Hostname: page-component-8448b6f56d-c47g7 Total loading time: 0 Render date: 2024-04-16T05:12:30.157Z Has data issue: false hasContentIssue false

Non-Destructive Micro-Chemical and Micro-Luminescence Characterization of Jadeite

Published online by Cambridge University Press:  21 December 2016

Alejandro Mitrani Viggiano*
Affiliation:
Instituto de Física, Universidad Nacional Autónoma de México, Apdo. Postal 20-364, Mexico DF 01000, Mexico
José Luis Ruvalcaba Sil
Affiliation:
Instituto de Física, Universidad Nacional Autónoma de México, Apdo. Postal 20-364, Mexico DF 01000, Mexico
Mayra D. Manrique Ortega
Affiliation:
Instituto de Física, Universidad Nacional Autónoma de México, Apdo. Postal 20-364, Mexico DF 01000, Mexico
Victoria Corregidor Berdasco
Affiliation:
IPFN, IST/CTN, Universidade de Lisboa, E.N. 10, 2686-953 Sacavém, Portugal
*
*Corresponding author. alemitra@gmail.com.
Get access

Abstract

Jadeite was greatly appreciated by pre-Hispanic cultures in Mesoamerica. Despite its importance, knowledge of its mining sources was lost after the Spanish conquest. In the 1950s the only confirmed jadeite deposits in Mesoamerica were found in the Motagua River Fault (MRF), Guatemala. The aim of this study is to present a methodology that is appropriate for the study of archeological jadeite objects using non-destructive spectroscopic and micro-ion beam analysis techniques. This methodology has been applied to perform mineral, elemental, and luminescence characterization of five jadeite samples from the MRF, with white, lilac, and green colors. Fourier-transformed infrared spectroscopy and X-ray diffraction analysis confirmed the presence of jadeite, albite, and omphacite as the main mineral phases in the samples. Elemental maps using particle-induced X-ray emission (PIXE) with a nuclear microprobe and elemental concentration analysis from individual mineral grains using micro-PIXE coupled with micro-ionoluminescence (IL) allowed the detection of minor feldspar, titanite, and grossular mineral contents. Distinctive features from the mineral, elemental, and luminescence characterization have been found that allow the identification of these five jadeite samples.

