̃𝑀1
𝑀1 ,𝑀2 ,𝑠

]
𝑓


��
ℓ2 (Z) �𝜏 𝑠2−𝛿𝑠 (log 𝑀1)−𝛼‖ 𝑓 ‖ℓ2 (Z) , 𝑓 ∈ ℓ2(Z),

(7.37)

with 𝛼 and 𝛿 as in (7.9), which will clearly imply (7.33).
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Step 1. Using (7.30), in a similar way as in (7.31), we may write

ℎ̃𝑀1
𝑀1 ,𝑀2 ,𝑠

(𝜉) = ΦΣ≤𝑠

≤−𝑛
𝑣𝑗 ,𝛽

𝑀1 ,𝑁𝑠
(𝑁𝑠)+2

[1, �̃�𝑀1 ,𝑀2 ] (𝜉) ×ΦΣ𝑠

≤−𝑛
𝑣𝑗 ,𝛽

𝑀1 ,𝑁𝑠
(𝑁𝑠)+1

[𝐺, 1] (𝜉), (7.38)

where

�̃�𝑀1 ,𝑀2 (𝜉) := 𝔪𝑀1 ,𝑀2 (𝜉)𝜂≤−𝑛
𝑣𝑗 ,𝛽

𝑀1 ,𝑀2
(𝑀1)

(𝜉). (7.39)

By Theorem 6.14, we may conclude���𝑇Z [ΦΣ≤𝑠

≤−𝑛
𝑣𝑗 ,𝛽

𝑀1 ,𝑁𝑠
(𝑁𝑠)+2

[1, �̃�𝑀1 ,𝑀2]
]���

ℓ2 (Z)→ℓ2 (Z);ℓ∞𝑀2
(S2

𝜏 ( 𝑗;𝑀1))
�𝜏 𝑠. (7.40)

By Plancherel’s theorem and inequality (5.47), we obtain���𝑇Z [ΦΣ𝑠

≤−𝑛
𝑣𝑗 ,𝛽

𝑀1 ,𝑁𝑠
(𝑁𝑠)+1

[𝐺, 1]
]

𝑓
���
ℓ2 (Z)

�𝜏 2−𝛿𝑠 ‖ 𝑓 ‖ℓ2 (Z) . (7.41)

Inequalities (7.40) and (7.41) and (7.38) imply�� sup
𝑀2∈S2

𝜏 ( 𝑗;𝑀1)



𝑇Z [ℎ̃𝑀1
𝑀1 ,𝑀2 ,𝑠

]
𝑓


��
ℓ2 (Z) �𝜏 𝑠2−𝛿𝑠 ‖ 𝑓 ‖ℓ2 (Z) , 𝑓 ∈ ℓ2(Z). (7.42)

Step 2. We now establish (7.37). For 0 ≤ 𝑠 ≤ 𝑙𝛽 (𝑀1), we note that

ℎ𝑀1
𝑀1 ,𝑀2 ,𝑠

(𝜉) =
∑

𝑎/𝑞∈Σ𝑠

𝜂
≤−𝑛

𝑣𝑗 ,𝛽

𝑀1 ,𝑀2
(𝑀1)

(𝜉 − 𝑎/𝑞)
𝑞∑

𝑟1=1
𝐺1
𝑟1 (𝑎/𝑞)

×
∑
𝑚1∈Z

𝔪1
𝑞𝑚1+𝑟1 ,𝑀2

(𝜉 − 𝑎/𝑞)𝜒𝑀1 (𝑞𝑚1 + 𝑟1).

