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Abstract. In this paper, we study almost proximal extensions of minimal flows. Let π :
(X, T )→ (Y , T ) be an extension of minimal flows. Then π is called an almost proximal
extension if there is some N ∈ N such that the cardinality of any almost periodic subset in
each fiber is not greater than N. When N = 1, π is proximal. We will give the structure of
π and give a dichotomy theorem: any almost proximal extension of minimal flows is either
almost finite to one, or almost all fibers contain an uncountable strongly scrambled subset.
Using the category method, Glasner and Weiss showed the existence of proximal but not
almost one-to-one extensions [On the construction of minimal skew products. Israel J.
Math. 34 (1979), 321–336]. In this paper, we will give explicit such examples, and also
examples of almost proximal but not almost finite to one extensions.
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1. Introduction
The structure theory of minimal flows originated in Furstenberg’s seminal work [13] for
distal minimal flows, and the structure theorem for the general minimal flows was built by
Ellis, Glasner, and Shapiro [11], McMahon [21], Veech [28], and Glasner [17]. Roughly
speaking, the class of minimal flows is the smallest class of flows containing the trivial flow
and closed under homomorphisms, inverse limits, and has three ‘building blocks’ which
are equicontinuous extensions, proximal extensions, and topologically weakly mixing
extensions. In this paper, we mainly study proximal extensions and almost proximal
extensions. Refer to [17] for a systematical study of proximal flows.

In this paper, a flow (X, T ) is a compact metric space X with an infinite countable
discrete group T acting continuously on X. Let π : (X, T )→ (Y , T ) be an extension of
minimal flows. The proximal relation P(X, T ) is defined by

P(X, T ) =
{
(x, x′) ∈ X2 : inf

t∈T d(tx, tx′) = 0
}

.

Any pair in P(X, T ) is called a proximal pair and π is proximal if any pair (x, x ′) in
the same fiber is proximal, that is, (x, x′) ∈ P(X, T ) whenever π(x) = π(x′). A subset
A of X is called an almost periodic set if every finite subset {x1, x2, . . . , xn} of A,
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(x1, x2, . . . , xn) is a minimal point of the product flow (Xn, T ). Note that any pair (x, x′)
with x �= x′ will not be proximal if (x, x′) is minimal in (X2, T ). By this fact, it is easy
to show that π is proximal if and only if each almost periodic subset in the fiber of π is a
singleton. Inspired by this, we call π an almost proximal extension if there is some N ∈ N

such that the cardinality of any almost periodic subset in each fiber is not greater than N.
When N = 1, π is proximal.

An extension π : (X, T )→ (Y , T ) of minimal flows is almost finite to one if some
fiber is finite, that is, there is some y where π−1(y) is finite. It is not difficult to see that
any almost finite-to-one extension is almost proximal (Proposition 3.8). After we study the
structure of almost proximal extensions, we show that an extension π : X→ Y of minimal
flows is almost finite-to-one if and only if it is almost proximal and point distal.

It is an open question [2, Problem 5.23] that: if a minimal flow (X, T ) is not point
distal (that is, for any point x ∈ X, there is x′ �= x such that (x, x′) is proximal), is it
chaotic in the sense of Li–Yorke? It was showed in [2, Theorem 5.17] that if a minimal
flow (X, T ) is a proximal but not an almost one-to-one extension of some flow (Y , T ),
then (X, T ) is not point distal and it is Li–Yorke chaotic. In this paper, we generalize this
result, and show that any almost proximal extension has the following dichotomy theorem:
any almost proximal extension of minimal flows is either almost finite-to-one, or almost all
fibers contain an uncountable strongly scrambled subset. In particular, if a minimal flow
(X, T ) is an almost proximal but not almost finite-to-one extension of some flow (Y , T ),
then (X, T ) is not point distal and it is Li–Yorke chaotic.

Since there are no non-trivial proximal minimal flows under abelian group actions [17,
Theorem 3.4], it is not easy to give a minimal Z-flow which is proximal but not almost
one-to-one extension of its maximal equicontinuous factor. In fact, this was a question by
Furstenberg several years ago. Using the category method, Glasner and Weiss showed the
existence of proximal but not almost one-to-one extensions [19, Theorem 3]. In this paper,
using methods in [7], we will give such explicit examples, and also examples of almost
proximal but not almost finite-to-one extensions. In addition, all examples constructed are
uniformly rigid.

1.1. Organization of the paper. We organize the paper as follows. In §2, we introduce
some basic notions and results needed in the paper. In §3, we introduce the notion of
almost proximal and give its structure. In §4, we study chaotic properties of proximal but
not almost one-to-one extensions. In §5, we will give a dichotomy theorem: any almost
proximal extension of minimal flows is either almost finite-to-one, or almost all fibers con-
tain a strongly scrambled subset. In §6, we will give explicit examples of almost proximal
but not almost finite-to-one extensions. In the final section, we will give some questions.

2. Basic facts about abstract topological dynamics
In this section, we recall some basic definitions and results in abstract topological flows.
For more details, see [4, 8, 10, 17, 28]. In the article, integers, non-negative integers, and
natural numbers are denoted by Z, Z+, and N, respectively.

2.1. Topological transformation groups. A flow or a topological dynamical system
is a triple X = (X, T , �), where X is a compact Hausdorff space, T is a Hausdorff
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topological group, and � : T ×X→ X is a continuous map such that �(e, x) = x and
�(s, �(t , x)) = �(st , x), where e is the unit of T, s, t ∈ T , and x ∈ X. We shall fix T
and suppress the action symbol.

In this paper, we always assume that T is infinite countable and discrete, unless we state
it explicitly in some places. Moreover, we always assume that X is a compact metric space
with metric d(·, ·).

When T = Z, (X, T ) is determined by a homeomorphism f, that is, f is the transforma-
tion corresponding to 1 of Z. In this case, we usually denote (X, Z) by (X, f ), and also
call it a discrete flow.

Let (X, T ) be a flow and x ∈ X. Let O(x, T ) = {tx : t ∈ T } be the orbit of x, which
is also denoted by T x. We usually denote the closure of O(x, T ) by O(x, T ) or T x. A
subset A ⊆ X is called invariant if ta ⊆ A for all a ∈ A and t ∈ T . When Y ⊆ X is a
closed and invariant subset of the flow (X, T ), we say that the flow (Y , T ) is a subflow
of (X, T ). If (X, T ) and (Y , T ) are two flows, their product flow is the flow (X × Y , T ),
where t (x, y) = (tx, ty) for any t ∈ T and x, y ∈ X. For n ≥ 2, we write (Xn, T ) for the
n-fold product flow (X × · · · ×X, T ).

A flow (X, T ) is called minimal if X contains no proper non-empty closed invariant sub-
sets. A point x ∈ X is called a minimal point or an almost periodic point if (O(x, T ), T )
is a minimal flow.

A flow (X, T ) is called transitive if every invariant open subset of X is dense; and it
is point transitive if there is a point with a dense orbit (such a point is called a transitive
point). It is easy to verify that a flow is minimal if and only if every orbit is dense.

The flow (X, T ) is weakly mixing if the product flow (X ×X, T ) is transitive.
A factor map π : X→ Y between the flow (X, T ) and (Y , T ) is a continuous onto map

which intertwines the actions; we say that (Y , T ) is a factor of (X, T ) and that (X, T ) is
an extension of (Y , S). The flows are said to be isomorphic if π is bijective.

Let (X, T ) be a flow. Fix (x, y) ∈ X2. It is a proximal pair if inft∈T d(tx, ty) = 0; it
is a distal pair if it is not proximal. Denote by P(X, T ) or P(X) the set of proximal pairs
of (X, T ). Here, P(X, T ) is also called the proximal relation of (X, T ). A flow (X, T )
is distal if P(X, T ) = �X, where �X = {(x, x) ∈ X2 : x ∈ X} is the diagonal of X ×X.
A flow (X, T ) is equicontinuous if for any ε > 0, there is a δ > 0 such that whenever
x, y ∈ X with d(x, y) < δ, then d(tx, ty) < ε for all t ∈ T . Any equicontinuous flow is
distal.

Let (X, T ) be a flow. There is a smallest invariant equivalence relation Seq such that the
quotient flow (X/Seq, T ) is equicontinuous [12, Theorem 1]. The equivalence relation Seq

is called the equicontinuous structure relation and the factor (Xeq = X/Seq, T ) is called
the maximal equicontinuous factor of (X, T ).

2.2. Enveloping semigroups. Given a flow (X, T ), its enveloping semigroup or Ellis
semigroup E(X, T ) is defined as the closure of the set {t : t ∈ T } inXX (with its compact,
usually non-metrizable, pointwise convergence topology). For an enveloping semigroup,
E(X, T )→ E(X, T ) : q �→ qp and p �→ tp is continuous for all p ∈ E(X, T ) and t ∈
T . Note that (XX, T ) is a flow and (E(X, T ), T ) is its subflow.
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Definition 2.1. A set E is an E-semigroup if it satisfies the following three conditions:
(1) E is a semigroup;
(2) E has a compact Hausdorff topology;
(3) the right translation map Rp : E −→ E, q �−→ qp is continuous for every p ∈ E.

It is easy to see that for a flow (X, T ), the enveloping semigroup E(X, T ) is an
E-semigroup.

For a semigroup, the element u with u2 = u is called idempotent. Ellis–Numakura
theorem says that for any E-semigroup E, the set J (E) of idempotents of E is not empty
(see [10, Corollary 2.10] or [17, Ch. I, Lemma 2.2]).

Let E be an E-semigroup. A non-empty subset I ⊆ E is a left ideal if EI ⊆ I . A
minimal left ideal is a left ideal that does not contain any proper left ideal of E. Every
left ideal is a semigroup and every left ideal contains some minimal left ideal.

2.3. Universal point transitive flow and universal minimal flow. For a fixed T, there
exists a universal point transitive flow (ST , T ) such that T can densely and equivariantly
be embedded in ST (see [4, Ch. 8], [17, Ch. I]). The multiplication on T can be extended
to a multiplication on ST , and ST is an E-semigroup. The universal minimal flow M =
(M, T ) is isomorphic to any minimal left ideal in ST and M is also an E-semigroup. Hence
J = J (M) of idempotents in M is non-empty.

PROPOSITION 2.2. [17, Ch. I, Proposition 2.3]
(1) For v ∈ J and p ∈M, pv = p.
(2) For each v ∈ J , vM = {vp : p ∈M} = {p ∈M : vp = p} is a subgroup of M with

identity element v. For every w ∈ J , the map p �→ wp is a group isomorphism of vI
onto wI .

(3) {vM : v ∈ J } is a partition of M. Thus, if p ∈M, then there exists a unique v ∈ J
such that p ∈ vM.

Since vM is a group (v ∈ J ), for p ∈ vM, we denote p−1 as the inverse of p in vM, that
is, p−1 ∈ vM such that p−1p = pp−1 = v. If we choose an arbitrary idempotent u ∈ J
and denote G = uM, then every element p of M has unique representation p = vα for
v ∈ J and α ∈ G. Moreover, p−1 = vα−1 (see [17, Ch. I, Proposition 2.3, Corollary 2.4]).

The sets ST and M act on X as semigroups and ST x = T x, while for a minimal flow
(X, T ), we have Mx = T x = X for every x ∈ X (see [17, Ch. I, Proposition 3.1] for
details). For x ∈ X, set Jx = {u ∈ J : ux = x}.
PROPOSITION 2.3. [17, Ch. I, Proposition 3.1] Let (X, T ) be a flow and x ∈ X. A
necessary and sufficient condition for x to be minimal is that ux = x for some u ∈ J .

