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Background
Individuals with cocaine use disorder or gambling disorder
demonstrate impairments in cognitive flexibility: the ability to
adapt to changes in the environment. Flexibility is commonly
assessed in a laboratory setting using probabilistic reversal
learning, which involves reinforcement learning, the process by
which feedback from the environment is used to adjust behavior.

Aims
It is poorly understood whether impairments in flexibility differ
between individuals with cocaine use and gambling disorders,
and how this is instantiated by the brain. We applied computa-
tional modelling methods to gain a deeper mechanistic explan-
ation of the latent processes underlying cognitive flexibility
across two disorders of compulsivity.

Method
We present a re-analysis of probabilistic reversal data from
individuals with either gambling disorder (n = 18) or cocaine use
disorder (n = 20) and control participants (n = 18), using a hier-
archical Bayesian approach. Furthermore, we relate behavioural
findings to their underlying neural substrates through an analysis
of task-based functionalmagnetic resonanceimaging (fMRI) data.

Results
We observed lower ‘stimulus stickiness’ in gambling disorder,
and report differences in tracking expected values in individuals

with gambling disorder compared to controls, with greater
activity during reward expected value tracking in the cingulate
gyrus and amygdala. In cocaine use disorder, we observed lower
responses to positive punishment prediction errors and greater
activity following negative punishment prediction errors in the
superior frontal gyrus compared to controls.

Conclusions
Using a computational approach, we show that individuals with
gambling disorder and cocaine use disorder differed in their
perseverative tendencies and in how they tracked value neurally,
which has implications for psychiatric classification.
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Background

The diagnostic criteria for both substance use disorder (SUD) and
gambling disorder in the DSM-5 include unsuccessful attempts to
stop substance misuse or gambling, jeopardising relationships and
educational/career opportunities, and financial troubles arising as
a consequence of the disorder.1 Compulsivity, a key feature of
both gambling disorder and SUD, is defined as persistent actions
inappropriate for a given situation, which have no clear relationship
to the overall goal and frequently result in undesirable conse-
quences.2 Gambling disorder and SUD are disorders of compulsiv-
ity and their behavioural phenotypes may overlap, but also diverge
in certain aspects.3 Gaining a clearer definition of these phenotypes
could inform the development of new treatments for disorders of
compulsivity.

A further common feature of gambling disorder and SUD is
behavioural inflexibility, defined as a deficit in adjusting behaviour
based on changes in environmental feedback.4,5 Individuals with a
stimulant-related SUD exhibit higher rates of perseverative
responding following a contingency change during probabilistic
reversal learning (PRL), a paradigm used to investigate cognitive
flexibility.6 During this task, individuals learn which action is

associated with reward through trial and error. Following changes
in stimulus contingencies, individuals need to flexibly adjust behav-
iour. Indeed, reversal learning is impaired in rats and monkeys fol-
lowing prolonged exposure to cocaine.7,8

Patients with gambling disorder, in comparison, show difficulties
in learning novel stimulus-outcome associations following contin-
gency changes during reversal learning.4 Following repeated negative
feedback, patients with gambling disorder tend to stay rather than
switch their response, or switch prematurely after little or no negative
feedback during PRL.5 Individuals with gambling disorder perform
significantly worse than healthy controls on the Intra-/Extra-
Dimensional Set Shifting test, which assays higher-order cognitive
flexibility, with impairments observed at the extra-dimensional shift
stage (requiring the most flexibility).9 In a meta-analysis of partici-
pants diagnosed with gambling disorder on the related Wisconsin
Card Sorting Test, patients made more perseverative errors than
healthy controls.10 Overall, it is evident that individuals with gambling
disorder are impaired on cognitive flexibility tasks and have greater
perseverative tendencies, similar to individuals with SUD.

Reinforcement learning modelling

Reinforcement learning is the process by which positive and nega-
tive feedback from the environment is used to adjust behaviour,† Joint last authors.
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to maximise rewards and minimise punishment.11 In recent years,
reinforcement learning models have been used increasingly to
gain deeper insights into the latent mechanisms underlying PRL
on a trial-by-trial basis, which are represented by model parameters.
One example of such a parameter is the exploration versus exploit-
ation parameter, which reflects the extent to which learned values
contribute to choice behaviour. ‘Stickiness’ parameters track the
tendency to repeatedly choose the same stimulus regardless of
outcome (i.e. ‘stimulus stickiness’) or the tendency to repeat
choices in the same location as before, irrespective of outcome
(i.e. ‘side stickiness’). These stickiness parameters fractionate the
construct of perseveration as they parse different types of repetitive
behaviours; for example, toward a location or a stimulus.
Additionally, standard measures of perseveration assess behaviour
following a contingency reversal, whereas stickiness accounts for a
tendency to repeat behaviours across all trials. Reward and punish-
ment learning rates can also be determined via reinforcement learn-
ing models, which index the speed at which the expected value of a
choice is updated after a better or worse than expected outcome
(reward or punishment prediction error). Indeed, reinforcement
learning impairments following drug use and withdrawal have
been demonstrated in rodents and humans. In rats, increased
exploitation and stickiness have been reported after cocaine self-
administration.12 Humans with SUD have also been found to
have higher levels of stickiness, alongside greater punishment learn-
ing rates and lower reward learning rates.13 Critically, the reinforce-
ment learning fingerprint during PRL in gambling disorder has not
been elucidated.

