
MINIMAL SOLUTIONS OF DIOPHANTINE EQUATIONS 

L. HOLZER 

OUR aim is to prove: If a, b, c are positive integers, ifab> 1, if a, b, c are relatively 
prime in pairs, and all are free of squares, if — ab is a quadratic residue of c, be 
of a, ca of b, and if F(x, y, z) = ax2 + by2 — cz2, we have non-trivial solutions of 
(1) F(x,y,z) = 0 

with the inequalities \x\ < vbc, \y\ < v ca, \z\ < v ab. 
It is clear that among the three inequalities we need only prove the third, 

since the two others necessarily follow. 
II ab = 1 there is always a solution with 2 = 1. This case is known and 

will not be considered. The inequalities for x and y still hold, except that if 
c = 1 one sign < must be replaced by = . 

I 

LEMMA 1 : If a\,a2,a% are any integers, f(x,y,z) = a\x + a2y + a%z, there are 
integers u,v,w not all zero with \u\ < vbc, \v\ < V ca, \w\ < \ ab, f(u,v,w) = 0 
mod abc. 

Proof: Putting x = 0, 1, . . . , [Vbc] (the bracket signifies the greatest in
teger), y = 0, 1, . . . , [vca] , z = 0, 1, . . . , [Vab], we have more than abc 
numbers f(x,y,z). Therefore we must have a pair of triples (x\,yi,Zi) (#2,̂ 2,22) 
with f(xi,yi,Zi) = f(x2,y2,Z2) mod abc. Putting u = xi — x\ etc., we have 
f{u,v,w) = 0 mod abc. 

LEMMA 2: There are numbers u,v,w satisfying the inequalities \u\ < Vbc , etc. 
and F(u,v,w) = 0 mod abc. 

Proof: If A2 = c/b mod a, B2 = a/c mod b, C2 = — b/a mod c we put 
/ = ab(x — Cy) + bc(y — Az) + ca (z — Bx) and have u = Cv mod c, 
v = Aw mod a, w = Bu mod b, F(u,v,w) = 0 mod abc. 

We use the abbreviation F(u,v,w) = Fi. If there is any other triple (u',v',wf) 
essentially different, i.e. not (—#, —v, —w), we write Fz = F(u',v',w'), F2 == 
aww' + bvv' — CTW. 

LEMMA 3 : We have only the cases F\ = 0 or abc, likewise Fz, whereas F2 can 
be = 0, ± abc, ± 2 afo. 

Proof: The proof for T̂ i (and Fz) results immediately from the inequalities 
and F\ = 0 mod abc. The congruences u = Cv mod c, #' = Cv' mod c, etc. 
imply awwr + bvv' = 0 mod c, etc., F2 = 0 mod abc. The inequalities show 
that F2 has one of the five values. 
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The theorem is proved if F\ or F$ = 0. Therefore we suppose Fx = F& = abc. 
For the rest of the demonstration it is significant that the cases w = 0 and 

w = wf need not be taken into consideration in the sense that they either 
result in an equation (1) with \z\ < Vab or are impossible. 

LEMMA 4: The case w = 0 need not be taken into consideration. 
Proof: We have au2 + bv2 = abc, i.e. au2 = 0 mod b, and as a and b are 

prime to each other u2 =- 0 mod b, u = 0 mod b, for 6 is free of squares. Writ
ing u = bui, v = az>i, so that Ui,vi are integers, we have avi2 + bu±2 = c, an 
equation (1) which satisfies \z\ = 1 < 

LEMMA 5: 77*e case w = w' need not be taken into consideration. 

Proof: We have in their turn : 

(i) F2 = abc. At once a(u — u')2 + b(v — v')2 = 0, i.e., u = u', v = v'. 
The two triples would not be different from each other. 

(ii) F2 = -abc. We have a(« — u')2 + 6(» — v')2 = 4 afc, and analog
ously as in the proof of Lemma 4 we get u — «' = 6«i, A — z/ = a^i, avi2 + ô«x

2 

= 4c, a solution of (1) with 2 = 2 < except for the cases a = b = 1; 
a = 1, & = 2 or 3 and vice versa. In all these cases there exists a solution 
with 2 = 1 . 

(iii) F2 = 0. We get a(« -w ' ) 2 + b{v - v')2 = 2abc. As above there is 
(2) avx2 + ôwi2 = 2c. 

Expressing uf,v' by w,t>,wi,z;i and substituting in F2 = 0 we get 

(3) tt^i + vvi = c. 