Thus, for a closed invariant subset A of X, JA = {ua : u ∈ J , a ∈ A} is the set of all
minimal points contained in A.

PROPOSITION 2.4. [17, Ch. I, Proposition 3.2] Let (X, T ) be a flow, x, y ∈ X.
(1) For each u ∈ J (ST ), (x, ux) ∈ P(X, T ).
(2) A pair (x, y) ∈ P(X, T ) if and only if px = py for some p ∈ ST , if and only if there

is some minimal left ideal I of ST such that px = py for every p ∈ I .
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(3) If (X, T ) is a minimal flow, then (x, y) ∈ P(X) if and only if there is a minimal
idempotent u ∈ J (ST ) such that y = ux.

2.4. Hyperspace flow and circle operation. Let X be a compact metric space. Let 2X

be the collection of non-empty closed subsets of X endowed with the Hausdorff topology.
Let (X, T ) be a flow. We can induce a flow on 2X. The action of T on 2X is given by
tA = {ta : a ∈ A} for each t ∈ T and A ∈ 2X. Then (2X, T ) is a flow and it is called the
hyperspace flow.

As (2X, T ) is a flow, ST acts on 2X too. To avoid ambiguity, we denote the action of
ST on 2X by the circle operation as follows. Let p ∈ ST and D ∈ 2X. Define p◦D =
lim2X tiD for any net {ti}i in T with ti → p. Moreover,

p◦D = {x ∈ X : there are di ∈ D with x = lim
i
tidi}

for any net ti → p in ST . We always have pD ⊆ p◦D.
Note that if A ∈ 2X is finite and p ∈ ST , then pA = p◦A.

2.5. Almost one-to-one extensions and O-diagram. Let (X, T ) and (Y , T ) be flows and
let π : X→ Y be a factor map. One says that:
(1) π is an open extension if it is open as a map;
(2) π is an almost one-to-one extension if there exists a dense Gδ set X0 ⊆ X such that

π−1({π(x)}) = {x} for any x ∈ X0.
The following is a well-known fact about open mappings (see [8, Appendix A.8], for

example).

THEOREM 2.5. Let π : (X, T )→ (Y , T ) be a factor map of flow. Then the map π−1 :
Y → 2X, y �→ π−1(y) is continuous if and only if π is open.

Every extension of minimal flows can be lifted to an open extension by almost
one-to-one modifications ([27, Theorem 3.1], [5, Lemma III.6] or [8, Ch. VI]). To be
precise, we have the following theorem.

THEOREM 2.6. For every extension π : X→ Y of minimal flows, there exists a commu-
tative diagram of extensions (called the O-diagram)

X

π

��

X∗σ��

π∗
��

Y Y ∗
τ

��

with the following properties:
(a) σ and τ are almost one-to-one;
(b) π∗ is an open extension;
(c) X∗ is the unique minimal set in Rπτ = {(x, y) ∈ X × Y ∗ : π(x) = τ(y)} and σ

and π∗ are the restrictions to X∗ of the projections of X × Y ∗ onto X and Y ∗,
respectively.
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We sketch the construction of these factors. Let x ∈ X, u ∈ Jx and y = π(x). Let y∗ =
u◦π−1(y). One has that y∗ is a minimal point of (2X, T ) and define Y ∗ = {p◦y∗ : p ∈M}
as the orbit closure of y∗ in 2X for the action of T. Finally, X∗ = {(px, p◦y∗) ∈ X × Y ∗ :
p ∈M}, τ(p◦y∗) = py and σ((px, p◦y∗)) = px. It can be proved that X∗ = {(x̃, ỹ) ∈
X × Y ∗ : x̃ ∈ ỹ}.

There is another equivalent way to get an O-diagram. Let π−1 : Y → 2X, y �→ π−1(y).
Then π−1 is a u.s.c. map, and the set Yc of continuous points of π−1 is a dense Gδ subset
of Y. Let

Ỹ = {π−1(y) : y ∈ Y } and Y ∗ = {π−1(y) : y ∈ Yc},
where the closure is taken in 2X. It is obvious that Y ∗ ⊆ Ỹ ⊆ 2X. Note that for eachA ∈ Ỹ ,
there is some y ∈ Y such that A ⊆ π−1(y), and hence A �→ y define a map τ : Ỹ → Y . It
is easy to verify that τ : (Ỹ , T )→ (Y , T ) is a factor map. One can show that if (Y , T ) is
minimal, then (Y ∗, T ) is a minimal flow and it is the unique minimal subflow in (Ỹ , T ),
and τ : Y ∗ → Y is an almost one-to-one extension such that τ−1(y) = {π−1(y)} for all
y ∈ Yc (see [28, §2.3]). When Y ∗ and τ are defined, X∗, σ , and π∗ are defined as above.

2.6. Proximal extensions and RIC-diagram. Let (X, T ) and (Y , T ) be flows and let π :
X→ Y be a factor map. One says that:
(1) π is a distal extension if π(x1) = π(x2) and x1 �= x2 implies (x1, x2) �∈ P(X, T );
(2) π is an equicontinuous or isometric extension if for any ε > 0, there exists δ > 0

such that π(x1) = π(x2) and d(x1, x2) < δ imply d(tx1, tx2) < ε for any t ∈ T ;
(3) π is a weakly mixing extension if (Rπ , T ) as a subflow of the product flow (X ×

X, T ) is transitive, where Rπ = {(x1, x2) ∈ X2 : π(x1) = π(x2)}.
Let π : (X, T )→ (Y , T ) be a factor map of minimal flows, and x0 ∈ X, y0 = π(x0),

and u ∈ Jx0 . We say that π is an RIC (relatively incontractible) extension if for every
y = py0 ∈ Y , p ∈M,

π−1(y) = p◦uπ−1(y0).

One can show that π : X→ Y is RIC if and only if it is open and for every n ≥ 1, the
minimal points are dense in the relation

Rnπ = {(x1, . . . , xn) ∈ Xn : π(xi) = π(xj ) for all 1 ≤ i ≤ j ≤ n}.
Note that every distal extension is RIC.

Every factor map between minimal flows can be lifted to an RIC extension by proximal
extensions (see [11, Theorem 5.13] or [8, Ch. VI]).

THEOREM 2.7. Given a factor map π : X→ Y of minimal flows, there exists a commuta-
tive diagram of factor maps (called an RIC-diagram)

X

π

��

X′σ ′��

π ′
��

Y Y ′
τ ′

��
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such that:
(a) τ ′ and σ ′ are proximal extensions;
(b) π ′ is an RIC extension;
(c) X′ is the unique minimal set in Rπτ ′ = {(x, y) ∈ X × Y ′ : π(x) = τ ′(y)}, and σ ′

and π ′ are the restrictions to X′ of the projections of X × Y ′ onto X and Y ′,
respectively.

We sketch the construction of these factors. Let x ∈ X, u ∈ Jx , and y = π(x). Let
y′ = u◦uπ−1(y), then y′ is a minimal point in 2X. Define Y ′ = {p◦y′ : p ∈M} to be the
orbit closure of y′ andX′ = {(px, p◦y′) ∈ X × Y ′ : p ∈M}, and factor maps are given by
τ ′(p◦y′) = py and σ ′((px, p◦y′)) = px. It can be proved that X′ = {(x̃, ỹ) ∈ X × Y ′ :
x̃ ∈ ỹ}.

3. Almost proximal extensions
In this section, we introduce almost proximal extensions. We will give the structure of
almost proximal extensions, and study its relationship with almost finite to one extensions.

3.1. Almost proximal extensions. An almost periodic set for (X, T ) is a subset A of X
such that if z ∈ X|A| with range(z) = A, then z is a minimal point of the flow (X|A|, T ).
(Here, |A| denotes the cardinality of A.) For example, a finite set A = {x1, x2, . . . , xn} is
an almost periodic set if and only if (x1, x2, . . . , xn) is a minimal point of (Xn, T ). Using
the basis for the Tychonoff topology, we see that a set A is an almost periodic set if and
only if every finite subset of A is an almost periodic set. The notion of almost periodic sets
was introduced by Auslander, refer to [4, Ch. 5] for more information.

Definition 3.1. Let π : (X, T )→ (Y , T ) be an extension of minimal flows. Then π is
called an almost proximal extension if there is some N ∈ N such that for each y ∈ Y , the
cardinality of any almost periodic subset in the fiber π−1(y) is not greater than N.

Let A be an almost periodic set of (X, T ). Then for each z ∈ X|A| with range(z) = A, z
is a minimal point of (X|A|, T ). By Proposition 2.3, there is some u ∈ J such that uz = z.
It follows that uA = {ua : a ∈ A} = A. Thus, for a subset Z of X, a subset A ⊆ Z is an
almost periodic subset of Z if and only if A ⊆ uZ for some u ∈ J .

LEMMA 3.2. Let π : (X, T )→ (Y , T ) be an extension of minimal flows. Let y, y ′ ∈ Y ,
u ∈ Jy , and v ∈ Jy′ . Then, |uπ−1(y)| = |vπ−1(y′)|.

Proof. We only show the case when uπ−1(y), vπ−1(y′) are finite. The same proof works
for the general case. Let uπ−1(y) = {x1, x2, . . . , xn} and vπ−1(y′) = {x′1, x′2, . . . , x′m}
for some n, m ∈ N. Then, (x1, x2, . . . , xn) ∈ Xn is a minimal point of (Xn, T ) as
u(x1, x2, . . . , xn) = (x1, x2, . . . , xn). Since (X, T ) is minimal, there is p ∈M such that
x′1 = px1. Note that x′1 = vx′1 = vpx1 and x1, x2, . . . , xn ∈ π−1(y). It follows that

y′ = π(x′1) = π(vpx1) = · · · = π(vpxn) = vpπ(x1) = vpy.
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Since x1, x2, . . . , xn are distinct and (x1, x2, . . . , xn) is minimal, vpx1, vpx2, . . . , vpxn
are also distinct. As

vpx1, vpx2, . . . , vpxn ∈ vπ−1(y′) = {x′1, x′2, . . . , x′m},
we have n ≤ m. Similarly, we have m ≤ n. Thus, |uπ−1(y)| = |vπ−1(y′)|.

By Lemma 3.2 and the fact that A is an almost periodic subset of subset Z of (X, T ) if
and only if A ⊆ uZ for some u ∈ J , we have the following proposition readily.

PROPOSITION 3.3. Let π : (X, T )→ (Y , T ) be an extension of minimal flows. Then the
following are equivalent.
(1) π is almost proximal.
(2) For some y ∈ Y , there is someN ∈ N such that the cardinality of any almost periodic

subset in the fiber π−1(y) is not greater than N.
(3) There is some N ∈ N such that for some y ∈ Y and u ∈ Jy , |uπ−1(y)| = N <∞.
(4) There is some N ∈ N such that for each y ∈ Y and u ∈ Jy , |uπ−1(y)| = N <∞.

When N = 1, π is proximal.

For x ∈ X, P [x] = {x′ ∈ X : (x, x′) ∈ P(X, T )} is called the proximal cell of x. It is
clear that π is proximal if and only if for any y ∈ Y and any x ∈ π−1(y), π−1(y) ⊆ P [x].

COROLLARY 3.4. Let π : (X, T )→ (Y , T ) be an extension of minimal flows. If π is
almost proximal, then for each y ∈ Y , there is some finite subset F of π−1(y) such that
each point of π−1(y) is proximal to some point of F, that is, π−1(y) ⊆⋃

x∈F P [x].