Type
Materials Applications
Copyright
© Microscopy Society of America 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alves, L.C., Breese, M.B.H., Alves, E., Paúl, A., Da Silva, M.R., Da Silva, M.F. & Soares, J.C. (2000). Micron-scale analysis of SiC/SiCf composites using the new Lisbon nuclear microprobe. Nucl Instrum Methods Phys Res B 161–163, 334338.Google Scholar
Calligaro, T., Dran, J.-C., Ioannidou, E., Moignard, B., Pichon, L. & Salomon, J. (2000). Development of an external beam nuclear microprobe on the AGLAE facility of the Louvre Museum. Nucl Instrum Methods Phys Res B 161–163, 328333.Google Scholar
Calvo del Castillo, H., Ruvalcaba, J.L. & Calderón, T. (2007). Some new trends in the ionoluminescence of minerals. Anal Bioanal Chem 387, 869878.Google Scholar
Campbell, J.L., Boyd, N.I., Grassi, N., Bonnick, P. & Maxwell, J.A. (2010). The Guelph PIXE software package IV. Nucl Instrum Methods Phys Res B 268, 33563363.CrossRefGoogle Scholar
Czelusniak, C., Palla, L., Massi, M., Carraresi, L., Giuntini, L., Re, A., Lo Giudice, A., Pratesi, G., Mazzinghi, A., Ruberto, C., Castelli, L., Fedi, M.E., Liccioli, L., Gueli, A., Mandò, P.A. & Taccetti, F. (2016). Preliminary results on time-resolved ion beam induced luminescence applied to the provenance study of lapis lazuli. Nucl Instrum Methods Phys Res B 371, 336339.Google Scholar
Delgado, A.A., Ruvalcaba, J.L., Claes, P., Manrique, M.D., Casanova, E., Maynez, M.A., Cuevas, M. & García, S. (2015). Non-destructive in situ spectroscopic analysis of greenstone objects from royal burial offerings of the Mayan site of Palenque, Mexico. Heritage Sci 3, 20.CrossRefGoogle Scholar
Dopfel, E.C. (2006). The chemical activators of cathodo-luminescence in jadeite. Bachelor of Arts Thesis, Mount Holyoke College, Massachusetts, USA. Available at https://www.mtholyoke.edu/courses/mdyar/theses/Erin_Dopfel_2006.pdf (retrieved April, 2016).Google Scholar
Dran, J.-C., Salomon, J., Calligaro, T. & Walter, P. (2004). Ion beam analysis of art works: 14 years of use in the Louvre. Nucl Instrum Methods Phys Res B 219–220, 715.Google Scholar
Finch, A.A., Hole, D.E. & Townsend, P.D. (2003). Orientation dependence of luminescence in plagioclase. Phys Chem Miner 30, 373381.CrossRefGoogle Scholar
Flores, K.E., Martens, U.C., Harlow, G.E., Brueckner, H.K. & Pearson, N.J. (2013). Jadeitite formed during subduction: In situ zircon geochronology constraints from two different tectonic events within the Guatemala Suture Zone. Earth Planet Sci Lett 371–372, 6781.CrossRefGoogle Scholar
Gaft, M. & Panczer, G. (2013 a). Laser-induced time-resolved luminescence spectroscopy of minerals: a powerful tool for studying the nature of emission centres. Miner Petrol 107, 363372.CrossRefGoogle Scholar
Gaft, M., Yeates, H., Nagli, L. & Panczer, G. (2013 b). Laser-induced time resolved luminescence of natural grossular Ca3Al2(SiO4)3 . J Lumin 137, 4353.CrossRefGoogle Scholar
Garcia-Guinea, J., Correcher, V., Sanchez-Muñoz, L., Finch, A.A., Hole, D.E. & Townsend, P.D. (2007). On the luminescence emission band at 340 nm of stressed tectosilicate lattices. Nucl Instrum Methods Phys Res A 580, 648651.Google Scholar
Garcia-Guinea, J., Townsend, P.D., Sanchez-Muñoz, L. & Rojo, J.M. (1999). Ultraviolet-blue ionic luminescence of alkali feldspars from bulk and interfaces. Phys Chem Miner 26, 658667.CrossRefGoogle Scholar
Gendron, F., Smith, D.C. & Gendron-Badou, A. (2002). Discovery of jadeite-jade in Guatemala confirmed by non-destructive Raman microscopy. J Archaeol Sci 29, 837851.Google Scholar
Götze, J. (2002). Potential of cathodoluminescence (CL) microscopy and spectroscopy for the analysis of minerals and materials. Anal Bioanal Chem 374, 703708.Google Scholar
Götze, J. (2012). Application of cathodoluminescence microscopy and spectroscopy in geosciences. Microsc Microanal 18, 12701284.Google Scholar
Gucsik, A., Nishido, H., Ninagawa, K., Toyoda, S., Bidló, A., Brezsnyánsky, K. & Tsuchiyama, A. (2005). Cathodoluminescence spectral studies of the experimentally shock-deformed plagioclase: A possible explanation of CL peak shifts. Lun Planet Sci Conf. XXXVI, Abstract 1239.Google Scholar
Hargett, D. (1990). Jadeite of Guatemala: A contemporary view. Gems Gemol 26, 134141.Google Scholar
Harlow, G.E., Sisson, V.B. & Sorensen, S.S. (2011). Jadeitite from Guatemala: New observations and distinctions among multiple occurrences. Geol Acta 9, 363387.Google Scholar
Hauff, P.L. (1993). The enigma of jade, with mineralogical reference to Central American source. In Precolumbian Jade: New Geological and Cultural, Lange, F.W. (Ed.), pp. 82103. Salt Lake City, UT: University of Utah Press.Google Scholar
Howard, K.B. (2001). Jadeite, a historical treatise. Gemmology Canada. Available at https:www.cigem.ca (retrieved April, 2016).Google Scholar
International Center for Diffraction Data, ICDD (2016). PDF-4 software. Available at http://www.icdd.com/products/pdf4.htm (retrieved October, 2016).Google Scholar
Johnson, C.A. & Harlow, G.E. (1999). Guatemala jadeitites and albitites were formed by deuterium-rich serpentinizing fluids deep within a subduction zone. Geology 27, 629632.Google Scholar