Neural substrates of reward processing in disorders of
compulsivity

Cocaine use disorder (CUD) has been associated with altered
reward processing linked to differences in frontostriatal activity.
For example, a study employing functional magnetic resonance
imaging (fMRI) has found that individuals diagnosed with CUD
exhibited lower blood–oxygen level dependent (BOLD) signals in
the orbitofrontal cortex (OFC) than control participants, following
monetary gains on a forced-choice task containing three monetary
value conditions.14 Neural activity is also known to be altered in
patients with SUD during PRL, such as in the middle frontal
gyrus (MFG) and caudate nucleus, areas known to contribute to
performance on this task.6,15 A meta-analysis of 52 studies reported
that the OFC is hypoactive following detoxification in participants
with CUD across different decision-making tasks.16 Thus, it is
evident that activity of striatal and prefrontal cortical (PFC)
regions is altered in CUD.

fMRI studies in individuals with gambling disorder have also
found differential recruitment of PFC areas during reward-based
tasks.3 The ventromedial PFC (vmPFC), an area activated during
monetary reward tasks in healthy individuals that is important for
reward processing, shows lower task-related activation in
gambling disorder.17 On the Iowa Gambling Task, greater activity
in individuals with gambling disorder during high-risk
choices has been reported in the right caudate, OFC, vmPFC,
superior frontal gyrus (SFG), amygdala and hippocampus.18

Furthermore, lower activity in the right ventrolateral PFC
(vlPFC) has been linked to higher levels of perseveration on a
PRL task.19 These findings point to altered reward processing in
gambling disorder and suggest the involvement of cortical areas
such as the vmPFC and OFC, as well as subcortical structures;
several areas overlap with those also affected in CUD. However,
the neural substrates underlying reinforcement learning in gam-
bling disorder and CUD are not clearly defined. In rats, stickiness
positively correlated with resting-state fMRI activity between the

medial OFC (mOFC), PFC and subcortical structures.20,21 In
humans, the link between reinforcement learning behaviour and
neural activity in these clinical populations has not yet been
established.

Study summary

Here, we present a re-analysis of a previously published data-set,22

using novel computational methods. Individuals with CUD, gam-
bling disorder and controls completed a PRL task in an fMRI
scanner. In the previous publication arising from this data-set, con-
ventional PRL measures were calculated and compared between the
groups. There, it was reported that a behavioural variable reflecting
the perseveration error rate was increased in the CUD group, with
no differences observed in the gambling disorder group.
Additionally, both patient groups had lower vlPFC activation
when shifting responding following a reversal. In the new analysis
presented here, reinforcement learning models are employed to
reveal latent processes underlying behaviour on the PRL task, via
a potentially more sensitive trial-by-trial approach. Through the
fMRI data, the reinforcement learning parameters can be linked
to their associated neural substrates. To our knowledge, no previous
studies have analysed PRL data from patients with gambling dis-
order, using reinforcement learning models. Based on our recent
work that showed the concept of stickiness was critical for dissoci-
ating other disorders of compulsivity,13 we hypothesised that
individuals with gambling disorder and CUD would show impair-
ments in stickiness, and that stickiness would be greater in CUD.
Neurally, we predicted that activity in the OFC would be linked to
the reward learning rate, and that medial PFC and dorsal striatal
activity would reflect the stickiness parameter.

Method

Participants

Fifty-six participants took part in this study. These comprised 18
healthy controls who did not meet any of the criteria for an Axis
1 or 2 disorder; 18 individuals who met the DSM-IV-TR criteria
for pathological gambling and 20 individuals who met the criteria
for cocaine dependence. Here, we use the terms CUD and gambling
disorder, which are the current nomenclature in the DSM-5, rather
than cocaine dependence and pathological gambling, as used in the
DSM-IV-TR.1

Basic behavioural data in association with fMRI findings from
this study have previously been published.22 The authors assert
that all procedures contributing to this work comply with the
ethical standards of the relevant national and institutional commit-
tees on human experimentation and with the Helsinki Declaration
of 1975, as revised in 2008. All procedures involving human patients
were approved by the Ethics Committee for Research in Humans,
University of Granada, Spain (approval number CEIH 2009/052).
Participants signed an informed consent form to confirm their vol-
untary participation and were all equally reimbursed for their par-
ticipation. Written informed consent was obtained from all
participants. Please see Supplementary Material available at
https://doi.org/10.1192/bjo.2023.611 for further information on
participant recruitment.