Proof. Let y ∈ Y and u ∈ Jy . Then F = uπ−1(y) is finite by Proposition 3.3. For any
x ∈ π−1(y), by Proposition 2.4, (x, ux) ∈ P(X) and ux ∈ F . The proof is complete.

Let π : (X, T )→ (Y , T ) be an extension of flows (X, T ) and (Y , T ) and n ∈ N. Let

2Xπ = {A ∈ 2X : A ⊆ π−1(y) for some y ∈ Y },
and

2Xπ ,n = {A ∈ 2Xπ : |A| ≤ n}, and 2Xπ ,∗ = {A ∈ 2Xπ : |A| <∞} =
∞⋃
n=1

2Xπ ,n.

It is clear that (2Xπ , T ), (2Xπ ,n, T ), and (2Xπ ,∗, T ) are subflows of (2X, T ). Let

π̃ : (2Xπ , T )→ (Y , T ), A �→ π(A).

Then π̃ is an extension. Note that 2Xπ ,1 = {{x} ∈ 2X : x ∈ X} is isomorphic to X and π̃ |2X
π ,1

is the same to π . Thus, π : (X, T )→ (Y , T ) is proximal if and only if π̃ |2X
π ,1

: (2Xπ ,1, T )→
(Y , T ) is proximal.

PROPOSITION 3.5. Let π : (X, T )→ (Y , T ) be an extension of minimal flows. Then π is
almost proximal if and only if there is some n ∈ N such that there are no minimal points in
2Xπ ,∗ \ 2Xπ ,n.
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Proof. If π is almost proximal, then there is some n ∈ N such that |uπ−1(y)| = n for
all y ∈ Y , u ∈ Jy . Let A ∈ 2Xπ ,∗ \ 2Xπ ,n and y = π(A). Then |A| ≥ n+ 1. For each u ∈ Jy ,
|uA| ≤ n since π is almost proximal. Thus, u ◦ A = uA �= A, in particular, by Proposition
2.3, A is not minimal.

Conversely, assume that there is some n ∈ N such that there are no minimal points in
2Xπ ,∗ \ 2Xπ ,n. If π is not almost proximal, then there is some y ∈ Y and u ∈ Jy such that
|uπ−1(y)| = ∞. We choose A ⊆ uπ−1(y) with |A| = n+ 1. Then

u ◦ A = uA = A,

which means A is a minimal point of 2Xπ ,∗ \ 2Xπ ,n, which is a contradiction. The proof is
complete.

Remark 3.6. It is well known that each flow has a minimal subflow. Since 2Xπ ,∗ \ 2Xπ ,n may
not be compact, it is an invariant subset of 2X but maybe not a subflow of 2X. So it is
possible that 2Xπ ,∗ \ 2Xπ ,n contains no minimal points.

3.2. Almost finite-to-one extensions

Definition 3.7. Let π : (X, T )→ (Y , T ) be an extension of minimal flows. Then π is
called an almost finite-to-one extension if some fiber is finite.

PROPOSITION 3.8. [24, Proposition 3.5], [20, Proposition 2.15] Let π : (X, T )→ (Y , T )
be an extension of minimal flows. The following statements are equivalent:
(1) π is almost finite to one, that is, some fiber is finite;
(2) there exists N ∈ N such that Y0 = {y ∈ Y : |π−1(y)| = N} is a residual subset of Y;
(3) there exist N ∈ N and y0 ∈ Y such that |π−1(y0)| = N and π−1(y0) is an almost

periodic set;
(4) the cardinality of each minimal point of (2X, T ) in 2Xπ is not greater than some fixed

integer N.

Remark 3.9
(1) By Proposition 3.8, almost finite-to-one extensions of minimal flows are almost

proximal. In §6, we will give examples which are almost proximal but not almost
finite-to-one extensions.

(2) By definition, it is obvious that a finite-to-one extension (that is, every fiber is finite)
is almost finite-to-one. However, in general, an almost finite-to-one extension may
not be finite-to-one. For example, for Rees’ example [22], π : (X, T )→ (Xeq, T ) is
an almost one-to-one extension (Xeq is the maximal equicontinuous factor of X), and
for any y ∈ Xeq, either |π−1(y)| = 1 or |π−1(y)| = ∞.

(3) For more discussion about finite-to-one and almost finite-to-one extensions, refer to
[20].

By Proposition 3.8, it is easy to check the following corollary.

COROLLARY 3.10. Let π : (X, T )→ (Y , T ) be an extension of minimal flows. If π is
proximal but not almost one-to-one, then every fiber is infinite, that is, π is not almost
finite-to-one.
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3.3. Structure of almost proximal extensions. The following result is well known and it
is easy to be verified (one may find a proof in [20, Lemma 2.20]).

LEMMA 3.11. Let π : X→ Y be a finite-to-one extension (that is, π−1(y) is finite for
all y ∈ Y ) of the minimal flows (X, T ) and (Y , T ). Then the following conditions are
equivalent:
(1) π is open;
(2) π is distal;
(3) π is equicontinuous;

In this case, there exists N ∈ N such that π is an N-to-one map.

THEOREM 3.12. Let π : (X, T )→ (Y , T ) be an almost proximal extension of minimal
flows. Then it has the following structure:

X

π

��

X′σ ′��

π ′
��

Y Y ′
τ ′

��

where σ ′ and τ ′ are proximal, π ′ is a finite-to-one equicontinuous extension.
Moreover, π is almost finite-to-one if and only if τ ′, σ ′ are almost one-to-one.

Proof. In light of the construction of the RIC-diagram (Theorem 2.7), σ ′ and τ ′ are
proximal extensions and π ′ is an RIC extension. We show that if π is almost proximal, then
π ′ is a finite-to-one equicontinuous extension. Recall the construction of RIC-diagram.
Let x ∈ X, u ∈ Jx , and y = π(x). Let y′ = u◦uπ−1(y) ∈ 2X. Then Y ′ = {p◦y′ : p ∈M}
is the orbit closure of y′ and τ ′(p◦y′) = py. And X′ = {(px, p◦y′) ∈ X × Y ′ : p ∈
M} = {(x̃, ỹ) ∈ X × Y ′ : x̃ ∈ ỹ} is the unique minimal set in Rπτ ′ = {(x, y) ∈ X × Y ′ :
π(x) = τ ′(y)}, and σ ′ and π ′ are the restrictions to X′ of the projections of X × Y ′
onto X and Y ′, respectively. Since π is almost proximal, we have that |uπ−1(y)| <∞.
Thus, y′ = u ◦ uπ−1(y) is finite, and for every p ∈M, |p◦y′| <∞. Hence, for every
p ∈M, |(π ′)−1(p◦y′)| = |{(x̃, p ◦ y′) : x̃ ∈ p ◦ y′}| = |p◦y′| is finite. It follows that π ′
is finite-to-one and open. By Lemma 3.11, π ′ is equicontinuous.

Clearly, if τ ′, σ ′ are almost one-to-one, then π is almost finite-to-one. Conversely, when
π is almost finite-to-one, by Proposition 3.8, there exists y0 such that |π−1(y0)| <∞
and π−1(y0) is a minimal point of (2X, T ), that is, u ◦ π−1(y0) = π−1(y0). Hence, the
construction of the RIC-diagram coincides with the O-diagram. Therefore, τ ′, σ ′ are
almost one-to-one.

If, in addition, the extension is regular (see definition below), an almost proximal
extension has a succinct structure. Let Aut(X, T ) be the group of automorphisms of the
flow (X, T ), that is, the group of all self-homeomorphisms ψ of X such that ψ ◦ t =
t ◦ ψ for all t ∈ T . For an extension π : (X, T )→ (Y , T ), let

Autπ (X, T ) = {χ ∈ Aut(X, T ) : π ◦ χ = π},
that is, elements of Aut(X, T ) mapping every fiber of π into itself.
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Definition 3.13. Let π : (X, T )→ (Y , T ) be an extension of minimal flows. One says
π is regular if for any point (x1, x2) ∈ Rπ , there exists χ ∈ Autπ (X, T ) such that
(χ(x1), x2) ∈ P(X, T ). It is equivalent to: for any minimal point (x1, x2) in Rπ , there
exists χ ∈ Autπ (X, T ) such that χ(x1) = x2.

The notion of regularity was introduced by Auslander [3]. Examples of regular exten-
sions are proximal extensions, group extensions. For more information about regularity,
refer to [3, 4, 15].

THEOREM 3.14. Let π : (X, T )→ (Y , T ) be an extension of minimal flows. If π is regu-
lar and almost proximal, then there exists a flow (Y #, T ) with the following commutative
diagram:

X

π

��

π#

���
��

��
�

Y #

τ #

�����
���

�

Y

where τ # is proximal and π# is a finite-to-one equicontinuous extension. And π is almost
finite-to-one if and only if τ # is almost one-to-one.

Proof. Let y0 ∈ Y and u ∈ Jy0 , that is, uy0 = y0. Since π is almost proximal, by
Proposition 3.3, there exits an n ∈ N such that |vπ−1(y)| = n for all y ∈ Y , v ∈ Jy . Thus,
|vπ−1(py0)| = n for all p ∈M and all v ∈ J (M) with vp = p.

Let y0 = uπ−1(y0) = {x1, x2, . . . , xn}. As {x1, x2, . . . , xn} is an almost periodic set,
(x1, . . . , xn) is a minimal point of (Xn, T ), and it follows that for all p ∈M, |py0| =
|{px1, px2, . . . , pxn}| = n. Let

Y # = {py0 : p ∈M}.
It is clear that X =⋃

y∈Y # y. We show that Y # is a partition of X, that is, for all p, q ∈M,
either py0 = qy0 or py0 ∩ qy0 = ∅.

Assume that there are p, q ∈M such that py0 = {px1, . . . , pxn} �= {qx1, . . . , qxn} =
qy0 and py0 ∩ qy0 �= ∅. Without loss of generality, we assume that qx1 = pxj ∈ py0 for
some j ∈ {1, 2, . . . , n} and qx2 �∈ py0.

Since (x1, . . . , xn) is a minimal point of (Xn, T ), (qx1, . . . , qxn) = q(x1, . . . , xn) is
also a minimal point of (Xn, T ). In particular, (qx1, qx2) ∈ Rπ is a minimal point. As π
is regular, there is some χ ∈ Autπ (X, T ) such that qx2 = χ(qx1). Let v ∈ J (M) such that
vp = p (Proposition 2.2). Then,

qx2 = χ(qx1) = χ(pxj ) = χ(vpxj ) = vχ(pxj ) = vχ(qx1) = vqx2.

Thus, qx2 ∈ vπ−1(py0) and v{px1, px2, . . . , pxn, qx2} = {px1, px2, . . . , pxn, qx2}. It
follows that {px1, px2, . . . , pxn, qx2} is an almost periodic subset of π−1(py0), whose
cardinality is n+ 1. In particular, |vπ−1(py0)| ≥ n+ 1, which contradicts with the fact
|vπ−1(py0)| = n. Thus, Y # is a partition of X.
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Since Y # is a partition of X, it induces a map

π# : X→ Y #, x �→ py0, (x ∈ py0), p ∈M.

It is easy to check that π is open, and by Lemma 3.11, it is an n-to-1 equicontinuous
extension.

Let

τ # : Y # → Y , py0 �→ py0 for all p ∈M.

We show that it is proximal. Let τ #(py0) = τ #(qy0) for some p, q ∈M. Then, py0 = qy0.
There are minimal idempotents u1, u2 ∈ J (M) such that

p = u1p, q = u2q.

Since |y0| <∞, we have

py0 = u1py0 = u1puπ
−1(y0) = u1π

−1(py0).