Kovacevich, B. (2011). The Organization of Jade Production at Cancuen, Guatemala. In The Technology of Maya Civilization: Political Economy and Beyond in Lithic Studies, Hruby Z., Chinchilla O. & Braswell G. (Eds.), pp. 149161. London: Equinox Publishing.Google Scholar
Krbetschek, M.R., Götze, J., Dietrich, A. & Trautmann, T. (1997). Spectral information from minerals relevant for luminescence dating. Radiat Meas 27, 695748.CrossRefGoogle Scholar
Lo Giudice, A., Re, A., Calusi, S., Giuntini, L., Massi, M., Olivero, P., Pratesi, G., Albonico, M. & Conz, E. (2009). Multitechnique characterization of lapis lazuli for provenance study. Anal Bioanal Chem 395, 22112217.Google Scholar
MacRae, C.M. & Wilson, N.C. (2008). Luminescence Database I—minerals and materials. Microsc Microanal 14, 184204.CrossRefGoogle ScholarPubMed
Mei, O.Y.C., Qi, L.J., Hansheng, L. & Kwok, B. (2003). Recent studies on inky black omphacite jade, a new variety of pyroxene jade. J Gemm 28, 337344.Google Scholar
Nagabhushana, H., Singh, F., Sharma, S.C., Nagabhushana, B.M. & Chakradhar, R.P.S. (2012). Ionoluminescence studies of natural kyanite mineral from different parts of Indian origin. Spectrochim Acta A Mol Biomol Spectrosc 86, 1519.Google Scholar
Ng, Y.-N., Shi, G.-H. & Santosh, M. (2016). Titanite-bearing omphacitite from the Jade Tract, Myanmar: Interpretation from mineral and trace element compositions. Asian J Earth Sci 117, 112.CrossRefGoogle Scholar
Niespolo, E., Holk, G., Neff, H. & Kovacevich, B. (2014). Using stable isotopes to link Maya Jade Artifacts and Geologic Sources in the Motagua Valley, Guatemala: A refined method to determine artifact provenance. Poster presented at 79th Society for American Archaeology Annual Meeting, Austin, TX, April, 2014.Google Scholar
Ostrooumov, M. (2007). Espectrometría infrarroja de reflexión en mineralogía avanzada, gemología y arqueometría. Mexico city: Instituto de Geofísica, UNAM.Google Scholar
Pagel, M., Barbin, V., Blanc, P. & Ohnenstetter, D. (2000). Cathodoluminescence in the Geosciences. Berlin, Heidelberg and New York: Springer.CrossRefGoogle Scholar
Pallon, J., Yang, C., Utui, R.J., Elfman, M., Malmqvist, K.G., Kristiansson, P. & Sjöland, K.A. (1997). Ionoluminescence technique for nuclear microprobes. Nucl Instrum Methods Phys Res B 130, 199203.CrossRefGoogle Scholar
Petriglieri, J.R., Salvioli-Mariani, E., Mantovani, L., Tribaudino, M., Lottici, P.P., Laporte-Magoni, C. & Bersani, D. (2015). Micro-Raman mapping of the polymorphs of serpentine. J Raman Spectrosc 46, 953958.CrossRefGoogle Scholar
Pichon, L., Calligaro, T., Gonzalez, V., Lemasson, Q., Moignard, B. & Pacheco, C. (2015). Implementation of ionoluminescence in the AGLAE scanning external microprobe. Nucl Instrum Methods Phys Res B 348, 6872.Google Scholar
Re, A., Lo Giudice, A., Angelici, D., Calusi, S., Giuntini, L., Massi, M. & Pratesi, G. (2011). Lapis lazuli provenance study by means of micro-PIXE. Nucl Instrum Methods Phys Res. B 269, 23732377.Google Scholar
Roca Cogordan, M. (2012). Piedras del Cielo. Civilizaciones del Jade. Mexico city: CONACULTA/INAH.Google Scholar
Ruvalcaba-Sil, J.L., Manzanilla, L., Melgar, E. & Lozano Santa Cruz, R. (2008). PIXE and ionoluminescence for Mesoamerican jadeite characterization. X-Ray Spectrom 37, 9699.Google Scholar
Sorensen, S., Harlow, G.E. & Rumble, III, D. (2006). The origin of jadeitite-forming subduction-zone fluids: CL-guided SIMS oxygen-isotope and trace-element evidence. Am Mineral 91, 979996.Google Scholar
Taube, K., Hruby, Z. & Romero, L. (2004). Jadeite sources and ancient workshops: Archaeological reconnaissance in the Upper Río El Tambor, Guatemala. FAMSI reports. Available at http://www.famsi.org/reports/03023/ (retrieved April, 2016).Google Scholar
Townsend, P.D. (2012). Variations on the use of ion beam luminescence. Nucl Instrum Methods Phys Res B 286, 3539.Google Scholar
Townsend, P.D., Khanlary, M. & Hole, D.E. (2007). Information obtainable from ion beam luminescence. Surf Coat Technol 201, 81608164.Google Scholar
Tuncer Arslanlar, Y., Garcia-Guinea, J., Kibar, R., Çetin, A., Ayvacikli, M. & Can, N. (2011). Luminescence behavior and Raman characterization of jade from Turkey. Appl Radiat Isot 69, 12991306.Google Scholar
Tykot, R.H. (2004). Scientific methods and applications to archaeological provenance studies. In Proceedings of the International School of Physics ‘Enrico Fermi’, Course CLIV, Martini, M., Milazzo, M. & Piacentini M. (Eds.), pp. 407–432. Amsterdam: IOS Press.Google Scholar
Verma, H.R. (2007). Atomic and Nuclear Analytical Methods. Berlin: Springer.Google Scholar
Wang, X., Shi, G.H., Qui, D.F., Wang, J. & Cui, W.Y. (2012). Grossular-bearing jadeite omphacite rock in the Myanmar jadeite area: A kind of jadeitized rodingite? Eur J Mineral 24, 237246.Google Scholar
Yang, C., Malmqvist, K.G., Hanchar, J.M., Utui, R.J., Elfman, M., Kristiansson, P., Pallon, J. & Sjöland, A. (1997). Ionoluminescence combined with PIXE in the nuclear microprobe for the study of inorganic materials. AIP Conf Proc 392, 735738.Google Scholar