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Abstract. The expansion of the magnetic field in a series o f force-free constituents for the internal 
field and that of 'semi' force-free constituents for the external field results in the skew symmetry of 
the coupling tensor of a magnetohydrodynamic dynamo. The periodic solution which exists in this 
case is deduced by the method of eigenvalues. Based on the numerical results a dynamo model is 
proposed to draw up the characteristic features of the magnetographic observations carried along the 
central meridian and at the polar areas. 

The coupling tensor ctsn in the eigenvalue theory of the magnetohydrodynamic dynamo 
is transformed to skew-symmetric form. In this case the solutions to the dynamo 
equation give a magnetic field with periodical variation superimposed on decays. 
The velocity is steady. 

On applying Gauss's integral theorem, the tensor ocsn can be written in the form 

v(curlH s x H „ ) d T 

« . = - - : • ( 1 ) 

The surface integral involved in the complete expression goes here to zero owing to 
the boundary conditions imposed on the velocity and magnetic field. 

Two methods are available for the transformation of a to skew-symmetric form. 
(1) Let H„ be a force-free vector satisfying the equation 

curlHw x H „ = 0. (2) 

(The magnetic field is not force-free since it is defined as 

H = E « . W H , ( r , M ) (3) 

and the sum of force-free vectors is not force-free). 
Applying the dynamo to the internal field of the Sun, H„ is governed by the equation 

k2 

J H B + ^ H „ = 0 (4) K 
and the coupling tensor has the form 

fc. f v ( H 5 x H B ) d t 

« s n = - ~ ^ • (5) 
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(2) In the other method one uses the assumption that only the r and 6 components 
of H„ have force-free character and the velocity has only a cp component, then 

j H s

2 dr 

(6) 

which can be easily transformed to skew-symmetric form. 
Applying this formulation to the external field, H„ is governed by the equation 

J H „ - ^ H „ = 0. (7) 
K 

In the next step the infinite tensor a s n is reduced to a finite tensor by the modification 
of the velocity and thus the infinite determinant of c/Lsn splits into the double product 

\*sn-iQdsn\ = DlD2=Oi (8) 

where Dx is a finite and D2 is an infinite determinant. By putting Dx =0, no higher 
terms than those present at the start of the dynamo will be generated. 

Two models were computed in terms of the present dynamo. Both have the same 
internal field but in the first case the external field is assumed to be random without 
any average contribution to the field fluctuations while in the second no random 
fluctuations are supposed to occur in the external field deduced from (6) and (7). 

The numerical and analytical results obtained in these models seem to account for 
the interpretation of the following phenomena in solar physics. 

(i) The cyclical variation of the general field. In a general expansion of the theory 
the cyclical variation is presented by the superposition of a large number of periodic 
terms arising in Bn(t). In the present solution the analysis is performed up to the 
first four terms of (3) and thus two periods were obtained. The periods evaluated 
with the use of the second model are about ten times shorter than the corresponding 
periods deduced in the first model, i.e. 

Pt= 27.36 yr P 2 = 137.45 yr first model 
Pt = 1.60 yr P2 = 95.33 yr second model 

It seems reasonable to describe the cyclical variations of the solar activity by coupling 
of the two models. Thus, the second model applies to the minimum since its time scale 
is short and negligible magnetic disturbances are observed in the photosphere, while 
the first model, having a longer time scale during which practically no general field is 
present in terms of the averages of the magnetic fluctuations, holds for the maximum. 

(ii) The average surface distribution and the variation of weak photospheric fields. 
These phenomena are accounted for in terms of the second model. The field component 
of the line of sight is calculated for the central meridian as a function of time (Figure 1). 
These results are intended to explain the magnetogram observations averaged over 
rotation periods. 
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(iii) The field reversal observed at the poles is deduced by the first model (Figure 2). 
No simple variation of the polar field is obtained. As an approximate law of variation 
one can calculate with the superposition of two periods. The longer period has a larger 
amplitude at one of the poles while at the other the amplitude of the shorter period 
is longer. 

Fig. 1. Characteristic variation of the magnetic field (in arbitrary units) as it should be observed 
along the central meridian and averaged over rotation periods during the solar cycles. The results 
are based on the present dynamo model . The solar latitude is plotted on the vertical axis, the time on 

the horizontal axis. 
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Fig. 2. The variations of the polar fields during the solar cycles as they are obtained in the present 
theory. The field strengths are measured in arbitrary units. 
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