PRL task

This task was similar to the PRL task used by Cools et al.15 Two
abstract, coloured stimuli were presented on the right and left side
of the visual display. Stimulus location was randomised. At the
beginning of the tasks, everyone was informed that one stimulus
was the ‘correct’ stimulus (CS+), and the other stimulus was the
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‘incorrect’ stimulus (CS−). Participants had to learn the correct and
incorrect stimulus through a trial-and-error approach. The CS+
resulted in a reward on only 85% of the trials, whereas the CS−
was rewarded 15% of the time. Following 10–15 correct responses,
the contingencies were reversed. All participants were trained on the
PRL task outside the scanner before the initial scan, for which dif-
ferent stimuli were used. During scanning, there were three con-
secutive blocks that consisted of ten discriminations (nine
reversals), with a duration of 11 min per block.

Magnetic-resonance-compatible liquid-crystal display goggles
were used to present the stimuli (Resonance Technology,
California, USA). All responses were recorded with the Evoke
Response Pad System (Resonance Technology). This button box
was located on the participant’s chest. The duration of stimulus
presentation was 2000 ms. If participants failed to respond during
this time, a ‘too late’ message was presented. Following a ‘correct’
response, a green smiley face was presented, and following an
‘incorrect’ response, a red sad face was shown. Feedback was pre-
sented for 500 ms, during which time the stimulus remained on
the screen. Following feedback presentation, there was a variable
inter-trial interval, which was adjusted by the program, for a final
interstimulus interval duration between stimuli of 3253 ms. This
interstimulus interval duration was selected to enable a precise
desynchronisation from the repetition time (2000 ms).

Reinforcement learning modelling

The PRL data was modelled with reinforcement learning models,
using a hierarchical Bayesian approach. Six different models were
run to test different combinations of model parameters, implemen-
ted through Stan for R (RStan version 2.26.1; see https://mc-stan.
org/users/interfaces/rstan).23

Q values were updated on a trial-by-trial basis, according to the
following equation:

Qtþ1(ct) ¼ Qt(ct)þ α × (rt � Qt(ct)): ð1Þ

Qt+1(ct) is the expected value for the next trial based on the stimulus
that is chosen on the current trial, Qt(ct) is the expected value of the
choice taken on the current trial, α is the learning rate and rt is
the reinforcement on trial t (1 for reward and 0 for punishment).
The learning rate influences how much the participant updates
the Q value based on the prediction error rt−Qt(ct), with higher
α driving faster learning.

The probability of making one of two choices, given the
Q-values for each, was calculated using the softmax decision rule:

P(ct ¼ L j Qt(L), Qt(R)) ¼ eQt (L)β

eQt (L)β þ eQt (R)β
: ð2Þ

Qt(L) and Qt(R) are the Q-values of the left and right stimuli, and β
is the reinforcement sensitivity parameter, which determines to
what extent the participant is driven by its reinforcement history
(versus random choice). Six models were tested and the parameters
from the winning model were subsequently used for data simula-
tion. Further information on these methods can be found in the
Supplementary Material.

First-level models

Information on image acquisition and pre-processing can be found
in the Supplementary Material. First-level linear models were fit
through FEAT (FSL for Linux, Analysis Group, FMRIB, Oxford,
UK; see https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FslInstallation/Linux).24

A first-level model was fit for each run, and included the following

event types: (a) reward expected value, (b) positive reward predic-
tion error (RPE), (c) negative RPE, (d) punishment expected
value, (e) positive punishment prediction error (PPE), (f) negative
PPE and (g) response/feedback presentation. The RPE is when the
prediction error is greater than 0 (when the outcome is better
than the expected value) and is positive when there is a reward,
and negative if the reward is omitted. The PPE is the prediction
error is below 0 (outcome is worse than the expected value).
Similar to the RPE, it is positive if there is a reward, and negative
when these is no reward. RPEs take values between 0 and 1,
whereas PPEs are between 0 and−1. Expected values and prediction
errors were extracted for each trial from the winning Q-learning
model. Explanatory variables 1–6 were based on the extracted
values of prediction error and expected Q-values as calculated in
Eq. 1. The model was based on an analysis presented previously.25

Event types 1 and 4 were fitted during stimulus presentation,
whereas 2, 3, 4 and 6 were fitted during feedback presentation.
These first-level model regressors represent trial-level measures,
whereas the reinforcement learning parameters introduced in the
previous section are participant-level measures. Expected values,
RPEs and PPEs were added as parametric modulators for the
respective event types. Six movement parameters (x, y, z, pitch,
roll, yaw) were incorporated into the model, which resulted from
the image realignment to control for movement artefacts.