Similarly, one has qy0 = u2π
−1(qy0). Then,

u1qy0 = u1u2π
−1(qy0) = u1π

−1(py0) = py0.

So py0 and qy0 are proximal. That is, τ # is a proximal extension.

3.4. Relations between almost proximal extensions and almost one-to-one extensions. It
is clear that any almost finite-to-one extension is an almost proximal extension. In this
subsection, we show that if, in addition, the extension is point distal, then the converse
holds.

Let π : (X, T )→ (Y , T ) be an extension of minimal flows. A point x ∈ X is called
a π -distal point whenever Pπ [x] � {x′ ∈ π−1(π(x)) : (x, x′) ∈ P(X, T )} = {x}, that is,
(x, x′) is a distal pair for every x′ ∈ π−1(π(x)) \ {x}. The extension π is said to be point
distal when there exists a π -distal point in X. Note that π is distal if and only if every point
is π -distal. It is easy to see that a point x is π -distal if and only if ux = x for all u ∈ Jπ(x)
[8, Ch. VI(4.3)].

THEOREM 3.15. [28, Theorem 2.3.5] Let π : (X, T )→ (Y , T ) be an extension of minimal
flows. Then RIC-diagram and O-diagram coincide if and only if there is some y ∈ Y such
that

⋂
u∈Jy u ◦ uπ−1(y) �= ∅.

THEOREM 3.16. Let π : (X, T )→ (Y , T ) be an extension of minimal flows. Then the
following are equivalent:
(1) π is almost proximal and point distal;
(2) π is almost finite-to-one.

Proof. If π is almost finite-to-one, it is almost proximal. By Proposition 3.8, there exist
N ∈ N and y0 ∈ Y such that |π−1(y0)| = N and π−1(y0) is a minimal point of (2X, T ).
Each point in π−1(y0) is π -distal.

Conversely, assume that π is almost proximal and point distal. Let x0 ∈ X be
a π -distal point and y0 = π(x0). Since x0 is π -distal, ux0 = x0 for all u ∈ Jy0 .
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Thus, x0 ∈⋂
u∈Jy0

u ◦ uπ−1(y0). By Theorem 3.15, the RIC-diagram and O-diagram
of π coincide. That is, in the RIC-diagram,

X

π

��

X′σ ′��

π ′
��

Y Y ′
τ ′

��

Here, σ ′ and τ ′ are almost one-to-one, and π ′ is a finite-to-one extension. Thus, π is almost
finite-to-one.

COROLLARY 3.17. Let π : (X, T )→ (Y , T ) be an extension of minimal flows. Then π is
proximal and point distal if and only if π is almost one-to-one.

4. Proximal extensions and weakly mixing extensions
In this section, we will study the chaotic properties of proximal but not almost one-to-one
extensions.

4.1. Weakly mixing extensions. Let (X, T ) be a flow. A point x ∈ X is recurrent if for
each neighborhood U of x, the set of return times of x to U, N(x, U) = {t ∈ T : tx ∈ U}
is infinite. A point x is recurrent if and only if there exists p ∈ ST \ T such that px = x, if
and only if there exists an idempotent u ∈ ST \ T such that ux = x [9, Lemma 5.18].

Definition 4.1. Let (X, T ) be a flow.
(1) A pair (x, y) ∈ X2 is called a strong Li–Yorke pair if it is proximal and it is also a

recurrent point of (X2, T ).
(2) A subset S of X is called strongly scrambled if every pair of distinct points in S is a

strong Li–Yorke pair.
(3) The flow (X, T ) is said to be strongly Li–Yorke chaotic if it contains an uncountable

strongly scrambled set.

The following result says that each non-trivial weakly mixing extension contains plenty
of strongly scrambled subsets.

THEOREM 4.2. [2, Theorem 5.10] Let (X, T ), (Y , T ) be a flow and π : (X, T )→ (Y , T )
an open non-trivial weakly mixing extension. Then there is a residual subset Y0 ⊆ Y
such that for every point y ∈ Y0, the set π−1(y) contains a dense uncountable strongly
scrambled subset K such that

K ×K \�X ⊆ Trans(Rπ),

where Trans(Rπ) denotes the set of all transitive points in Rπ , and in particular, π−1(y)

is perfect, and it has the cardinality of the continuum.

Definition 4.3. Let π : (X, T )→ (Y , T ) be an extension of flows.
(1) π is called n-weakly mixing (n ≥ 2) if (Rnπ , T ) is transitive.
(2) If π is n-weakly mixing for every n ≥ 2, then π is called totally weakly mixing.
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Note that a 2-weakly mixing extension is just weakly mixing. Totally weakly mixing
extensions will present stronger chaotic properties than weakly mixing extensions, see [2,
23] for more details. For RIC extensions, weak mixing is equivalent to total weak mixing.

THEOREM 4.4. [6, Theorem 2.12], [16, Theorem 2.7] Let π : (X, T )→ (Y , T ) be an RIC
extension of minimal flows. Then the following conditions are equivalent:
(1) π is weakly mixing;
(2) π is n-weakly mixing for some n ≥ 2;
(3) π is totally weakly mixing.

In general, the fact that π : (X, T )→ (Y , T ) is weakly mixing does not imply that π
is totally weakly mixing. In [16, Theorem 4.1], for (Y , T ) being trivial, the author gave a
weakly mixing flow (X, T ) such that (X3, T ) is not transitive. By Theorem 4.4, such T
is not abelian. In §6, we will show that there exists π : (X, Z)→ (Y , Z) which is weakly
mixing but not 3-weakly mixing. In fact, we have the following example.

Example 4.5. There exists a discrete flow (X, Z) such that π : (X, Z)→ (Xeq, Z) is a
proximal extension, and it is weakly mixing but not 3-weakly mixing. (See Theorem 6.12.)

4.2. Proximal but not almost one-to-one extensions. Let P (n)(X) be the subset of Xn

of all points whose orbit closure intersects the diagonal of Xn. Thus, P(X) = P (2)(X).
Glasner showed that for a minimal flow (X, T ), if P (n)(X) is dense in Xn for every n ≥ 2,
then X is weakly disjoint from all minimal flows, that is, (X × Y , T ) is transitive for all
minimal flow (Y , T ) [17, Ch. II, Proposition 2.1]. In particular, any minimal proximal flow
is weakly mixing. This was extended by van der Woude [26, Ch. VII, Corollary 2.14] as
the following theorem (see also [16, Corollary 6.4]).

THEOREM 4.6. A non-trivial open proximal extension of minimal flows is a weakly mixing
extension.

Thus, by Theorem 4.2, we have the following theorem.

THEOREM 4.7. [2, Theorem 5.17] Let π : X→ Y be a proximal but not almost one-to-one
extension of minimal flows. Then there is a residual subset Y0 ⊆ Y such that for each
y ∈ Y0, π−1(y) contains an uncountable strongly scrambled subset K.

In fact, we have the following result which is slightly stronger than Theorem 4.7.

THEOREM 4.8. Let π : X→ Y be a proximal but not almost one-to-one extension of
minimal flows. Then there is a residual subset Y0 ⊆ Y such that for each y ∈ Y0, π−1(y)

contains an uncountable strongly scrambled subset K satisfying that for any x1 �= x2 ∈ K ,

π−1(y)× π−1(y) ⊆ O((x1, x2), T ).

https://doi.org/10.1017/etds.2022.118 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2022.118


Almost proximal extensions of minimal flows 4055

Proof. Let π : X→ Y be a proximal but not almost one-to-one extension of minimal
flows. We consider its O-diagram:

X

π

��

X∗σ��

π∗
��

Y Y ∗.
τ

��

Recall the construction of an O-diagram (see Theorem 2.6):

Y ∗ = {π−1(y) : y ∈ Yc} ⊆ 2X, X∗ = {(x, y) ∈ X × Y ∗ : x ∈ y},
where Yc is the set of continuous points of π−1 : Y → 2X and it is a residual subset of
Y, X∗ is the unique minimal set in Rπτ = {(x, y) ∈ X × Y ∗ : π(x) = τ(y)}, and σ and
π∗ are the restrictions to X∗ of the projections of X × Y ∗ onto X and Y ∗, respectively.
Also τ : Y ∗ → Y is an almost one-to-one extension such that τ−1(y) = {π−1(y)} for all
y ∈ Yc.

Since π is proximal but not almost one-to-one, π∗ is open proximal but not almost
one-to-one. By Theorem 4.6, π∗ is weakly mixing, and hence by Theorem 4.2, there
is a residual subset Y ∗0 of Y ∗ such that for each y ∈ Y ∗0 , (π∗)−1(y) contains a dense
uncountable strongly scrambled subset K∗ such that

K∗ ×K∗ \�X∗ ⊆ Trans(Rπ∗).

Since τ is almost one-to-one, τ(Y ∗0 ) is a residual subset of Y. Let

Y0 = Yc ∩ τ(Y ∗0 ).
Then Y0 is a residual subset of Y. We need to verify that for each y ∈ Y0, π−1(y) contains
an uncountable strongly scrambled subset K satisfying that for any x1 �= x2 ∈ K ,

π−1(y)× π−1(y) ⊆ O((x1, x2), T ).

Let y ∈ Y0. Since y ∈ Yc ∩ τ(Y ∗0 ) ⊆ Yc, by the property of τ , we have that τ−1(y) =
{π−1(y)}. Thus, y = π−1(y) ∈ Y ∗0 . So by the definition of Y ∗0 , (π∗)−1(y) contains a dense
uncountable strongly scrambled subset K∗ such that K∗ ×K∗ \�X∗ ⊆ Trans(Rπ∗). Let

K∗ = {(xα , y) : α ∈ �, xα ∈ y},
where � is an uncountable index set. Now let K = σ(K∗) = {xα}α∈�. First note that

π(K) = πσ(K∗) = τπ∗(K∗) = τ(y) = y,

and hence K ⊆ π−1(y).
Let x1, x2 ∈ K with x1 �= x2. We show that π−1(y)× π−1(y) ⊆ O((x1, x2), T ). Let

y1, y2 ∈ π−1(y) = y. Then

(y1, y), (y2, y) ∈ (π∗)−1(y).

Since ((x1, y), (x2, y)) ∈ K∗ ×K∗ \�X∗ ⊆ Trans(Rπ∗),

((y1, y), (y2, y)) ∈ O(((x1, y), (x2, y)), T ).
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It follows that (y1, y2) ∈ O((x1, x2), T ). Thus, π−1(y)× π−1(y) ⊆ O((x1, x2), T ). The
proof is complete.

5. A dichotomy theorem on almost proximal extensions
In this section, we show that any almost proximal extension has the following dichotomy
theorem: any almost proximal extension of minimal flows is either almost finite-to-one, or
almost all fibers contain an uncountable strongly scrambled subset.

LEMMA 5.1. Let π : (X, T )→ (Y , T ) be a distal extension of minimal flows. For any
strongly scrambled set K of Y, there is a strongly scrambled set K ′ of X such that π |K ′ :
K ′ → K is one-to-one.

Proof. LetK = {yα}α∈�, where� is an index set. Fix a point y0 ∈ K . By the assumption,
K ⊆ P [y0]. Then by Proposition 2.4 for each α ∈ �, there is a minimal idempotent vα ∈
J (M) such that yα = vαy0. Thus,

K = {vαy0}α∈� ⊆ P [y0].

Since K is a strongly scrambled set, any pair (yα , yβ) is a recurrent point of (Y × Y , T )
and there is some idempotent uαβ ∈ J (ST \ T ) such that

uαβ(yα , yβ) = (yα , yβ).

Now choose a point x0 ∈ π−1(y0), and let

K ′ = {vαx0}α∈�.