Introducing 𝜃 := 𝜉 − 𝑎/𝑞, 𝑈1 := 𝜏−1𝑀1−𝑟1
𝑞 and 𝑉1 := 𝑀1−𝑟1

𝑞 , one can expand

𝔪1
𝑞𝑚1+𝑟1 ,𝑀2

(𝜃) = 1
1 − 𝜏−1

∫ 1

𝜏−1
𝒆(𝑃𝜃 (𝑞𝑚1 + 𝑟1, 𝑀2𝑦2))𝑑𝑦2,

and by the fundamental theorem of calculus, one can write

∑
�𝑈1 �<𝑚1≤�𝑉1 �

∫ 1

𝜏−1
𝒆(𝑃𝜃 (𝑞𝑚1 + 𝑟1, 𝑀2𝑦2))𝑑𝑦2 −

∫ 𝑉1

𝑈1

∫ 1

𝜏−1
𝒆(𝑃𝜃 (𝑞𝑦1 + 𝑟1, 𝑀2𝑦2))𝑑𝑦2𝑑𝑦1

=
∑

�𝑈1 �<𝑚1≤�𝑉1 �

∫ 𝑚1

𝑚1−1

∫ 𝑚1

𝑦1

∫ 1

𝜏−1
2𝜋𝑖𝑞𝜃 (𝜕1𝑃) (𝑞𝑡 + 𝑟1, 𝑀2𝑦2)𝒆(𝑃𝜃 (𝑞𝑡 + 𝑟1, 𝑀2𝑦2))𝑑𝑦2𝑑𝑡𝑑𝑦1

+
( ∫ 𝑈1

�𝑈1 �
−
∫ 𝑉1

�𝑉1 �

) ∫ 1

𝜏−1
𝒆(𝑃𝜃 (𝑞𝑦1 + 𝑟1, 𝑀2𝑦2))𝑑𝑦2𝑑𝑦1.

By the change of variable, we have∫ 𝑉1

𝑈1

∫ 1

𝜏−1
𝒆(𝑃𝜃 (𝑞𝑦1 + 𝑟1, 𝑀2𝑦2))𝑑𝑦2𝑑𝑦1 =

𝑀1 (1 − 𝜏−1)2

𝑞
𝔪𝑀1 ,𝑀2 (𝜃).
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We now define new multipliers

𝔤𝑟1 ,1
𝑀1 ,𝑀2

(𝜃)

:=
∑

�𝑈1 �<𝑚1≤�𝑉1 �

∫ 𝑚1

𝑚1−1

∫ 𝑚1

𝑦1

∫ 1

𝜏−1

2𝜋𝑖𝑞(log 𝑀1)𝛽 (𝜕1𝑃) (𝑞𝑡 + 𝑟1, 𝑀2𝑦2)𝒆(𝑃𝜃 (𝑞𝑡 + 𝑟1, 𝑀2𝑦2))
(1 − 𝜏−1)𝑀 𝑣𝑗,1

1 𝑀
𝑣𝑗,2
2 | (𝜏−1𝑀1, 𝑀1] ∩ Z|

𝑑𝑦2𝑑𝑡𝑑𝑦1,

and finally

𝔤𝑟1 ,2
𝑀1 ,𝑀2

(𝜃) :=
( ∫ 𝑈1

�𝑈1 �
−
∫ 𝑉1

�𝑉1 �

) ∫ 1

𝜏−1

𝒆(𝑃𝜃 (𝑞𝑦1 + 𝑟1, 𝑀2𝑦2))
(1 − 𝜏−1) |(𝜏−1𝑀1, 𝑀1] ∩ Z|

𝑑𝑦2𝑑𝑦1.

Then with these definitions, we can write

ℎ𝑀1
𝑀1 ,𝑀2 ,𝑠

(𝜉) − ℎ̃𝑀1
𝑀1 ,𝑀2 ,𝑠

(𝜉) = 𝛾𝜏,𝑀1 ℎ̃𝑀1
𝑀1 ,𝑀2 ,𝑠

(𝜉) +
∑
ℓ∈[2]

∑
𝑎/𝑞∈Σ𝑠

𝑞∑
𝑟1=1

𝐺1
𝑟1 (𝑎/𝑞)𝔥𝑟1 ,ℓ

𝑀1 ,𝑀2
(𝜉 − 𝑎/𝑞),

where 𝛾𝜏,𝑀1 := {𝑀1 }−{𝜏−1𝑀1 }
| (𝜏−1𝑀1 ,𝑀1 ]∩Z |

and

𝔥𝑟1 ,1
𝑀1 ,𝑀2

(𝜃) := 𝔤𝑟1 ,1
𝑀1 ,𝑀2

(𝜃)𝜚
≤−𝑛

𝑣𝑗 ,𝛽

𝑀1 ,𝑀2
(𝑀1)