Higher-level models

The first-level models were averaged across the three runs for each
participant, resulting in the second-level models. Third-level,
mixed-effects, whole-brain analyses involving one-factor, three-
level analyses of variance with post hoc t-tests and cluster threshold-
ing with a Z threshold of ±3.1 and P < 0.05 were used to investigate
the contrasts for each event type.26 Subsequently, an analysis of
covariance (ANCOVA) was run as an additional exploratory ana-
lysis. In the ANCOVA, model parameters from the best-fitting
reinforcement learning model were extracted for each participant
and included as predictors. The aim of this analysis was to investi-
gate group differences in the correlation between activity in a given
region and a reinforcement learning parameter (i.e. a group ×
reinforcement learning parameter interaction). Reinforcement
learning parameters were also correlated with the BOLD signal
from all participants, regardless of group. FSLeyes (FSL) was used
to generate figures.27 In all figures, the right and left sides are
inverted from the observer’s perspective (according to standard
radiological convention).

Results

Demographic information

There were no significant differences in age, gender, IQ, handedness
or years of education between the groups (Table 1).22

Selecting the winning model

Table 2 reports the results from the six reinforcement learning
models tested and model comparison measures. Satisfactory
model convergence was confirmed, as all parameters and contrasts
had a potential scale reduction factor of <1.1, with the maximum
value being 1.006.

The winning model (model 6) contained five parameters: the
reward learning rate αrew, representative of how quickly an individ-
ual updates (increases) Q-values in response to positive feedback;
the punishment learning rate αpun, reflecting how quickly an indi-
vidual updates (decreases) the Q-value following punishment;
reinforcement sensitivity β, also known as the exploitation versus
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exploration or inverse temperature parameter; stimulus stickiness
κstim, which is the tendency to select the same stimulus regardless
of outcome, and side stickiness κside, which is the tendency to
select the same side regardless of outcome.

Reinforcement learning results

Figure 1 shows results of the hierarchical Bayesian reinforcement
learning analysis. Neither the reward learning rate nor the punish-
ment learning rate were affected in gambling disorder or CUDwhen
compared with healthy controls. However, there was evidence that
the reward learning rate αrew was lower in the CUD group than the
gambling disorder group (difference in parameter per-group mean,
posterior 75% highest density interval (HDI) excluding zero).
Reinforcement sensitivity was lower in the CUD group compared
with the gambling disorder group, reflecting more exploratory
behaviour in the CUD group, as well as higher κstim in the CUD
group compared with the gambling disorder group (group differ-
ences, 0 ∉ 75% HDI). Side stickiness was not different in either
patient group compared with the control group (no group differ-
ences, 0∈ 75% HDI). There was evidence for lower stimulus sticki-
ness at 75% HDI in the gambling disorder group compared with
healthy controls (group difference, 0 ∉ 75% HDI). There were
no differences in the CUD group when compared with the
control group (no group differences, 0∈ 75% HDI). To summarise,
we found evidence for the stimulus stickiness parameter κstim being
lower in the gambling disorder group compared with healthy con-
trols. No differences at 95% HDI were observed. We note that
95% HDI provides stronger evidence for there being group differ-
ences than 75% HDI; however, 75% HDI is also considered to
provide sufficient evidence and has been used as a threshold in pre-
vious studies.28

Simulations

The parameters from the winning reinforcement learning model
were used to simulate the behavioural data and determine
whether this model could replicate the behaviour observed initially
via raw data measures. When these data were analysed with a con-
ventional approach to extract raw data measures such as the propor-
tion of correct responses trials to criterion and number of
perseverative responses, no statistically significant differences
between the groups were found. These findings thus align with
the results for the conventional behavioural measures presented in

Verdejo-Garcia et al,22 suggesting that the model was able to repro-
duce the behavioural dynamics on this task. The results can also be
seen in the Supplementary Material.

Brain activity during reward and punishment expected
value tracking in gambling disorder

The model fitted to the task-based fMRI data included seven
explanatory variables, as above: (a) reward expected value, (b) posi-
tive RPE, (c) negative RPE, (d) punishment expected value, (e) posi-
tive PPE, (f) negative PPE and (g) response/feedback presentation.
We found differences in the neural responses to reward and punish-
ment expected value in the gambling disorder group compared with
controls. Specifically, we observed that when tracking reward
expected value, individuals with gambling disorder had greater acti-
vations in the amygdala; hippocampus; parahippocampal gyrus;
lateral occipital cortex; superior, inferior and middle temporal
gyri; posterior cingulate gyrus and precuneus than healthy controls
(Fig. 2 and Table 3). These effects were only observed in the left
hemisphere.

For punishment expected value, we observed the opposite trend:
individuals with gambling disorder showed lower activity in the
superior parietal lobule, pre- and postcentral gyri, precuneus, par-
ietal operculum, supramarginal gyrus and angular gyrus compared
with healthy controls (Fig. 3 and Table 4). Activations were seen in
both hemispheres, but were more pronounced in the right
hemisphere.

Neural signal to positive and negative punishment
prediction errors is altered in CUD

We observed aberrant neural responses in CUD as well, specifically
in response to positive and negative PPEs. Compared with control
participants, individuals with CUD exhibited lower activity in the
paracingulate gyrus and left SFG in response to positive PPEs.
Conversely, individuals with CUD showed greater activity in the
left SFG and MFG in response to negative PPEs (Figs 4 and 5 and
Tables 5 and 6, respectively).