For any α, β ∈ �, since vα , vβ are minimal idempotents, we have

vβ(vαx0, vβx0) = (vβvαx0, v2
βx0) = (vβx0, vβx0),

and hence (vαx0, vβx0) ∈ P(X, T ). By uαβyα = yα , we have π(uαβvαx0) = uαβyα =
yα = π(vαx0). Since π is distal, it follows that uαβvαx0 = vαx0. Similarly, we have
uαβvβx0 = vβx0. So

uαβ(vαx0, vβx0) = (vαx0, vβx0).

That is, (vαx0, vβx0) is a recurrent point of (X ×X, T ). Thus, K ′ is a strongly scrambled
subset of X. As π is distal and each pair in K ′ is proximal, π |K ′ : K ′ → K is one-to-one.
The proof is complete.

THEOREM 5.2. Let π : (X, T )→ (Y , T ) be an almost proximal extension of minimal
flows. Then one of the following holds:
(1) π is almost finite-to-one;
(2) there is a residual subset Y0 ⊆ Y such that for every y ∈ Y0, the fiber π−1(y)

contains an uncountable strongly scrambled set.

Proof. We show that if π is not almost finite-to-one, then there is a residual subset Y0 ⊆ Y
such that for every y ∈ Y0, the fiber π−1(y) contains an uncountable strongly scrambled
set.
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Let y0 ∈ Y and u ∈ J (M) such that uy0 = y0 and let uπ−1(y0) = {x1, x2, . . . , xn} for
some n ∈ N. Let z0 = (x1, x2, . . . , xn) ∈ Xn. Then z0 is a minimal point of (Xn, T ). Let

X# = O(z0, T ) = {pz0 ∈ Xn : p ∈M} ⊆ Xn.

Then (X#, T ) is a minimal flow. Let

ψ : X# → X, pz0 �→ px1, π̃ = π ◦ ψ : X# → Y , pz0 �→ py0, for all p ∈M.

X#
ψ

�����
���

�

π̃

��

X

π ����
���

��

Y

We divide the proof into several steps.
Step 1. π̃ is regular. Let p1, p2 ∈M such that π̃(p1z0) = π̃(p2z0) and (p1z0, p2z0)

is minimal. Let v ∈ J (M) such that v(p1z0, p2z0) = (p1z0, p2z0). Since π̃(p1z0) =
π̃(p2z0), we have that p1y0 = p2y0. Hence, up−1

1 p2y0 = y0, where p−1
1 is defined after

Proposition 2.2. Now let

χ : X# → X#, pz0 �→ p(up−1
1 p2)z0.

First, we verify that χ is well defined. Let p, q ∈M such that pz0 = qz0. Since z0 =
(x1, x2, . . . , xn), it follows that pxj = qxj , 1 ≤ j ≤ n. By up−1

1 p2π
−1(y0) = uπ−1(y0),

{up−1
1 p2x1, up−1

1 p2x2, . . . , up−1
1 p2xn} = {x1, x2, . . . , xn}.

Thus,

p(up−1
1 p2)xj = q(up−1

1 p2)xj , 1 ≤ j ≤ n,

that is, χ(pz0) = p(up−1
1 p2)z0 = q(up−1

1 p2)z0 = χ(qz0). That is, χ is well defined. As
π̃(χ(pz0)) = p(up−1

1 p2)y0 = py0 = π̃(pz0), χ ∈ Autπ̃ (X#, T ).
Finally, note that

χ(p1z0) = χ(vp1z0) = vp1(up
−1
1 p2)z0 = vp2z0 = p2z0.

Thus, π̃ is regular.
Step 2. π̃ is almost proximal and not almost finite-to-one. Since π is not almost

finite-to-one, it is easy to see that π̃ is also not almost finite-to-one. Next we show
it is almost proximal. We show that |uπ̃−1(y0)| <∞. Let pz0 ∈ uπ̃−1(y0). Then,
up(x1, x2, . . . , xn) = upz0 = pz0 = (px1, px2, . . . , pxn). It follows that

{px1, px2, . . . , pxn} = {x1, x2, . . . , xn} = uπ−1(y0).

Thus, (px1, px2, . . . , pxn) is a permutation of (x1, x2, . . . , xn). Hence, |uπ̃−1(y0)| ≤
|Sn| <∞, where Sn is the symmetric group on {x1, x2, . . . , xn}. That is, π̃ is almost
proximal.
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Step 3. There is a residual subset Y0 ⊆ Y such that for every y ∈ Y0, the
fiber π−1(y) contains an uncountable strongly scrambled set. Since π̃ is regular and almost
proximal, by Theorem 3.14, there is a finite-to-one equicontinuous extension φ : X# → Y #

and a proximal extension π# : Y # → Y such that π̃ = π# ◦ φ.

X#
ψ

�����
���

�

π̃

��

φ

����
���

��

X

π ���
��

��
�� Y #

π#�����
���

�

Y

Since π̃ is not almost finite-to-one, π# is proximal but not almost one-to-one. By
Theorem 4.8, there is a residual subset Y0 ⊆ Y such that for every y ∈ Y0, the fiber
(π#)−1(y) contains a countable strongly scrambled set K ′y . Since φ is distal, by Lemma
5.1, there is a countable strongly scrambled set K#

y such that φ(K#
y ) = K ′y . Note that

K#
y ⊆ X# ⊆ Xn. Let Kj = πj (K#

y ), 1 ≤ j ≤ n, where πj is the projection from Xn to
jth coordinate. Since

K#
y ⊆ K1 ×K2 × · · · ×Kn,

there is some j0 ∈ {1, 2, . . . , n} such that |Kj0 | is uncountable. Since K#
y is a strongly

scrambled set of X#, Kj0 is a strongly scrambled set of X. As the diagram is commutative,
it is easy to check that Kj0 ⊆ π−1(y). The proof is complete.

6. Examples
Since there are no non-trivial proximal minimal flows under abelian group actions [17,
Ch. II, Theorem 3.4], it is not easy to construct a proximal but not almost one-to-one
extension of minimal flows. In fact, this was a question by Furstenberg several years ago.
Using category method, Glasner and Weiss constructed the first of this kind of extensions
of minimal flows and gave a positive answer to this question. In this section, using methods
in [7], we give explicit examples of proximal but not almost one-to-one extensions. And
examples constructed are uniformly rigid.

In this section, first we briefly introduce Glasner and Weiss’ results, which will be used
later. For Glasner and Weiss’ methods, refer to [19] for more details. Then we show how
to give explicit examples of almost proximal but not almost finite-to-one extensions.

6.1. Glasner and Weiss’ results. Let (Y , f ) be a minimal discrete flow and Z be a
compact metric space with metric dZ . Let H(Z, Z) be the space of all homeomorphisms
of Z equipped with the metric

ρZ(g, h) = sup
z∈Z

dZ(g(z), h(z))+ sup
z∈Z

dZ(g
−1(z), h−1(z)).

With this metric, H(Z, Z) is a complete metric space and a topological group. Let X =
Y × Z. Let Hs(X, X) be the subspace of H(X, X) which consists of homeomorphisms
which fix all subspace of X of the form {y} × Z, y ∈ Y . Such a homeomorphism G is
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determined by a continuous map α : Y → H(Z, Z), by G(y, z) = (y, α(y)(z)). Put

S(f ) = {G−1 ◦ f ◦G : G ∈ Hs(X, X)}.
(Here, f is identified with f × idZ , where idZ is the identity map on Z.)
If G is a subgroup of H(Z, Z), let Gs ⊆ Hs(X, X) be the subgroup of those elements

of Hs(X, X) which come from cocycles (see definition below) of G. That is,

Gs = {G ∈ Hs(X, X) : G(y, z) = (y, α(y)(z)), α ∈ C(Y , G)}.
Let

SG(f ) = {G−1 ◦ f ◦G : G ∈ Gs}.

THEOREM 6.1. [19, Theorem 1] Let G be a pathwise connected subgroup ofH(Z, Z) such
that (Z, G) is a minimal flow. If (Y , f ) is minimal, then for a residual subset R ⊆ SG(f ),
(X, F) is a minimal flow for every F ∈ R.

THEOREM 6.2. [19, Theorem 3] Let G be a pathwise connected subgroup ofH(Z, Z) with
the following property: for every pair of points z1, z2 ∈ Z, there exist neighborhoods U and
V of z1 and z2, respectively, such that for every ε > 0, there exists h ∈ G with diam (h(U ∪
V )) < ε. Then for a residual subset R ⊆ SG(f ), (X, F) is a proximal extension of (Y , f )
for every F ∈ R.

According to [19, §1], if we choose Z = Pn, n ≥ 1 to be the projective n-space, and let
G be a pathwise connected component of idZ in H(Z, Z), then G satisfies the conditions
of Theorems 6.1 and 6.2. Thus, for an arbitrary minimal infinite flow (Y , f ), there are
many minimal homeomorphisms of Y × Z which are proximal but not almost one-to-one
extensions of (Y , f ).

6.2. Skew-product. Let (Y , f ) be a discrete flow and (Z, dZ) a compact metric space.
Denote the set of all the homeomorphisms of Z to Z withH(Z, Z). For ϕ1, ϕ2 ∈ H(Z, Z),
set

DZ(ϕ1, ϕ2) = sup
z∈Z

dZ(ϕ1(z), ϕ2(z)).

Assume X = Y × Z and let ρX denote the max-metric on the product space Y × Z,

ρX((y1, z1), (y2, z2)) = max{dY (y1, y2), dZ(z1, z2)},
where dY is the metric of Y.

A continuous map σ : Y → H(Z, Z) is called a cocycle. By a given cocycle σ , one can
define

fσ : X→ X, (y, z) �→ (f (y), σ(y)(z)) for all (y, z) ∈ X.

The new flow (X, fσ ) is called a skew-product flow.
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For (y, z) ∈ X, set f nσ (y, z) = (f n(y), σn(y)(z)), where

σn(y) =

⎧⎪⎪⎨⎪⎪⎩
σ(f n−1y) · · · σ(fy)σ (y), n ≥ 1;

idZ , n = 0;

σ(f ny)−1 · · · σ(f−2y)−1σ(f−1y)−1, n < 0.

6.3. A cocycle. Let Y = Z(2) = {0, 1}N with the metric

d(α, β) = 1
min{i ∈ N : αi �= βi} , α = (αi)∞i=1, β = (βi)∞i=1 ∈ Z(2).

The map

τ : Z(2)→ Z(2)

is defined as follows: for every α ∈ Z(2), τ(α) = α + 10000 . . ., where the addition
is modulo 2 from the left to right. Obviously, τ is continuous. Moreover, it can
be shown that τ is invertible and (Z(2), τ) is an equicontinuous minimal flow. The
flow (Z(2), τ) is called an adding machine or odometer. Similarly, one can define
(Z(k) = {0, 1, . . . , k − 1}N, τ).

In the following, an increasing sequence {ni}∞i=1 ⊆ N is fixed. For any α ∈ Z(2), α can
be written as

α = α1α2α3 . . . , where αk is a block of nk digits of α. (6.1)

Let e :
⋃∞
j=1{0, 1}j → Z+ be the evaluation function: for x = x1x2 . . . xj ∈ {0, 1}j ,

e(x) = x1 + 2x2 + 22x3 + · · · + 2j−1xj .