(𝜃) and 𝔥𝑟1 ,2
𝑀1 ,𝑀2

(𝜃) := 𝔤𝑟1 ,2
𝑀1 ,𝑀2

(𝜃)𝜂
≤−𝑛

𝑣𝑗 ,𝛽

𝑀1 ,𝑀2
(𝑀1)

(𝜃)

and 𝜚≤𝑛 (𝜃) := (2−𝑛𝜃)𝜂≤𝑛 (𝜃). For ℓ ∈ [2], we have

|𝔥𝑟1 ,ℓ
𝑀1 ,𝑀2

(𝜃) | � 𝑞(log 𝑀1)𝛽𝑀−1
1 and |𝛾𝜏,𝑀1 | �𝜏 𝑀−1

1 .

Finally, using Theorem 6.14 for each ℓ ∈ [2], we conclude��� sup
𝑀2∈S2

𝜏 ( 𝑗;𝑀1)




𝑇Z [ ∑
ℓ∈[2]

∑
𝑎/𝑞∈Σ𝑠

𝑞∑
𝑟1=1

𝐺1
𝑟1 (𝑎/𝑞)𝔥𝑟1 ,ℓ

𝑀1 ,𝑀2
(· − 𝑎/𝑞)

]
𝑓



���
ℓ2 (Z)

� 2−𝛿𝑠𝑀−3/4
1 ‖ 𝑓 ‖ℓ2 (Z) .

This in turn, combined with (7.42), implies (7.37), and the proof of Claim 7.32 is established. �

7.6. All together: Proof of Theorem 7.6

We begin with a useful auxiliary lemma.

Lemma 7.43. For every 𝑝 ∈ (1,∞) and every 𝑗 ∈ [𝑟], there exists a constant 𝛿𝑝 ∈ (0, 1) such that for
every 𝑓 ∈ ℓ𝑝 (Z) and 𝑠 ∈ N, one has��𝑇Z [ΦΣ𝑠

≤−𝑛
𝑣𝑗 ,𝛽

𝑁𝑠 ,𝑁𝑠
(𝑁𝑠)+1

[𝐺,Π𝛽
𝑠 ]

]
𝑓
��
ℓ𝑝 (Z) �𝑝,𝜏 2−𝛿𝑝𝑠 ‖ 𝑓 ‖ℓ𝑝 (Z) , (7.44)

where 𝑁𝑠 := 𝜏2𝑠/(2𝛽) for any 𝑠 ∈ N, and Π𝛽
𝑠 (𝜉) :=

∏
𝑢∈𝑆𝑃 𝜂≤−𝑛𝑢,𝛽𝑁𝑠 ,𝑁𝑠

(𝑁𝑠)+1(𝜉) with 𝛽 > 0 from (7.9).

Proof. We may assume that 𝑠 ≥ 0 is large; otherwise, there is nothing to prove. Inequality (7.44) for
𝑝 = 2 with 𝛿2 = 𝛿 as in Proposition 5.46 follows by Plancherel’s theorem from inequality (5.47) and the
disjointness of supports of Π𝛽

𝑠 (𝜉 − 𝑎/𝑞) whenever 𝑎/𝑞 ∈ Σ𝑠 .
We now prove (7.44) for 𝑝 ≠ 2. We shall proceed in four steps.
Step 1. Let 𝑀 � 210𝐶𝜌210𝜌𝑠 define

𝔥𝑠𝑀 := 𝑚𝑀,𝑀ΦΣ𝑠

≤−𝑛
𝑣𝑗 ,𝛽

𝑁𝑠 ,𝑁𝑠
(𝑁𝑠)+1

[1,Π𝛽
𝑠 ] .
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By the Ionescu–Wainger multiplier theorem (see Theorem 6.5), one has