Further results on the neural responses to feedback presentation
can be found in the Supplementary Material.

Whole-brain correlation analyses

The five parameters from the winning reinforcement learning
model were used in a whole-brain correlation analysis to identify
whether they correlated with the BOLD signal during each event
type in any of the brain regions. This was done to identify the
brain regions underlying reinforcement learning parameters. The
first analysis related the parameters to activity from all participants.

This analysis highlighted that the αrew parameter correlated
negatively with activity in the cingulate and paracingulate gyri,
inferior frontal gyrus (IFG), middle and superior temporal gyri,
insular cortex and mOFC during reward expected value tracking,
as well as responses to positive PPEs. This parameter also correlated
negatively with activity in the putamen, mOFC and insula during
positive RPEs.

Table 1 Demographic information

Healthy controls (n = 18) Gambling disorder (n = 18) Cocaine use disorder (n = 20) Group comparisons

Mean age, years (s.d.) 31.2 (4.7) 33.6 (8.0) 34.3 (6.9) F(2,54) = 1.43, P = 0.35
Gender (female) 1 2 1 χ2(2,56) = 0.59, P = 0.75
Verbal IQ, mean (s.d.) 106.9 (9.0) 102.7 (7.4) 100.9 (7.6) F(2,54) = 2.31, P = 0.082
Years of education, mean (s.d.) 10.6 (1.9) 10.3 (2.1) 9.8 (1.7) F(2,54) = 1.37, P = 0.47
Handedness (left) 1 1 4 χ2(2,56) = 2.80, P = 0.25

Table 2 Model comparison summary

Model Rank Parameters
Log marginal
likelihood

Log posterior
P

1 4 α, β −13 159.06 −573.18
2 5 α, β, κstim −13 018.42 −432.54
3 3 αrew, αnon-rew, β −13 130.08 −544.21
4 2 αrew, αnon-rew, β, κstim −13 003.72 −417.85
5 6 αrew, αnon-rew, β, κside −13 168.48 −582.60
6 1 αrew, αnon-rew, β, κside, κstim −11 139.35 0.000

Models were assumed to be equiprobable a priori. α, learning rate; αrew, learning rate
from rewarded trials; αnon-rew, learning rate from non-rewarded trials; β, reinforcement
sensitivity; κside, side stickiness; κstim, stimulus stickiness.
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Next, an ANCOVA was run to compare task-based activity
among the different groups. In the gambling disorder group, αrew
correlated more strongly with activity in the SFG, MFG and post-
central gyrus during reward expected value tracking compared
with the healthy control and CUD groups (Supplementary Fig. 3).
In the CUD group, the correlation between αrew and activity
during the positive PPE was greater in the frontal pole, SFG, and
cingulate and paracingulate gyri compared with the healthy
control and gambling disorder groups (Supplementary Fig. 4).

In both patient groups, stimulus stickiness (κstim) had a stronger
positive correlation with activity in the right MFG and IFG during
response/feedback presentation compared with control partici-
pants, suggesting that there is greater activity in these areas in
patients when repeating a response regardless of previous outcomes
(Fig. 6). No other correlations with reinforcement learning para-
meters were found.

Discussion

In this study, we examined reinforcement learning processes during
a classic test of behavioural flexibility (PRL) in individuals with
gambling disorder and CUD. Our computational modelling
approach enabled the assessment of how both value-based (learning
rates, reinforcement sensitivity) and value-free (stimulus and side
stickiness) contributed to choice behaviour. The key behavioural
result was that individuals with gambling disorder showed
reduced choice repetition (stimulus stickiness), irrespective of the
feedback received, suggestive of a maladaptive exploratory
pattern. Reduced stimulus stickiness in gambling disorder contrasts
with our recent observation of greater choice repetition in SUD,
regardless of reinforcement.13 Our findings also extend the results
presented in Verdejo-Garcia et al,22 which found a higher persever-
ation error rate in CUD and no differences in gambling disorder.

Reward rate: gambling disorder – healthy controls

Group differences

Mean ± 75/95% HDI

Reward rate: CUD – healthy controls
Reward rate: CUD – gambling disorder

Punishment rate: gambling disorder – healthy controls
Punishment rate: CUD – healthy controls

Punishment rate: CUD – gambling disorder
Reinforcement sensitivity: gambling disorder – healthy controls

Reinforcement sensitivity: CUD – healthy controls
Reinforcement sensitivity: CUD – gambling disorder

Side stickiness: gambling disorder – healthy controls
Side stickiness: CUD – healthy controls

Side stickiness: CUD – gambling disorder
Stimulus stickiness: gambling disorder – healthy controls

Stimulus stickiness: CUD – healthy controls
Stimulus stickiness: CUD – gambling disorder

–2 –1 0 1 2

Fig. 1 Results from the hierarchical Bayesian winning reinforcement learning model, showing differences in group mean parameters. Orange
indicates 0 ∉ 75% HDI. CUD, cocaine use disorder; HDI, highest density interval.