Eliminating u\ from (2) and (3) we obtain the quadratic equation for V\ 

(4) {au2 + bv2W - 2&cwi + (5c2 - 2cu2) = 0, 
whose discriminant must be a square. This gives easily 

(5) 2(aw2 + bv2) — ata = ct2 (t an integer). 
Taking in account F\ — abc, we obtain from (5) 

ab + 2w2 = t2. _ 

We can consider w and / as positive. We have w < vab, vab < t < *\/%ab. 
We put 

(/ + w V 2 ) ( - l + V2) = T+ UV2,le„ T =_- t + 2w, U = t - w. 

We have U > 0. The boundary values / = \/3ab and w = 'Vab, t = v'a& 
and w = 0 give Ï7 = y/ab(y/Z — 1), Z7 = ^/ab, respectively, whereas the 
relative minimum calculated by differentiating 

/ - w - - (t2 - 2w2 - ab) 
2 

partially with respect to / and w gives 

1 - A/ = 0, - 1 + 2\w = 0, / = 2w = Viôft, £/ = vf-
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In any case we have U < V a J . We have also 

(6) T2 + ab = W\ 

With n = norm with respect to the field R(V —ab) (R is the rational field) 
(2) and (6) can be written 

(7) — n(avi + V — abui) = 2c, 
a 

(8) a(T + V^a~b) = W\ 
With the abbreviations 

(9) 2X = viT-buu 2Y = avl + UiT, 

we get by multiplying (7) and (8), 

(10) aX2 + bY2 = cU\ 

If a and b are odd or a is even the numbers X and F are integers. For a,b 
odd gives T odd and U\ = V\ mod 2 (see equation (2)), and an even a gives T 
and wi even (equations (2) and (6) taking into account b odd). 

If b is even we get a similar conclusion by interchanging a and b. 
(iv) F2 = 2abc. We should have a(u — u')2 + &(u — v')2 = —2abc which 

is impossible as a,6,c are positive. 
(v) F2 = —2abc. We get in a similar manner as in (iii), 

(11) avi2 + bui2 = 6c, 

(12) uui + ÎWI = 3c, 

the equations (2) and (3) with 3c instead of c. The number 2 (aw2 + bv2) — 3abc 
must be 3c times a square. We get 

(13) 3t2 - 2w2 = - ab (t an integer). 

Now let n be the norm with respect to the field R(\/6). We have 

2(w2 - 3t2/2) = ab, n{(2 - \/6)(w/ + ^V6/2)} = - ab. 

We consider t and w as positive. If t < Vab, w < Vab, U = \t-w\ < Vab, 
with T = 2w — 3t we have the equation analogously as before 

(14) T2 + ab = 6£/2. 
Combining (11) and (14) as before, we have with the abbreviations 

(15) V\T — bui = 6X, avi + U\T = 6F, 
the equation aX2 + 6F2 = cf/2. 

Now all depends on the fact that the left sides of the equations (15) are 
divisible by 6. The demonstration as above that 6X and 6 Y are even, holds. 
With 6X = X', 6 F = F ' we have three cases: 

(i) a = 0 mod 3. Then T = 0 mod 3, bui2 = 0 mod 3, Wi = 0 mod 3 ais 
a and 6 are prime to each other, X' = F r = 0 mod 3. 

(ii) 6 = 0 mod 3, T s= 0 mod 3 , 1 ' s O mod 3, »i = 0 mod 3, therefore 
F s 0 mod 3. 

(iii) If a,b both are not divisible by 3 we conclude: As (—ab) is quadratic 
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residue mod 3 the rational prime number 3 is the product of two different 
conjugated prime ideals j,f in 2?(v — ab). It is only necessary to change per
haps the sign of T and U\ so that we have 

/ Mi 
Vi + V — ab — = 0 mod j , 

a 

T + V^a~b s O m o d / . 

/ Y' 
Then X' + V -ab — s 0 mod 3, X' = F s 0 mod 3. 

a 

II 

Suppose Fi = abc. We divide the set of triples (u,v,w) in categories. 
(i) abc odd. We have four categories: (1) û,v,w odd; (2) u odd, *;,«/ even; 

(3) and (4) analogously as (2) with v,w instead of u. 
(ii) If abc is even we alter the letters for the moment as the sign of the co

efficients is now of no importance. Let an equation LX2 + M P + NZ2 = 0 
be given with L even, therefore M, N odd. We have nine categories: u even, 
therefore v,w must be odd. For if v,w were even abc would result = 0 mod 4. 
The categories are (1) v = w = 1 mod 4. (2) v = — w = 1 mod 4. (3) 
— A == ^ = 1 mod 4. (4) v = te; = — 1 mod 4. If M is odd we have the same 
four categories. A ninth will be v,w even. 