‖𝑇Z [𝔥𝑠𝑀 ] 𝑓 ‖ℓ𝑢 (Z) �𝑢,𝜏 ‖ 𝑓 ‖ℓ𝑢 (Z) , (7.45)

whenever 𝑢 ∈ {𝑝0, 𝑝′
0}. We will prove��𝑇Z [𝔥𝑠𝑀 −ΦΣ𝑠

≤−𝑛
𝑣𝑗 ,𝛽

𝑁𝑠 ,𝑁𝑠
(𝑁𝑠)+1

[𝐺,𝔪𝑀,𝑀Π𝛽
𝑠 ]

]
𝑓
��
ℓ𝑝 (Z) �𝑝,𝜏 ‖ 𝑓 ‖ℓ𝑝 (Z) (7.46)

and ��𝑇Z [ΦΣ𝑠

≤−𝑛
𝑣𝑗 ,𝛽

𝑁𝑠 ,𝑁𝑠
(𝑁𝑠)+1

[𝐺, (1 −𝔪𝑀,𝑀 )Π𝛽
𝑠 ]

]
𝑓
��
ℓ𝑝 (Z) �𝑝,𝜏 ‖ 𝑓 ‖ℓ𝑝 (Z) . (7.47)

Assuming momentarily that (7.46) and (7.47) hold, then (7.45) and the triangle inequality yield��𝑇Z [ΦΣ𝑠

≤−𝑛
𝑣𝑗 ,𝛽

𝑁𝑠 ,𝑁𝑠
(𝑁𝑠)+1

[𝐺,Π𝛽
𝑠 ]

]
𝑓
��
ℓ𝑢 (Z) �𝑢,𝜏 ‖ 𝑓 ‖ℓ𝑢 (Z) , (7.48)

whenever 𝑢 ∈ {𝑝0, 𝑝′
0}. Then interpolation between (7.44) for 𝑝 = 2 (that we have shown with 𝛿2 = 𝛿)

and (7.48) gives (7.44) for all 𝑝 ∈ (1,∞).
Step 2. We now establish (7.46). For 𝑝 = 2, it will suffice to show that

|𝑚𝑀,𝑀 (𝜉)ΦΣ𝑠

≤−𝑛
𝑣𝑗 ,𝛽

𝑁𝑠 ,𝑁𝑠
(𝑁𝑠)+1

[1,Π𝛽
𝑠 ] (𝜉) −ΦΣ𝑠

≤−𝑛
𝑣𝑗 ,𝛽

𝑁𝑠 ,𝑁𝑠
(𝑁𝑠)+1

[𝐺,𝔪𝑀,𝑀Π𝛽
𝑠 ] (𝜉) | � 2−5𝐶𝜌25𝜌𝑠

. (7.49)

Then by (7.49) and Plancherel’s theorem, we obtain for sufficiently large 𝑠 ∈ N that��𝑇Z [𝔥𝑠𝑀 −ΦΣ𝑠

≤−𝑛
𝑣𝑗 ,𝛽

𝑁𝑠 ,𝑁𝑠
(𝑁𝑠)+1

[𝐺,𝔪𝑀,𝑀Π𝛽
𝑠 ]

]
𝑓
��
ℓ2 (Z) �𝜏 2−5𝐶𝜌25𝜌𝑠 ‖ 𝑓 ‖ℓ2 (Z) . (7.50)

Moreover, for 𝑢 ∈ {𝑝0, 𝑝′
0}, we have the trivial estimate��𝑇Z [𝔥𝑠𝑀 −ΦΣ𝑠

≤−𝑛
𝑣𝑗 ,𝛽

𝑁𝑠 ,𝑁𝑠
(𝑁𝑠)+1

[𝐺,𝔪𝑀,𝑀Π𝛽
𝑠 ]