Fig. 2 Reward expected value tracking: differences between healthy controls and participants with gambling disorder (Montreal Neurological
Institute coordinates: Y = −18 to −11). Activity was higher in the gambling disorder group in the areas indicated. Colour bar on the right-hand side
represents the t-statistic.
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We thus demonstrate that the use of reinforcement learning model-
ling can provide a novel insight into PRL data, and may help to
explain which parameters contribute to differences in conventional
measures. Stimulus stickiness (a form of choice repetition) may
therefore present a novel way of dissociating compulsive disorders,
in this case gambling disorder and CUD. However, we note that
group differences were only observed at 75% HDI, but not at
95%. Furthermore, the sample sizes were relatively small.

We provide a novel and unexpected insight into how reinforce-
ment learning parameters are affected in gambling disorder – that
stimulus stickiness was reduced in this group. A similar reduction
in stimulus stickiness has also been observed in another compulsive
disorder, obsessive–compulsive disorder (OCD).13 However, in
gambling disorder, the reduction in stimulus stickiness was accom-
panied by slightly higher levels of side stickiness κside (below 75%
HDI), whereas in OCD there was additionally a mild reduction in
side stickiness.13 In other words, the computational profile of gam-
bling disorder and OCD appears to be distinct. Perseveration is not
a unitary construct: side stickiness may be representative of motor
perseveration, whereas stimulus stickiness reflects stimulus persev-
eration. Side stickiness may therefore represent excessive motor per-
severation. In contrast, lower stimulus stickiness may reflect

another form of behavioural inflexibility that is overly exploratory
yet outcome insensitive. Low stimulus stickiness in gambling dis-
order detected during trial-and-error learning in a laboratory
setting may therefore reflect a real-life increase in exploration of
choices in an attempt to identify an optimal strategy, e.g. tracking
new stimuli in a casino game. Overall, value-free contributors to
choice behaviour have allowed for novel dissociations of gambling
disorder, OCD and SUD, and point to a possible computational fin-
gerprinting, which could eventually be useful for informing psychi-
atric classification.

At the neural level, group differences were also observed
during ongoing reinforcement learning processes. Differences in
brain activity when tracking reward and punishment expected
values were seen in participants with gambling disorder. In
these individuals, there was greater activity in response to
reward expected values in areas including the amygdala, hippo-
campus and cingulate gyrus compared with healthy controls.
When tracking punishment expected values, on the other hand,
there was lower activity in regions such as the postcentral gyrus,
superior parietal lobule and occipital areas, suggesting that indivi-
duals with gambling disorder differentially track expected values
of stimuli in their surroundings in favour of reward-related

Table 3 Summary of peak functional magnetic resonance imaging activity for the reward expected value controls versus gambling disorder contrast

Name Brodmann area Side MNI coordinates (X, Y, Z) Number of voxels Volume (mm3) Mean Z-statistic

Middle temporal gyrus 21 Left −57, −6, −17 365 5893 3.63
Precuneus 7 Left −3, −66, 33 224 3617 3.68
Cingulate gyrus 24, 32 Left −9, −50, 27 182 2939 3.71
Superior temporal gyrus 22, 42 Left −46, −14, −8 112 1808 3.49
Lateral occipital cortex 19 Left −57, −62, −6 97 1566 3.79
Hippocampus 28 Left −21, −10, −24 81 1308 3.45
Amygdala – Left −23, −5, −17 68 1098 3.41
Parahippocampal gyrus 27 Left −17, −10, −24 59 953 3.38
Inferior temporal gyrus 20 Left −57, −57, −13 29 468 3.42

Whole-brain analysis involving one-sample t-tests with cluster thresholding with a Z threshold of 3.1 and P < 0.05. The areas indicated show greater activity in participants with cocaine use
disorder than healthy control participants. MNI, Montreal Neurological Institute template.

Fig. 3 Punishment expected value tracking: differences between healthy controls and participants with gambling disorder (Montreal
Neurological Institute coordinates: Y = −24 to −17). Activity was lower in the gambling disorder group in the areas indicated. Colour bar on the
right-hand side represents the t-statistic.
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expectancies. In the CUD group, there also appeared to be an
altered balance in reinforcement learning, instead with lower
responses to positive PPEs and greater responses to negative
PPEs in the SFG and neighbouring regions compared with
control participants, which suggests preferential processing of
punishment. This aligns with our recent finding that individuals
with SUD show greater punishment learning rates.13 We highlight
the application of Bayesian statistics to the reinforcement learning
modelling data compared with analyses of variance for the
imaging data as a limitation of our analysis. In summary, there
appear to be uniquely aberrant neural signals in each patient
group when tracking value-related information important for
reinforcement learning processes.