For n ∈ Z+, if x = x1x2 . . . xj ∈ {0, 1}j such that e(x) = n, then let

n = x1x2 . . . xj0∞ ∈ Z(2) = {0, 1}N,

where 0∞ = 000 . . . . For example, 0 = 0∞, 2 = 010∞, 7 = 1110∞.
Let Z = S

1 = {exp(i2πx) : 0 ≤ x ≤ 1} and

� = {ϕjk : 0 ≤ j ≤ 2nk − 2}∞k=1 ⊆ H(S1, S1). (6.2)

We use � to construct a cocycle σ : Z(2)→ H(S1, S1):

σ(α) =

⎧⎪⎪⎨⎪⎪⎩
ϕ
e(αk)
k , α �= 1∞ and αk is the first block in (6.1) containing at least one zero

digit;

idS1 , α = 1∞.
(6.3)

LEMMA 6.3. If � satisfies the following condition:

lim
k→∞ max

0≤j≤2nk−2
DS1(ϕ

j
k , idS1) = 0, (C1)

then σ : Z(2)→ H(S1, S1) is continuous and hence it is a cocycle.

https://doi.org/10.1017/etds.2022.118 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2022.118


Almost proximal extensions of minimal flows 4061

Proof. Let βn, α ∈ Z(2) such that βn→ α, n→∞. We show that limn→∞ DS1(σ (βn),
σ(α)) = 0.

If α �= 1∞, then one has σ(βn) = σ(α)when n is large enough andDS1(σ (βn), σ(α)) =
0. Now assume that α = 1∞. For βn, we have that βn = β1

nβ
2
nβ

3
n . . ., where βkn is a block

of nk digits of βn. Thus, σ(βn) = ϕe(β
k
n)

k , where βkn is the first block containing at least
one zero digit. Since βn→ α, n→∞, and limk→∞ max0≤j≤2nk−2 DS1(ϕ

j
k , idS1) = 0,

we have that

lim
n→∞ DS1(σ (βn), idS1) = 0.

That is, σ is continuous.

Thus, when (C1) is satisfied, σ is a cocycle. Hence, we have a skew product flow (X =
Z(2)× S

1, F�):

F� � τσ : X→ X, F�(α, y) = (τ (α), σ(α)y) =
{
(τ (α), ϕe(α

k)
k (y)), α �= 1∞;

(0, y), α = 1∞,
(6.4)

where αk is the first block in (6.1) containing at least one zero digit when α �= 1∞.

6.4. The form of Fn�. Let α = α1α2 . . . ∈ Z(2) as in (6.1) and z0 ∈ S
1. Let

Fn�(α, z0) = (τnα, zn).

We need to know the formula of zn for some special n.
For simplicity, we always assume the following conditions hold:

ϕ0
k = idS1 for all k ∈ N, (C2)

and

�k = ϕ2nk−2
k ◦ ϕ2nk−3

k ◦ · · · ◦ ϕ1
k ◦ ϕ0

k = idS1 for all k ∈ N. (C3)

First we have a formula for α = 0. By an easy induction, we have the following lemma.

LEMMA 6.4. Let (0, y0) ∈ Z(2)× S
1 and (n, yn) = Fn�(0, y0). Let mk = 2n1+n2+···+nk

for all k ∈ N. Then

ymk = ϕ0
k+1 ◦ ψk(y0) = y0, (6.5)

and

ys·mk = ϕs−1
k+1 ◦ ϕs−2

k+1 ◦ · · · ◦ ϕ1
k+1 ◦ ϕ0

k+1(y0), 1 ≤ s < 2nk+1 . (6.6)

Now we see the general case. Let α = α1α2 . . . ∈ Z(2) as in (6.1) and z0 ∈ S
1. We

denote Fn�(α, z0) = (τnα, zn). Let

ψ+k = ϕe(α
k)−1

k ◦ ϕe(αk)−2
k ◦ · · · ◦ ϕ1

k ◦ ϕ0
k for all k ∈ N, (6.7)
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and

ψ−k = ϕ2nk−2
k ◦ ϕ2nk−3

k ◦ · · · ◦ ϕe(αk)+1
k ◦ ϕe(αk)k for all k ∈ N. (6.8)

By the assumption (C3), one has that (ψ+k )−1 = ψ−k .
By an easy induction, we have the following lemma.

LEMMA 6.5. Let α = α1α2 . . . ∈ Z(2) as in (6.1) and z0 ∈ S
1. Let Fn�(α, z0) =

(τnα, zn). Let mk = 2n1+n2+···+nk for all k ∈ N. Then

F
mk−e(α1α2...αk)
� (α, z0) = (0n1+···+nk τ (αk+1αk+2 · · · ), zmk−e(α1α2...αk)), (6.9)

where zmk−e(α1α2...αk) = ϕe(α
k+1)

k+1 ◦ ψ−k ◦ ψ−k−1 ◦ · · · ◦ ψ−1 (z0). And

F
mk
� (α, z0) = (α1α2 . . . αkτ (αk+1αk+2 . . .), zmk ), (6.10)

where zmk = ψ+1 ◦ ψ+2 ◦ · · · ◦ ψ+k ◦ ϕe(α
k+1)

k+1 ◦ ψ−k ◦ · · · ◦ ψ−1 (z0).

Remark 6.6. (i) To simplify the calculation, if we require that

ϕ1
k = ϕ2

k = · · · = ϕ2nk−1−1
k � ϕk ,

ϕ2nk−1

k = ϕ2nk−1+1
k = · · · = ϕ2nk−2 � ϕ−k = (ϕk)−1,

then ψ+k = (ϕk)ck , ψ−k = (ϕ−k )ck , where ck = 2nk−1 − 1− |e(αk)− 2nk−1|. Thus, (6.10)
will be

zmk = (ϕ1)
c1 ◦ (ϕ2)

c2 ◦ · · · ◦ (ϕk)ck ◦ ϕe(αk+1)
k+1 ◦ (ϕ−k )ck ◦ · · · ◦ (ϕ−1 )c1(z0). (6.11)

(ii) By (6.6), (6.9), for j < k, 1 ≤ s < 2nj+1 , we have

F
mk−e(α1α2...αk)+s·mj
� (α, z0) = (sτ (αk+1αk+2 . . .), zmk−e(α1α2...αk)+s·mj ), (6.12)

where zmk−e(α1α2...αk)+s·mj = ϕs−1
j+1 ◦ ϕs−2

j+1 ◦ · · · ◦ ϕ1
j+1 ◦ ϕ0

j+1(zmk−e(α1α2...αk)).

6.5. Uniform rigidity. A discrete flow (X, F) is rigid if there exists an increasing
sequence {ni}i∈N in N such that Fni x converges to x as i goes to infinity for every x ∈ X
(that is, Fni converges pointwisely to the identity map). A flow (X, F) is uniformly rigid
if there exists an increasing sequence {ni}i∈N in N such that supx∈X d(x, Fni x)→ 0 as
i goes to infinity (that is, Fni converges uniformly to the identity map). Refer to [18] for
more information about topological rigidity.

LEMMA 6.7. Let F be a finite subset of H(X, X), where (X, ρX) is a compact metric
space. Then for any ε > 0, there is a δ > 0 such that for any continuous map h : X→ X

with DX(h, idX) < δ, we have

DX(ψ ◦ h ◦ ψ−1, idX) < ε for all ψ ∈ F .

Proof. For any ε > 0, there exists δ > 0 such that whenever ρX(x1, x2) < δ,

ρX(ψ
−1(x1), ψ−1(x2)) < ε for all ψ ∈ F .
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Then for continuous map h : X→ X with D(h, idX) < δ, we have that

ρX(h(ψ(x)), ψ(x)) < δ for all x ∈ X, for all ψ ∈ F .

It follows that

ρX(ψ
−1 ◦ h ◦ ψ(x), x) < ε for all x ∈ X, for all ψ ∈ F .

That is,

DX(ψ ◦ h ◦ ψ−1, idX) < ε for all ψ ∈ F .

The proof is complete.

PROPOSITION 6.8. Suppose that � satisfies (C1), (C2), and (C3). Then the skew product
flow (Z(2)× S

1, F�) is uniformly rigid.

Proof. By (6.10), for any (α, z0) ∈ X = Z(2)× S
1, we get

F
mk
� (α, z0)

= (α1α2 . . . αkτ (αk+1αk+2 . . .), ψ(α1α2 . . . αk)ϕ
e(αk+1)
k+1 ψ−1(α1α2 . . . αk)(z0)),

where ψ(α1α2 . . . αk) = ψ+1 ◦ ψ+2 ◦ · · · ◦ ψ+k . By the assumption (C1) that

lim
k→∞ max

0≤j≤2nk−2
DS1(ϕ

j
k , idS1) = 0,

and Lemma 6.7, we have that

lim
k→∞ DX(F

mk
� , idX) = 0,

that is, (Z(2)× S
1, F�) is uniformly rigid.

6.6. Minimality. Now we specify the homeomorphisms {ϕj2k−1 : 1 ≤ j ≤ 2n2k−1 −
2}∞k=1 to make the flow (Z(2)× S

1, F�) minimal. Let

ϕ
j

2k−1(z) =
{

exp (iθk) · z, 1 ≤ j ≤ 2n2k−1−1 − 1;

exp (−iθk) · z, 2n2k−1−1 − 1 < j ≤ 2n2k−1 − 2,
(C4)

where θk = 2π/(2n2k−1−1 − 1). That is, ϕj2k−1 is a rotation of S
1 with angle θk in the

anti-clockwise direction if 1 ≤ j ≤ 2n2k−1−1 − 1 and in the opposite direction otherwise.
We remark that this construction satisfies the assumption (C3), that is, ψ2k−1 = id.

PROPOSITION 6.9. Suppose that � satisfies (C1), (C2), (C3), and (C4). Then the skew
product flow (Z(2)× S

1, F�) is uniformly rigid and minimal.

Proof. Let α ∈ Z(2) and S
1
α = α × S

1. First we show that for any y0 ∈ S
1,

O((0, y0), F�) = Z(2)× S
1.

By (6.6), for 1 ≤ s < 2n2k−1 , one has that

F
s·m2k−2
� (0, y0) = (0n1+n2+···n2k−2s0∞, ys·m2k−2),
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where ys·m2k−2 = ϕs−1
2k−1 ◦ ϕs−2

2k−1 ◦ · · · ◦ ϕ1
2k−1 ◦ ϕ0

2k−1(y0). As a result, {ys·m2k−2 : 1 ≤
s ≤ 2n2k−1−1 − 1} is θk = 2π/(2n2k−1−1 − 1)−dense in S

1. (Recall the definition of
ε-dense subsets: if S is a subset of a metric space, then B in S is ε-dense in S for given
ε > 0 if for any s ∈ S, there is b ∈ B such that the distance between s and b is < ε.)
Moreover, for any y ∈ S

1, there exists 1 ≤ sk ≤ 2n2k−1−1 − 1 such that

lim
k→∞ ysk ·m2k−2 = y.

Thus,

F
sk ·m2k−2
� (0, y0)→ (0, y), k→∞.

Thus, S1
0 ⊆ O((0, y0), F�). Since Fn�(S

1
0) = S

1
n, we have

Z(2)× S
1 =

⋃
n∈Z+

S1
n ⊆ O((0, y0), F�).

Thus,

O((0, y0), F�) = Z(2)× S
1 for all y0 ∈ S

1.

Now we show that for any (α, z0) ∈ Z(2)× S
1, one has

O((α, z0), F�) = Z(2)× S
1.

As (Z(2), τ) is minimal, there exists some {pk} such that

lim
k→∞ τ

pk (α) = 0.

Without loss of generality, we may assume that

lim
k→∞ F

pk
� (α, z0) = (0, y0)

for some y0 ∈ S
1. Thus, Z(2)× S

1 = O((0, y0), F�) ⊆ O((α, z0), F�). Thus,

O((α, z0), F�) = Z(2)× S
1.