Let us return to our original designation. In any case if two triples are of 
the same category we have u = u'y v = vf, w == w' mod 2. In the case (ii) we 
have F2 = F\ mod 4. In any case we have Fi = ztabc. With the integers 

U = , etc. 
2 

we have \W\ < Va~b and F(U,V,W) = 0. 

I l l 

We exclude the case ac = 1,6 > 1, for the solution (1,0,1) satisfies our main 
theorem. In the same way be = 1, a > 1 is excluded. Therefore bc,ca,ab are 
not squares. All depends on the question: Are there different triples of 
the same category? We put all the pairs of triples (#i,;yi,3i) (x2,3 ,̂22) (Lemma 1) 
with s2 > z\ in the drawer z2. We have (1 + [^#6]) drawers, but on account 
of Lemma 4 we can consider the drawer Zi = 0 void. How many pairs of 
triples do we find in the drawer with the greatest number of pairs? 

We first prove two further lemmas. 

LEMMA 6 : We consider II elements A, . . . by which a certain number of pairs 
of different elements is formed and arranged in classes according to the following 
rules : 

(1) Each element occurs in at least one pair. 
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(2) The pairs in which any element occurs are all in the same class. We write 
class (A). 

(3) If there are any pairs (A,A') and (A}A
n) the pair (A',A") exists and be

longs to the class (A). 
(4) The arrangement (A, A') or (A', A) in a pair is of no importance. 
Then there are at least H/2 pairs. 
Proof: At first we form all pairs of the class (̂ 4) where A is any element. 

The g ^ 2 elements which occur in pairs of the class (A) form g(g —1)/2 pairs, 
all existing and belonging to (-4), therefore at least g/2 pairs. 

If these are not all the pairs, then we have an element B not occurring in 
the pairs of (A). If gr elements occur in the pairs of (B) we have at least g'/2 
pairs in the class (B). 

Finally we see that, since 

H^g + gf +g" + ...+g{r\ 
the number H' of the pairs satisfies 

H' è g/2 + g'/2 + . . . + g<">/2 = H/2. 
LEMMA 7: If S is any of the numbers be, ca, ab and S + t is the first square 

surpassing the integer S, we have 

Proof: We have S^t(S = t only in the case 5 = 2), therefore 25 S > 20 S 
At 4/2 / - 2/ V 

+ U. Multiplying by t/(2hS) we get / > — + ^ ,S + * > ( ^ 5 + ^ § ) 5 
hence the theorem. 

We have at least 

H = {[Vbc] + 1) ([y/ca] + 1) ([Vab\ + 1) - abc 
triples (xi,yi,zi) which occur in any pair. According to the Lemma 8, (H/2) is 
a lower bound for the number of pairs of triples. 

According to Lemma 5 we can suppose that in a drawer all pairs have differ
ent values z\. For, the case w = wf need not be taken into consideration. 

Now we use Lemma 7. If (be + P) , (ca + Q), (ab + R) are the first squares 
surpassing the numbers be, ca, ab, we have the following important inequality: 

H> (vyc + 1L\( v^ + JQ\[Vri + _?M _ abc 
\ 5VbcA Wca)\ Wab) 

>-(Pa + Qb + Re) > 2 c/5. 
5 

We have less than \/ab drawers; the drawer with the most pairs contains 
more than c/5\/ab pairs. Supposing this number to exceed 5, so that: 
c > 25 \/abj we are sure to have at least 5 pairs in a drawer. 

We have at least 5 different pairs of triples (w(l),y(l),w(l)), (u{2\v^2),w(2)), etc. 
All these pairs can be normed, e.g. by w(j) > 0. These we can arrange into 
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pairs (u,v,w) (u',vr,w'). As there are at most nine categories, at least one pair 
consists of two triples of the same category. 

If c > 25\/ab we have solutions of (1) with \z\ < y/ab. 

IV 

The disagreeable restriction c > 2b\/ab can be removed easily. We require 
the following theorem from the theory of numbers: 

THEOREM : In a field let j be any integer ideal, a a number prime to j . There 
are infinitely many prime ideals (71-) of the first degree with TT = a mod j . 