By linking the computational modelling parameters to the fMRI
data, we also identified regions involved in the modulation of
reinforcement learning measures, which has not been investigated
in previous human studies. We found that the learning rate param-
eter for reward (αrew) was correlated with areas that responded to
RPEs and PPEs, including the SFG, MFG, and cingulate and para-
cingulate gyri. Therefore, these regions appear to be of key import-
ance for reinforcement learning and are likely to be involved in the
modulation of the reward learning rate (αrew). The SFG and anterior
cingulate cortex are key areas that have been shown to be involved in
error and action monitoring, providing support for their involve-
ment in reward learning.29 Moreover, a meta-analysis including

35 studies reported that these areas are consistently activated
when there is a prediction error.30

At least two previous studies have reported reduced learning
rates, reinforcement sensitivity and greater stimulus stickiness in
individuals with SUD compared with healthy controls.13,31 In the
present study, we observed lower reward learning rates and higher
stimulus stickiness in CUD only when contrasted with gambling
disorder. Duration of substance misuse may be a key factor under-
lying the less pronounced reinforcement learning results in CUD
when compared with these two previous studies. Although the
CUD sample in the present study had an average duration of sub-
stance use of 3.7 years,22 the participants with SUD in previous
studies reporting more pronounced reinforcement learning deficits
had an average duration of substance use of 11.7 years6 and 13.7
years.31 Additionally, a criterion in our study was abstinence,
which was not the case in the other two investigations. These differ-
ences in sample suggest longer exposure to substances may have
more pronounced effects on reinforcement learning processes, pos-
sibly because of neurotoxicity, and may therefore help reconcile the
reinforcement learning findings between these studies. As gambling
disorder itself does not involve substance use, we would not expect
the same magnitude or mechanism of change in reinforcement
learning effects related to disease duration (which was 2.2 years
for gambling disorder in our sample). At the same time, such con-
trasts between gambling disorder and SUD may inform which

Table 4 Summary of peak functionalmagnetic resonance imaging activity for the punishment expected value controls versus gambling disorder contrast

Name Brodmann area Side MNI coordinates (X, Y, Z) Number of voxels Volume (mm3) Mean Z-statistic

Postcentral gyrus 1, 2, 3 Right 56, −14, −33 1228 19 827 2.99
Postcentral gyrus 1, 2, 3 Left −62, −21, −33 408 6588 3.02
Precentral gyrus 4 Right 43, −14, 45 865 13 966 2.95
Precuneus 7 Right 10, −51, 56 555 8961 2.90
Precuneus 7 Left −6, −48, 56 403 6507 2.90
Superior parietal lobule 7 Right 28, −44, 59 524 8461 3.04
Supramarginal gyrus 40 Right 56, −18, 31 254 4101 2.88
Supramarginal gyrus 40 Left −63, −26, 31 258 4166 3.02
Lateral occipital cortex 19 Right 17, −79, 41 242 3907 2.88
Lateral occipital cortex 19 Left −14, −83, 41 181 2922 2.75
Parietal operculum cortex 40, 43 Right 1.5, −33, 21 106 1711 2.83
Parietal operculum cortex 40, 43 Left −51, −33, 21 191 3084 2.98

Whole-brain analysis involving one-sample t-tests with cluster thresholding with a Z threshold of 3.1 and P < 0.05. The areas indicated show lower activity in participants with cocaine use
disorder than healthy control participants. MNI, Montreal Neurological Institute template.

Fig. 4 Response to positive punishment prediction errors: differences between healthy controls and participants with CUD (Montreal
Neurological Institute coordinates: X = −5, Y = 17, Z = 48). Activity was lower in the CUD group in the areas indicated. Colour bar on the right-hand
side represents the t-statistic. CUD, cocaine use disorder.
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aspects of reinforcement learning in SUD are more or less likely to
be tied to neurotoxic effects.

Based on the neural results presented here, individuals with
gambling disorder appear to be less sensitive to punishment
expected value but more sensitive to reward expected value than
controls. A study of performance on a two-choice lottery task
found that choice behaviour in patients with gambling disorder
was less sensitive to expected values for both reward and punish-
ment, with this group using information about magnitude and
probability information less than healthy controls.32 Thus, attenu-
ated responses to punishment appear to be common across tasks
in gambling disorder. Although greater sensitivity to reward was
observed in our study compared with lower levels reported by
Limbrick-Oldfield et al,32 this may have been because different
behavioural paradigms were used. Consistent with our findings, in
a previous study employing a card-guessing task, participants
with gambling disorder had greater neural responses in the
ventral striatum and OFC when tracking reward expected value.33

Overall, these studies suggest that patients with gambling disorder
show altered responses to reinforcement tracking and are less sen-
sitive to punishment.