]
𝑓
��
ℓ𝑢 (Z) �𝑢,𝜏 22𝐶𝜌2𝜌𝑠 ‖ 𝑓 ‖ℓ𝑢 (Z) , (7.51)

due to (6.4). Interpolating (7.50) and (7.51) gives (7.46).
Step 3. To prove (7.49), we proceed as in the proof of Lemma 7.14 and show that

|𝑚𝑀,𝑀 (𝜉) − 𝐺 (𝑎/𝑞)𝔪𝑀,𝑀 (𝜉 − 𝑎/𝑞) | � 𝑞𝑀−1, (7.52)

whenever 𝑎/𝑞 ∈ Σ𝑠 and |𝜉 − 𝑎/𝑞 | ≤ min𝑢∈𝑆𝑃 {(log𝜏 𝑁𝑠)𝛽𝑁−𝑢1
𝑠 𝑁−𝑢2

𝑠 }. Then (7.52) immediately gives
(7.49), since 𝑞 ≤ 2𝐶𝜌2𝜌𝑠 if 𝑎/𝑞 ∈ Σ𝑠 . To verify (7.52), we use Lemma 2.7 twice, which can be applied,
since the derivatives 𝜕𝑚1 𝑓 and 𝜕𝑚2 𝑓 of 𝑓 (𝑚1, 𝑚2) = 𝑃𝜉−𝑎/𝑞 (𝑞𝑚1 + 𝑟1, 𝑞𝑚2 + 𝑟2) satisfy

|𝜕𝑚ℓ 𝑓 (𝑚1, 𝑚2) | � 𝑞 |𝜉 − 𝑎/𝑞 |
∑
𝑢∈𝑆𝑃

𝑀𝑢1+𝑢2−1 � 𝑞(log𝜏 𝑁𝑠)𝛽𝑁−1
𝑠 < 1/2, ℓ ∈ [2]

for sufficiently large 𝑠 ∈ N, since 𝑀 ≤ 𝑁1/5
𝑠 , 𝑞 ≤ 2𝐶𝜌2𝜌𝑠 and 𝜌𝛽 ≤ 1/10 by (7.10), and we are done.

Step 4. We now establish (7.47). Assume that 𝑝 = 2 and observe that

| (1 −𝔪𝑀,𝑀 (𝜉 − 𝑎/𝑞))Π𝛽
𝑠 (𝜉 − 𝑎/𝑞) | � |𝜉 − 𝑎/𝑞 |

∑
𝑢∈𝑆𝑃

𝑀𝑢1+𝑢2 � 𝑁−3/4
𝑠 � 2−10𝐶𝜌25𝜌𝑠
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for sufficiently large 𝑠 ∈ N, since 𝑀 � 210𝐶𝜌210𝜌𝑠 , and 𝜌𝛽 < 1/1000. Using this bound and Plancherel’s
theorem, we see that��𝑇Z [ΦΣ𝑠

≤−𝑛
𝑣𝑗 ,𝛽

𝑁𝑠 ,𝑁𝑠
(𝑁𝑠)+1

[𝐺, (1 −𝔪𝑀,𝑀 )Π𝛽
𝑠 ]

]
𝑓
��
ℓ2 (Z) �𝜏 2−5𝐶𝜌25𝜌𝑠 ‖ 𝑓 ‖ℓ2 (Z) . (7.53)

Moreover, by (6.4), for 𝑢 ∈ {𝑝0, 𝑝′
0}, we have the trivial estimate��𝑇Z [ΦΣ𝑠

≤−𝑛
𝑣𝑗 ,𝛽

𝑁𝑠 ,𝑁𝑠
(𝑁𝑠)+1

[𝐺, (1 −𝔪𝑀,𝑀 )Π𝛽
𝑠 ]

]
𝑓
��
ℓ𝑢 (Z) �𝑢,𝜏 22𝐶𝜌2𝜌𝑠 ‖ 𝑓 ‖ℓ𝑢 (Z) . (7.54)

Interpolation between (7.53) and (7.54) yields (7.47), and the proof of Lemma 7.43 is complete. �

Recalling the definition of ℎ̃𝑀1
𝑀1 ,𝑀2

from (7.34), we now prove the following claim:

Claim 7.55. For every 𝑝 ∈ (1,∞) and every 1 ≤ 𝑗 < 𝑟 and for every 𝑓 ∈ ℓ𝑝 (Z), one has

sup
𝐽 ∈Z+

sup
𝐼 ∈𝔖𝐽 (S𝜏 ( 𝑗))

‖𝑂 𝐼 ,𝐽 (𝑇Z [ℎ̃𝑀1
𝑀1 ,𝑀2

] 𝑓 : (𝑀1, 𝑀2) ∈ S𝜏 ( 𝑗))‖ℓ𝑝 (Z) �𝑝,𝜏 ‖ 𝑓 ‖ℓ𝑝 (Z) . (7.56)

The same estimate holds when 𝑗 = 𝑟 = 1, as long as log 𝑀1 ≤ log 𝑀2.