Hence, (Z(2)× S
1, F�) is minimal. Moreover, by Proposition 6.8, it is uniformly rigid.

The proof is complete.

6.7. Proximality. In this subsection, we specify the homeomorphisms {ϕj2k : 1 ≤ j ≤
2n2k − 2}∞k=1 to make the extension π : (Z(2)× S

1, F�)→ (Z(2), τ), (α, z0) �→ α to
be proximal. Recall that S1 = {exp(i2πx) : 0 ≤ x < 1}. Let ϕj2k : S1 → S

1 be defined as
follows:

ϕ
j

2k(exp(i2πx)) =
{

exp(i2πxtk ), 1 < j ≤ 2n2k−1 − 1;

exp(i2πx1/tk ), 2n2k−1 − 1 < j ≤ 2n2k − 2,
(C5)

where {tk}k∈N is a decreasing sequence such that tk > 1, limk→∞ tk = 1 and
limk→∞ t2

n2k
k = +∞. For example, {tk = 32−n2k/2}k∈N satisfies the condition. Notice that

the construction of ϕj2k also satisfies the convention (C3), that is, ψ2k = id.
To verify that π is proximal, we begin with the following lemma.
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LEMMA 6.10. Let π : (X, T )→ (Y , T ) be an extension of minimal flows. If there exists
y0 ∈ Y such that for any x1, x2 ∈ π−1(y0), (x1, x2) ∈ P(X, T ), then π is proximal.

Proof. Let (x1, x2) ∈ Rπ and π(x1) = π(x2) = y1. Since (Y , T ) is minimal, we can find
p ∈ E(X, T ) such that

py1 = y0.

So px1, px2 ∈ π−1(y0). According to the assumption, there exists q ∈ E(X, T ) such that

qpx1 = qpx2.

It follows that

(x1, x2) ∈ P(X, T ).

Thus, π is proximal.

PROPOSITION 6.11. Suppose that � satisfies (C2), (C4), and (C5). Then the extension
π : (Z(2)× S

1, F�)→ (Z(2), τ), (α, z) �→ α is a proximal extension of uniformly rigid
minimal flows.

Proof. First notice that (C4) and (C5) imply (C1) and (C3). It follows that (Z(2)× S
1, F�)

is uniformly rigid and minimal by Proposition 6.9.
By Lemma 6.10, it suffices to show that for arbitrary z(1)0 , z(2)0 ∈ S

1, one has

((0, z(1)0 ), (0, z(2)0 )) ∈ P(Z(2)× S
1, F�).

Let z(1)0 = exp (i2πx1), z
(2)
0 = exp (i2πx2), where 0 ≤ x1, x2 < 1. Let dS1 be the metric

of S1. Let Fm� ((0, z(j)0 )) = (0, z(j)m ) for j = 1, 2 andm ∈ N. Letmk = 2n1+n2+···+nk for all
k ∈ N. Then by Lemma 6.4,

lim
k→∞ dS1(z

(1)
2n2k−1·m2k−1

, z(2)
2n2k−1·m2k−1

)= lim
k→∞dS1(exp(i2πx

t
(2n2k−1−1)
k

1 ), exp(i2πx
t
(2n2k−1−1)
k

2 )).

Since limk→∞ t2
n2k
k =+∞ and 0≤xj <1, j=1, 2, we have that limk→∞ x

t
(2n2k−1−1)
k

j =0
for j = 1, 2. Thus,

lim
k→∞ dS1(z

(1)
2n2k−1·m2k−1

, z(2)
2n2k−1·m2k−1

)

= lim
k→∞ dS1(exp(i2πx

t
(2n2k−1−1)
k

1 ), exp(i2πx
t
(2n2k−1−1)
k

2 ))

= dS1(1, 1) = 0.

In particular,

lim
k→∞ ρX((F� × F�)

2n2k−1·m2k−1((0, z(1)0 ), (0, z(2)0 ))) = 0.

It follows that ((0, z(1)0 ), (0, z(2)0 )) ∈ P(Z(2)× S
1, F�).
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6.8. Proximal extensions and n-weakly mixing extensions. In §4.1, we mentioned that
the fact that π : (X, T )→ (Y , T ) is weakly mixing does not imply that π is totally weakly
mixing. In this subsection, we give such examples. The main result of this subsection is
the following theorem.

THEOREM 6.12
(1) There are proximal extensions of discrete minimal flows which are weakly mixing but

not 3-weakly mixing.
(2) There are proximal extensions of discrete minimal flows which are totally weakly

mixing.

Proof of (1) of Theorem 6.12. Suppose that� satisfies (C2), (C4), and (C5). We show that
the extension

π : (Z(2)× S
1, F�)→ (Z(2), τ), (α, z) �→ α

is weakly mixing but not 3-weakly mixing. Since π is open proximal by Proposition 6.11,
it is weakly mixing by Theorem 4.6. Now we show that π is not 3-weakly mixing, that is,
(R3

π , F (3)� ) is not transitive.
We may regard R3

π as Z(2)× S
1 × S

1 × S
1. Suppose (R3

π , F (3)� ) is transitive, and
let (α, x1, x2, x3) ∈ Z(2)× S

1 × S
1 × S

1 be a transitive point. Let y1, y2, y3 be distinct
points of S1 and β ∈ Z(2). Then (β, y1, y2, y3) is in the orbit closure of the transitive point
(α, x1, x2, x3). By the construction of� ((C4) and (C5)), F� preserves orientation, that is,
for all α ∈ Z(2), F� maps {α} × S

1 to {τα} × S
1 such that it sends the unit circle with the

anti-clockwise orientation into the unit circle with the anti-clockwise orientation. It follows
that (β, y1, y3, y2) can not be in the orbit closure of the transitive point (α, x1, x2, x3).
Thus, (R3

π , F (3)� ) is not transitive.

For the proof of (2) of Theorem 6.12, we need some preparations. We use the notation
in §6.1.

THEOREM 6.13. [19, Theorem 4] Let G be a pathwise connected subgroup of H(Z, Z)
such that (Z, G) is a weakly mixing flow. Then for a residual subset R ⊆ SG(f ), (X, F) is
a weakly mixing extension of (Y , f ) for every F ∈ R.

By the same proof of [19, Theorem 4], we can show the following: if G is a pathwise
connected subgroup of H(Z, Z) such that (Zn, G) is a transitive flow, then for a residual
subset Rn ⊆ SG(f ), (X, F) is an n-weakly mixing extension of (Y , f ) for every F ∈ Rn.
Let R =⋂∞

n=2 Rn. Then we have the following result which slightly generalizes Theorem
6.13.

THEOREM 6.14. Let G be a pathwise connected subgroup of H(Z, Z) such that (Z, G) is
a flow such that (Zn, G) is transitive for all n ≥ 2. Then for a residual subset R ⊆ SG(f ),
(X, F) is a totally weakly mixing extension of (Y , f ) for every F ∈ R.

According to [19], if we choose Z = Pn, n ≥ 2 to be the projective n-space, and let G
be a pathwise connected component of idZ in H(Z, Z), then G satisfies the conditions of
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Theorems 6.1, 6.2, and 6.14. Thus, for an arbitrary minimal infinite flow (Y , f ), there are
many minimal homeomorphisms of Y × Z which are proximal and totally weakly mixing
extensions of (Y , f ). And we have proved (2) of Theorem 6.12.

Remark 6.15. Note that the examples in Theorem 6.12(1) are uniformly rigid by
Proposition 6.11. By the proof of Proposition 6.5 of [18], one may also require that
the examples in Theorem 6.12(2) are uniformly rigid.

6.9. Almost proximal. In this subsection, we modify the construction of homeomor-
phisms {ϕj2k : 1 ≤ j ≤ 2n2k − 2}∞k=1 to make the extension

π : (Z(2)× S
1, F�)→ (Z(2), τ), (α, z0) �→ α

almost proximal.
Let n ∈ N be a fixed number. Let ω = exp (i(2π/n)). We always write intervals on S

1

anti-clockwise, so [z1, z2] denotes the anti-clockwise closed interval beginning at z1 and
ending at z2:

Sq = [ωq−1, ωq ] =
[

exp
(
i
2π
n
(q − 1)

)
, exp

(
i
2π
n
q

)]
, q ∈ {1, 2, . . . , n}.

Then

S
1 = S1 ∪ S2 ∪ · · · ∪ Sn.

Thus, S
1 is divided into n closed intervals equally. For each q ∈ {1, 2, . . . , n}, we

may regard Sq as [0, 1] (via the map Sq = [exp (i(2π/n)(q − 1)), exp (i(2π/n)q)]→
[0, 1], exp (i2πx) �→ nx − (q − 1), where ((q − 1)/n) ≤ x ≤ q/n) and let the map
ϕ
j

2k|Sq : Sq → Sq be isomorphic to gk(x) = xtk : [0, 1]→ [0, 1] when 1 ≤ j ≤ 2n2k−1 −
1; and g−1

k (x) = x1/tk : [0, 1]→ [0, 1] when 2n2k−1 − 1 < j ≤ 2n2k − 2, where {tk}k∈N
is a decreasing sequence tending to 1 and limk→∞ t2

n2k
k = +∞.

To be precise, for each q ∈ {1, 2, . . . , n}, when z = exp (i2πx) ∈ Sq , (q − 1)/n ≤
x ≤ q/n, ϕj2k : Sq → Sq is defined as follows:

ϕ
j

2k(z) = ϕj2k(exp (i2πx))

=

⎧⎪⎪⎨⎪⎪⎩
exp

(
i2π

(nx − (q − 1))tk + (q − 1)
n

)
, 1 ≤ j ≤ 2n2k−1 − 1;

exp
(
i2π

(nx − (q − 1))1/tk + (q − 1)
n

)
, 2n2k−1 − 1 < j ≤ 2n2k − 2,

(C6)

where {tk} is a decreasing sequence tending to 1 and limk→∞ t2
n2k
k = +∞. Thus, for

each q ∈ {1, 2, . . . , n}, ϕj2k|Sq : Sq → Sq has exactly two fixed points. Notice that the

construction of ϕj2k also satisfies the convention (C3), that is, ψ2k = id.
Note that when n = 1, S1 is exactly S

1 and (C6) coincides with (C5).
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PROPOSITION 6.16. Suppose that � satisfies (C2), (C4), and (C6). Then the extension

π : (Z(2)× S
1, F�)→ (Z(2), τ), (α, z) �→ α

is an almost proximal extension of uniformly rigid minimal flows, and the cardinality of
maximal almost periodic set in each fiber is n.

Proof. First notice that (C4) and (C6) imply (C1) and (C3). It follows that (Z(2)× S
1, F�)

is uniformly rigid and minimal by Proposition 6.9.
Let α ∈ Z(2) and z0 ∈ S

1. Let

xj =
(
α, z0 exp

(
i
2π
n
(j − 1)

))
= (α, z0ω

j−1) ∈ π−1α), 1 ≤ j ≤ n.

First we show that {x1, x2, . . . , xn} is an almost periodic set. To attain that aim, we
show (x1, x2, . . . , xn) is a minimal point of (Xn, F (n)� ), where F (n)� = F� × · · · × F�
(n times).

By the conditions (C4) and (C6), we have

ρX(F�(xj ), F�(xj+1)) = ρX(xj , xj+1) = 2π
n

, 1 ≤ j ≤ n− 1. (6.13)

Let (y1, y2, . . . , yn) be a minimal point of O((x1, x2, . . . , xn), F
(n)
� ) with y1 = x1.