In individuals with SUD, reduced responses to prediction
errors in the ventral striatum and mOFC on the Iowa Gambling
Task have been reported previously.34 In a separate study using

electroencephalography, impaired RPE signalling in CUD was
also found.35 In contrast, we found greater responses to PPEs,
rather than reduction in RPEs. Following cocaine abstinence in
individuals with CUD, enhanced signals to positive prediction
errors, regardless of whether reward or punishment was predicted,
have been observed.36 Although we report reduced activity follow-
ing positive PPEs, this may be because we separated reward and
punishment prediction errors, and suggests that the two prediction
errors are differentially altered in CUD. Altered responses to predic-
tion error related to both reward and punishment could be a con-
tributor to compulsive drug use, as it persists despite negative
outcomes. In patients with OCD, RPE responses were altered in
the nucleus accumbens and anterior cingulate cortex, further high-
lighting that reinforcement learning can be used to distinguish dis-
orders of compulsivity, both through behaviour and its associated
neural substrates.25

We report that stimulus stickiness (κstim) was positively corre-
lated with activity in the dorsolateral PFC and vlPFC, areas import-
ant for cognitive control, including conflict monitoring and motor
inhibition, respectively.37 In the results presented here, patients
with gambling disorder and CUD showed a stronger positive correl-
ation with stimulus stickiness (κstim) in these regions. This result
was contrary to our expectations and previous studies, as it was pre-
dicted that stickiness would be related to reduced activity in these

Fig. 5 Response to negative punishment prediction errors: differences between healthy controls and participants with CUD (Montreal
Neurological Institute coordinates: X = −31, Y = 30, Z = 56). Activity was higher in the CUD group in the areas indicated. Colour bar on the right-
hand side represents the t-statistic. CUD, cocaine use disorder;

Table 5 Summary of peak functional magnetic resonance imaging activity for the positive punishment prediction error controls versus cocaine use
disorder contrast

Name Brodmann area Side MNI coordinates (X, Y, Z) Number of voxels Volume (mm3) Mean Z-statistic

Superior frontal gyrus 8, 9 Left −10, 13, 53 149 2406 2.81
Paracingulate gyrus 32 Left −8, 20, 43 132 2131 2.80
Paracingulate gyrus 32 Right 4, 11, 47 36 581 2.71

Whole-brain analysis involving one-sample t-tests with cluster thresholding with a Z threshold of 3.1 and P < 0.05. The areas indicated show lower activity in participants with cocaine use
disorder than healthy control participants. MNI, Montreal Neurological Institute template.

Table 6 Summary of peak functional magnetic resonance imaging activity for the punishment prediction error controls versus cocaine use disorder
contrast

Name Brodmann area Side MNI coordinates (X, Y, Z) Number of voxels Volume (mm3) Mean Z-statistic

Superior frontal gyrus 8, 9 Left −57, −6, −17 71 1146 3.41
Middle frontal gyrus 8, 9 Left −3, −66, 33 70 1130 3.41

Whole-brain analysis involving one-sample t-tests with cluster thresholding with a Z threshold of 3.1 and P < 0.05. The areas indicated show greater activity in participants with cocaine use
disorder than control participants. MNI, Montreal Neurological Institute template.
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regions. A possible interpretation of this finding is that stimulus
stickiness reflects bias toward one of the presented stimuli, ideally
the majority reinforced one, and that the MFG and IFG are active
in order to overcome this response following a reversal. However,
this hypothesis would need to be explored further in future studies.

It has been demonstrated previously that both the dorsolateral
PFC and vlPFC are affected in gambling disorder and CUD;38,39

here, we provide a novel computational mechanism pertinent to
compulsions that is linked to these regions in gambling disorder
and CUD. Previous studies have demonstrated that response shift-
ing on the PRL task is associated with vlPFC activation in control
participants.15 Consistent with the present results, a prior analysis
of this data-set showed the vlPFC was engaged during response
shifting, yet both clinical groups showed lower vlPFC activity
than healthy controls.22 Reduced vlPFC activity during shifting
has been also reported in patients with OCD.40 These findings
from previous studies, however, focus on response shifting on
certain trials, whereas our analysis investigated stickiness across
all trials, reflecting an overall tendency. Additionally, stickiness
represents repeated responses, rather than response shifts. In rats,
it has been shown that side stickiness (stimulus stickiness was not
studied) is correlated with activity in medial PFC and dorsal striatal
regions.20 It is therefore possible that side and stimulus stickiness
recruit different neural circuits, but this requires further analysis
in the same species.

In summary, we provide novel behavioural and neural insights
into gambling disorder through computational modelling of
reinforcement learning processes. Critically, we demonstrate that

individuals with gambling disorder and CUD display perseverative
behaviour during PRL that differs both qualitatively and quantita-
tively, advancing the notion that compulsivity is not a unitary con-
struct. We also provide evidence that individuals with gambling
disorder and CUD display aberrant and opposing neural responses
to rewards and punishments, in relation to expected value and PPEs.
Furthermore, we link reinforcement learning parameters to regions
that may be involved in their modulation, which has not previously
been investigated in the human literature. We demonstrate that
reinforcement learning modelling combined with fMRI may
provide new insights into the mechanisms underlying compulsive
disorders, and therefore transdiagnostically refine our understand-
ing of compulsivity.
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