When 𝑗 = 𝑟 ≥ 2, in view of (7.35), we will be able to reduce the problem to the following:

sup
𝐽 ∈Z+

sup
𝐼 ∈𝔖𝐽 (S𝜏 ( 𝑗))

‖𝑂 𝐼 ,𝐽 (𝑇Z [ℎ̃𝑀2
𝑀1 ,𝑀2

] 𝑓 : (𝑀1, 𝑀2) ∈ S𝜏 ( 𝑗))‖ℓ𝑝 (Z) �𝑝,𝜏 ‖ 𝑓 ‖ℓ𝑝 (Z) . (7.57)

We will only prove (7.56); the proof of (7.57) will follow in a similar way. We omit details.

Proof of Claim 7.55. The proof will consist of two steps to make the argument clear.
Step 1. Similarly as in Claim 7.21, we define 𝑁𝑠 := 𝜏2𝑠/(2𝛽) for any 𝑠 ∈ N and introduce

S̃𝜏 ( 𝑗 , 𝑠) := {(𝑀1, 𝑀2) ∈ S𝜏 ( 𝑗) : 𝑀1 ≥ 𝑁𝑠}.

For each (𝑀1, 𝑀2) ∈ S𝜏 ( 𝑗), we have 𝑀
𝑣𝑗,1
1 𝑀

𝑣𝑗,2
2 ≥ 𝑀𝑢1

1 𝑀𝑢2
2 for every 𝑢 = (𝑢1, 𝑢2) ∈ 𝑆𝑃 . Hence,

𝜂
≤−𝑛

𝑣𝑗 ,𝛽

𝑀1 ,𝑀2
(𝑀1)

(𝜉) = 𝜂
≤−𝑛

𝑣𝑗 ,𝛽

𝑀1 ,𝑀2
(𝑀1)

(𝜉)
∏
𝑢∈𝑆𝑃

𝜂≤−𝑛𝑢,𝛽𝑀1 ,𝑀2
(𝑀1)+1(𝜉)

= 𝜂
≤−𝑛

𝑣𝑗 ,𝛽

𝑀1 ,𝑀2
(𝑀1)

(𝜉)Π𝛽
𝑠 (𝜉)

(7.58)

holds for sufficiently large 𝑠 ∈ N so that 0 ≤ 𝑠 ≤ 𝑙𝛽 (𝑀1), where Π𝛽
𝑠 was defined in Lemma 7.43.

The proof of (7.56) will be completed if we show (with ℎ̃𝑀1
𝑀1 ,𝑀2 ,𝑠

defined in (7.36)) that for every
𝑝 ∈ (1,∞), there is 𝛿𝑝 ∈ (0, 1) such that for all 𝑓 ∈ ℓ𝑝 (Z), we have

sup
𝐽 ∈Z+

sup
𝐼 ∈𝔖𝐽 (S̃𝜏 ( 𝑗 ,𝑠))

‖𝑂 𝐼 ,𝐽 (𝑇Z [ℎ̃𝑀1
𝑀1 ,𝑀2 ,𝑠

] 𝑓 : (𝑀1, 𝑀2) ∈ S̃𝜏 ( 𝑗 , 𝑠))‖ℓ𝑝 (Z) �𝑝,𝜏 𝑠2−𝛿𝑝𝑠 ‖ 𝑓 ‖ℓ𝑝 (Z) . (7.59)

Using �̃�𝑀1 ,𝑀2 from (7.39) and (7.58), we may write

ℎ̃𝑀1
𝑀1 ,𝑀2 ,𝑠

(𝜉) = ΦΣ≤𝑠

≤−𝑛
𝑣𝑗 ,𝛽

𝑁𝑠 ,𝑁𝑠
(𝑁𝑠)+2

[1, �̃�𝑀1 ,𝑀2] (𝜉) ×ΦΣ𝑠

≤−𝑛
𝑣𝑗 ,𝛽

𝑁𝑠 ,𝑁𝑠
(𝑁𝑠)+1

[𝐺,Π𝛽
𝑠 ] (𝜉). (7.60)