(First we choose any minimal point (y′1, y′2, . . . , y′n) in O((x1, x2, . . . , xn), F
(n)
� ). Since

(X, F�) is minimal, there is some p ∈M such that py′1 = x1. Let (y1, y2, . . . , yn) =
p(y′1, y′2, . . . , y′n). Then (y1, y2, . . . , yn) is a minimal point of O((x1, x2, . . . , xn), F

(n)
� )

with y1 = x1.) By (6.13),

ρX(yj , yj+1) = ρX(xj , xj+1) = 2π
n

, 1 ≤ j ≤ n− 1.

Since F� preserves orientation, we have

[x1, x2] = [y1, y2] = [x1, y2],

and hence x2 = y2. By the same reason, we have xj = yj for 3 ≤ j ≤ n. Thus,
(x1, x2, . . . , xn) = (y1, y2, . . . , yn) is minimal.

Next we show that for each α ∈ Z(2), z1, z2 ∈ S
1, if ρX((α, z1), (α, z2)) < 2π/n, then

(α, z1), (α, z2) are proximal. Without loss of generality, we may assume that α = 0 and
z1, z2 ∈ [1, ω). By (C6), for z = exp (i2πx) ∈ S1 = [1, ω], (0 ≤ x ≤ 1/n)

ϕ
j

2k(z) = ϕj2k(exp (i2πx)) =

⎧⎪⎪⎨⎪⎪⎩
exp

(
i2π

(nx)tk

n

)
, 1 ≤ j ≤ 2n2k−1 − 1;

exp
(
i2π

(nx)1/tk

n

)
, 2n2k−1 − 1 < j ≤ 2n2k − 2.

Let mk and ym be defined as in Lemma 6.4. According to (6.6), for 1 ≤ s < 2n2k ,

F
s·m2k−1
� (0, y0) = (0n1+n2+···n2k−1s0∞, ys·m2k−1),

where ys·m2k−1 = ϕs−1
2k ◦ ϕs−2

2k ◦ · · · ◦ ϕ1
2k ◦ ϕ0

2k(y0). Let z1 = exp (i2πa1), z2 = exp
(i2πa2) and s = 2n2k−1, where 0 ≤ a1, a2 < 1/n. Then for j = 1, 2, by conditions on
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{tk}k∈N and naj < 1, we have that limk→∞(naj )t
2n2k−1
k = 0, and

F
sm2k−1
� (0, zj ) =

(
0n1+n2+···n2k−1s0∞, exp

(
i2π

(naj )
t2
n2k−1
k

n

))
→ (0, 1), k→∞.

Thus,

((0, z1), (0, z2)) ∈ P(Z(2)× S
1, F�).

To sum up, we have showed that for α ∈ Z(2), A ⊆ π−1(α) is an almost peri-
odic set with maximal cardinality if and only if A = {(α, z0 exp (i(2π/n)(j − 1))) =
(α, z0ω

j−1) : 1 ≤ j ≤ n} for some z0 ∈ S
1. The proof is complete.

6.10. Some remarks. The method to construct the flow (Z(2)× S
1, F�) is modified

from the examples in [7]. This kind of construction originally was from the study of a
triangular map of the unit square [0, 1]2, which is a continuous map F : [0, 1]2 → [0, 1]2

of the form F(x, y) = (f (x), gx(y)). For a short survey of triangular maps, see [25].
We may replace S

1 by T
n, Pn, etc., to get similar minimal flows. Since S

1 is enough
for our purpose, we do not use them in this paper. However, for different purposes, using
manifolds with higher dimension may be useful.

7. Further discussion
In this section, we give some questions.

7.1. Proximality and chaos. First we restate Problem 5.23. in [2].

Question 1. If a minimal flow is not point distal (that is, for any point x ∈ X, there is
x′ �= x such that (x, x′) is proximal), is it chaotic in the sense of Li–Yorke?

In this paper, we show that if a minimal flow (X, T ) is an almost proximal but not
almost finite-to-one extension of some flow (Y , T ), then (X, T ) is not point distal and it is
Li–Yorke chaotic. See [2, §5] for another special case about Question 1.

7.2. Proximality and weak mixing. As mentioned before, any minimal proximal flow is
weakly mixing. In fact, for minimal proximal flows, one can say more.

THEOREM 7.1. Let (X, T ) be a proximal minimal flow. Then for every x ∈ X, the set

{y ∈ X : O((x, y), T ) = X ×X}
is residual in X.

Proof. First we show that for any non-empty open subsets V , U ′, V ′ of X, there is some
t ∈ T such that

({tx} × tV ) ∩ U ′ × V ′ �= ∅. (7.1)

Since (X, T ) is minimal, there is a finite subset {t1, t2, . . . , tn} of T such that X =⋃n
i=1 tiV . As (X, T ) is proximal, (t1x, t2x, . . . , tnx) ∈ P (n). And there is some t0 ∈ T

such that
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t0t1x, t0t2x, . . . , t0tnx ∈ U ′.
Note that t−1

0 V ′ ∩⋃n
i=1 tiV = t−1

0 V ′ ∩X �= ∅, there is some j ∈ {1, 2, . . . , n} such that
t−1
0 V ′ ∩ tjV �= ∅. Thus,

({t0tj x} × t0tjV ) ∩ U ′ × V ′ �= ∅.
So we have (7.1).

Let {Ui}∞i=1 be a base for X ×X. By (7.1), the set

Ai = {y ∈ X : there is some t ∈ T such that t (x, y) ∈ Ui}
is a dense open subset of X. It follows that

{y ∈ X : O((x, y), T ) = X ×X} =
∞⋂
i=1

Ai

is residual in X.

Our question is does the relative version of the theorem above hold?

Question 2. Let π : (X, T )→ (Y , T ) be a non-trivial open proximal extension of mini-
mal flows. For each y ∈ Y and each x ∈ π−1(y), is the subset

{x′ ∈ π−1(y) : O((x, x′), T ) = Rπ }
residual in π−1(y)?

7.3. Openness and perfectness. It is a well-known fact that for a homomorphism
of ergodic measure-preserving systems, either almost all fibers have constant, finite
cardinality or almost all fibers have the cardinality of the continuum. In Theorems 4.2
and 4.7, almost all fibers are perfect. In fact, in the topological case, we have the following
general result.

THEOREM 7.2. [1, Theorem 6.31] Let π : (X, T )→ (Y , T ) be an extension of minimal
flows. Then one of the following holds:
(1) π is almost finite to one;
(2) every fiber π−1(y) is infinite and {y ∈ Y : π−1(y) is perfect } is a residual subset of

Y.

However, the proof of theorem above does not imply that in (2), every fiber is perfect
even for open extensions. Thus we have the following question.

Question 3. Let π : (X, T )→ (Y , T ) be an extension of minimal flows. If π is open and
is not finite-to-one, is every fiber π−1(y) perfect?

7.3.1. Some special cases. For some special cases, we have positive answer for Question
3. First, we have that for some special weakly mixing extensions, each fiber is perfect.
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THEOREM 7.3. [23] Let π : (X, T )→ (Y , T ) be a non-trivial weakly mixing RIC exten-
sion of minimal flows. Then each fiber is perfect.

In the rest of the section, we show that if a distal extension is not finite-to-one, each
fiber is perfect. To prove this result, we need the Furstenberg–Ellis structure theorem.

Furstenberg’s structure theorem for distal flows [13] says that any distal minimal flow
can be constructed by equicontinuous extensions. We state the result in its relative version
of Ellis [10]. Let π : (X, T )→ (Y , T ) be a distal extension of minimal flows. Then there is
an ordinal η (which is countable when X is metrizable) and a family of flows {(Zn, T )}n≤η
such that:
(i) Z0 = Y ;

(ii) for every n < η there exists a homomorphism ρn+1 : Zn+1 → Zn which is
equicontinuous;

(iii) for a limit ordinal ν ≤ η the flow Zν is the inverse limit of the flows {Zι}ι<ν ;
(iv) Zη = X.

Y = Z0
ρ1←− Z1

ρ2←− · · · ρn←− Zn ρn+1←− Zn+1 ←− · · · ρη←− Zη = X. (7.2)

When Y = {pt} is the trivial flow, we have the structure theorem for a distal minimal
flow.

THEOREM 7.4. Let π : (X, T )→ (Y , T ) be a distal extension of minimal flows. If π is
not finite-to-one, then each fiber is perfect.

Proof. We need an equivalent characterization of an equicontinuous extension. Let M be
a homogeneous compact metric space. By this, we mean a compact metric space such that
for any two points x, y ∈ M , there is an isometry of M taking x into y. The isometries of
M form a compact group H, M may be identified with a coset space H/H0, where H0 is
the subgroup of H leaving a given point of M fixed.

Let π : X→ Y be an extension of flows. Then π is equicontinuous if and only if there
exists a continuous map ρ : Rπ → R such that for each y ∈ Y , ρ defines a metric on the
fiber Xy = π−1(y) under which Xy is isometric to M, and ρ(tx1, tx2) = ρ(x1, x2) for all
t ∈ T and (x1, x2) ∈ Rπ [13]. Thus, if π is equicontinuous, then each fiber is isometric to
M = H/H0. Hence, if π is not finite-to-one, then each fiber is perfect.

To deal with distal extensions, we use the Furstenberg–Ellis structure theorem as stated
above. Let {(Zn, T )}n≤η be the factors. Since π is not finite-to-one, either η is not finite
ordinal and each ρn is finite-to-one, or there is some n ≤ η such that ρn is not finite-to-one.
In the first case, each fiber is an inverse limit of finite sets and it is a Cantor set; in the
second case, ρn is an infinite-to-one equicontinuous extension and each fiber of ρn is
perfect and by this, we claim that each fiber of π is also perfect. To prove the second
case, we need the following claim: if π1 : (X1, T )→ (X2, T ), π2 : (X2, T )→ (X3, T )
are open extensions such that each fiber of π1 or π2 is perfect, then each fiber of π2 ◦ π1 is
perfect. First, by definition, it is easy to see that when each fiber of π1 is perfect, we have
each fiber of π2 ◦ π1 is perfect. Next, we show the other case. Suppose that each fiber of π2

is perfect. We show that for each z ∈ X3, (π2 ◦ π1)
−1(z) is perfect. Let x ∈ (π2 ◦ π1)

−1(z)

and y = π1(x). Clearly, y ∈ π−1
2 (z), and by perfectness of π−1

2 (z), one can find yn ∈
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π−1
2 (z) such that yn→ y as n→∞. Since π1 is open, there exists xn ∈ X such that
π1(xn) = yn and xn→ x as n→∞. To sum up, there are xn ∈ (π2 ◦ π1)

−1(z) such that
xn→ x, n→∞. Thus, each point of (π2 ◦ π1)

−1(z) is not isolated and (π2 ◦ π1)
−1(z) is

perfect. Thus, we have the claim. By this claim and the Furstenberg–Ellis structure theorem
(7.2), one can show that each fiber of π is perfect.

7.4. Open proximality and entropy. Our last question is about entropy. Let π :
(X, Z)→ (Y , Z) be an extension of discrete flows. If htop(X) > htop(Y ), then lots of
fibers will have very complex properties (see [29] for example). We are not sure that open
proximal extensions can reach those kinds of complexity. Thus, we have the following
question.

Question 4. Let π : (X, Z)→ (Y , Z) be an open proximal extension of discrete minimal
flows. Is it true that htop(X) = htop(Y )?

Note that in Question 4, openness is a necessary condition, since there are many minimal
flows which are almost one-to-one extensions of their maximal equicontinuous factors, and
they have positive entropy by [14, Theorem 1].
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