This theorem, the generalized prime number theorem, was found by E. 
Hecke and published in the Mathematische Zeitschrift, vol. 1 (1918), p. 375 
(special case) and vol. 6 (1920), p. 38. A simple proof founded on Takagi's 
class field theory was given by H. Hasse in the Jahresbericht der Deutschen 
Mathematikervereinigung, vol. 35 (1926), p. 32. 

According to this theorem there are an infinity of principal prime ideals (ir) 
of the first degree, with ir = 1 mod 8a&, in the field R(y/—ab) prime to c. 
The conjugated prime ideal tr' and the norm n(7r) = p (a rational prime num
ber) satisfy the same congruence. If p > 25\/ab, then cp > 25y/ab. Suppose 
—ab = 2% g = 0 o r g = l , £ a negative integer. As p is a quadratic residue 
of t and p = 1 mod 8, so also /, — 1 and 2 are quadratic residues of p. The 
number — ab is a quadratic residue of p, therefore of cp. As the numbers 
be and p are quadratic residues of a, so also is the number bcp. In the same 
manner we find cap to be a quadratic residue of b. 

Therefore there will be solutions of 
ax2 + by2 — cpz2 

with \z\ < yjab. We have 

a n(x + —~ y) = pcz2
f 

V — ab 
and as ax2 + by2 = 0 mod p, we can get (by changing perhaps the sign of y) 
that the expression in the norm is = 0 mod ir''. We have 

n(7r) = n(r + s\/ — ab) = p, TT = r + s^/ — ab 

and multiplying, 
a n{(rx + bsy) + V —ab{ — ry/a + sx)} = p2cz2. 

Both terms rx + bsy and —ry/a + sx are divisible by p. With the abbre
viations rx + bsy = pX, —ry-\- asx = p Y we have 

aX2 + bY2 = es2, with |z| < Vab. 

V 

REMARK 1: The bound for \z\ is exceedingly narrow, and apparently can
not be surpassed easily by any general one which is lower. We have, e.g., 
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the equation 157 x2 + 3y2 = z2 with the minimal solution (1,9, 20 = [ \ /47 Ï ]~ l ) . 
REMARK 2: If a has a quadratic factor, so that a = a'r2 where a' is free of 

squares, we have a solution (xr ,y\zf) of 

a'x2 + by2 - cz2 = 0 (a'fc > 1) 

with \x'\ < y/bc, \y'\ < y/caf, \zr\ < y/a'b. The solution (x\ry',rzf) of (1) 
satisfies the inequalities of our main theorem. 

We can proceed similarly if b and c have any quadratic factor. 

REMARK 3: Writing g(x,y) = ax2 + 2bxy + cy2, we consider 

(16) ' g(x,y) = W22. 

We suppose a}c,m positive integers, b an integer, d = b2 — ac negative, d' 
(positive) the greatest factor of d free of squares, m prime to d. Further we 
assume a,b,c to be co-prime (i.e., to have the greatest common divisor 1). We 
can replace the classical binary form g(x,y) by any equivalent one. As g 
represents an infinity of prime numbers, and there are always equivalent 
forms whose first coefficient is any number represented by the form prime to 
the discriminant d, there is no restriction of generality in taking the first 
coefficient to be a prime number not dividing dm. 

If (16) has solutions, so has the equation 

(1.7) u2 — dv2 = atnz2, 

which we prove very easily by multiplying (16) by a, and putting ax + by = ut 

y = v. But also every solution of (17) gives a solution of (16), since we have 
(u/v)2 = d mod a, b2 = d mod a\ and since a is a prime number, we have, after 
changing the sign of v if necessary, u/v = b mod a, u = ax + by, g(x,v) = rnz2. 

Thus the equation (16) has solutions with \z\ < \Vd\ = y/ — d if d' > 1 
and these solutions are non-trivial. Of course, we assume the other conditions 
mentioned above too. If df = 1, there are solutions with \z\ = \y/d\. 

VI 

Mr. Aubry gave, in Sphinx-Oedipe, vol. 8 (1913), p. 150, the following 
bounds: The equation pX2 = Y2 + rZ2 has for r > 0 solutions with \X\ < 
\/2r/S. If r is negative he gives the bounds \X\ < \/ — r, \Z\ < y/p, \Y\ 
< \/ — 2rp. Our bound for Y is better, namely \Y\ < \/ — rp. 

Graz, Austria 
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