By Lemma 7.43, for sufficiently large 𝑠 ∈ N, we have��𝑇Z [ΦΣ𝑠

≤−𝑛
𝑣𝑗 ,𝛽

𝑁𝑠 ,𝑁𝑠
(𝑁𝑠)+1

[𝐺,Π𝛽
𝑠 ]

]
𝑓
��
ℓ𝑝 (Z) �𝑝,𝜏 2−𝛿𝑝𝑠 ‖ 𝑓 ‖ℓ𝑝 (Z) . (7.61)
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Using factorization (7.60) and (7.61), it suffices to prove that

sup
𝐽 ∈Z+

sup
𝐼 ∈𝔖𝐽 (S̃𝜏 ( 𝑗 ,𝑠))

‖𝑂 𝐼 ,𝐽 (𝑇Z
[
ΦΣ≤𝑠

≤−𝑛
𝑣𝑗 ,𝛽

𝑁𝑠 ,𝑁𝑠
(𝑁𝑠)+2

[1, �̃�𝑀1 ,𝑀2]
]

𝑓 : (𝑀1, 𝑀2) ∈ S̃𝜏 ( 𝑗 , 𝑠))‖ℓ𝑝 (Z)

�𝑝,𝜏 𝑠‖ 𝑓 ‖ℓ𝑝 (Z) ,

which will readily imply (7.59).
Step 2. Appealing to the Ionescu–Wainger multiplier theory (see Theorem 6.37) for oscillation semi-

norms developed in the previous section, we see that

sup
𝐽 ∈Z+

sup
𝐼 ∈𝔖𝐽 (S̃𝜏 ( 𝑗 ,𝑠))

‖𝑂 𝐼 ,𝐽 (𝑇Z [ΦΣ≤𝑠

≤−𝑛
𝑣𝑗 ,𝛽

𝑁𝑠 ,𝑁𝑠
(𝑁𝑠)+2

[1,𝔪𝑀1 ,𝑀2]] 𝑓 : (𝑀1, 𝑀2) ∈ S̃𝜏 ( 𝑗 , 𝑠))‖ℓ𝑝 (Z)

�𝑝,𝜏 𝑠‖ 𝑓 ‖ℓ𝑝 (Z) .

Hence, the last inequality from the previous step will be proved if we establish

sup
𝐽 ∈Z+

sup
𝐼 ∈𝔖𝐽 (S̃𝜏 ( 𝑗 ,𝑠))

‖𝑂 𝐼 ,𝐽 (𝑇Z [ΦΣ≤𝑠

≤−𝑛
𝑣𝑗 ,𝛽

𝑁𝑠 ,𝑁𝑠
(𝑁𝑠)+2

[1, 𝔤𝑀1 ,𝑀2 ]] 𝑓 : (𝑀1, 𝑀2) ∈ S̃𝜏 ( 𝑗 , 𝑠))‖ℓ𝑝 (Z)

�𝑝,𝜏 ‖ 𝑓 ‖ℓ𝑝 (Z) , (7.62)

with 𝔤𝑀1 ,𝑀2 = �̃�𝑀1 ,𝑀2 −𝔪𝑀1 ,𝑀2 . By the van der Corput estimate (Proposition 2.6) for 𝔪𝑀1 ,𝑀2 , there
exists 𝛿0 > 0 (in fact, 𝛿0 � (deg 𝑃)−1) such that

|𝔤𝑀1 ,𝑀2 (𝜉) | = |𝔪𝑀1 ,𝑀2 (𝜉) (1 − 𝜂
≤−𝑛

𝑣𝑗 ,𝛽

𝑀1 ,𝑀2
(𝑀1)

(𝜉)) | � min{(log 𝑀1)−𝛿0𝛽 , (𝑀 𝑣𝑗,1
1 𝑀

𝑣𝑗,2
2 |𝜉 |)±𝛿0 }

for (𝑀1, 𝑀2) ∈ S̃𝜏 ( 𝑗), since

|1 − 𝜂
≤−𝑛

𝑣𝑗 ,𝛽

𝑀1 ,𝑀2
(𝑀1)

(𝜉) | � min{1, 𝑀
𝑣𝑗,1
1 𝑀

𝑣𝑗,2
2 |𝜉 |}.

Then by Plancherel’s theorem combined with a simple interpolation and Theorem 6.5, we conclude that
for every 𝑝 ∈ (1,∞), there is 𝛼𝑝 > 10 such that for every 𝑓 ∈ ℓ𝑝 (Z), one has����( ∑

𝑀2∈S̃2
𝜏 ( 𝑗;𝑀1)



𝑇Z [ΦΣ≤𝑠

≤−𝑛
𝑣𝑗 ,𝛽

𝑁𝑠 ,𝑁𝑠
(𝑁𝑠)+2

[1, 𝔤𝑀1 ,𝑀2]
]

𝑓


2)1/2

����
ℓ𝑝 (Z)

�𝑝,𝜏 (log 𝑀1)−𝛼𝑝 ‖ 𝑓 ‖ℓ𝑝 (Z) ,

completing the proof of (7.62). �

Proof of Theorem 7.6. We fix 1 ≤ 𝑗 < 𝑟 as before. To prove (7.7), in view of (7.56) and (2.12), it
suffices to show that∑

𝑀1∈S1
𝜏 ( 𝑗)

�� sup
𝑀2∈S2

𝜏 ( 𝑗;𝑀1)
|𝑇Z [𝑚𝑀1 ,𝑀2 − ℎ̃𝑀1

𝑀1 ,𝑀2
] 𝑓 |

��
ℓ𝑝 (Z) �𝑝,𝜏 ‖ 𝑓 ‖ℓ𝑝 (Z) . (7.63)

For 𝑢 ∈ {𝑝0, 𝑝′
0} by the one-parameter theory, which produces bounds independent of the coefficients

of the underlying polynomials (see, for instance, [52, 47]), we may conclude

sup
𝑀1∈Z+

�� sup
𝑀2∈Z+

|𝑇Z [𝑚𝑀1 ,𝑀2] 𝑓 |
��
ℓ𝑢 (Z) �𝑢,𝜏 ‖ 𝑓 ‖ℓ𝑢 (Z) , (7.64)

and by (2.17) combined with (7.56), we also have

sup
𝑀1∈S1

𝜏 ( 𝑗)

�� sup
𝑀2∈S2

𝜏 ( 𝑗;𝑀1)
|𝑇Z [ℎ̃𝑀1

𝑀1 ,𝑀2
] 𝑓 |

��
ℓ𝑢 (Z) �𝑢,𝜏 ‖ 𝑓 ‖ℓ𝑢 (Z) . (7.65)
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On the one hand, combining (7.64) and (7.65), we deduce that�� sup
𝑀2∈S2

𝜏 ( 𝑗;𝑀1)
|𝑇Z [𝑚𝑀1 ,𝑀2 − ℎ̃𝑀1

𝑀1 ,𝑀2
] 𝑓 |

��
ℓ𝑢 (Z) �𝑢,𝜏 ‖ 𝑓 ‖ℓ𝑢 (Z) . (7.66)

On the other hand, inequalities (7.12), (7.22) and (7.33) imply for every 𝑀1 ∈ S1
𝜏 ( 𝑗) that�� sup

𝑀2∈S2
𝜏 ( 𝑗;𝑀1)

|𝑇Z [𝑚𝑀1 ,𝑀2 − ℎ̃𝑀1
𝑀1 ,𝑀2

] 𝑓 |
��
ℓ2 (Z) �𝜏 (log 𝑀1)−𝛼‖ 𝑓 ‖ℓ2 (Z) (7.67)

with the parameter 𝛼 > 0 as in (7.9). Simple interpolation between (7.66) and (7.67) yields (7.63), and
this completes the proof of Theorem 7.6. �
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