New Mortality Experience. $\mathrm{H}^{\mathrm{MF}}, \& c$. -(continued).

Age.	Unadjusted.		Adjusted.			Probability of Dying in a Year	
	Numberliving.	Decrement.	Numberliving.	Decrement.	Expectation	Partial Experience Adjusted.	Total Experlence Adjusted.
77	19687	2113	19728	2257	5.811	-11441	-11322
78	17574	2302	17471	2131	$5 \cdot 497$	-12197	$\cdot 12110$
79	15272	2017	15340	2001	$5 \cdot 191$	-13044	-12938
80	13255	1776	13339	1863	$4 \cdot 895$	-13966	-13868
81	11479	1762	11476	1710	$4 \cdot 609$	${ }^{1} 14901$	-14907
82	9717	1432	9766	1568	$4 \cdot 328$	$\cdot 16055$	$\cdot 16068$
83	8285	1536	8198	1426	$4 \cdot 060$	-17394	$\cdot 17426$
84	6749	1214	6772	1270	3810	-18753	-18857
85	5535	1211	5502	1115	3574	-20265	-20267
86	4324	952	4387	955	3355	$\cdot 21768$	$\cdot 21732$
87	3372	751	3432	805	$3 \cdot 150$	$\cdot 23455$	$\cdot 23248$
88	2621	691	2627	651	$2 \cdot 962$	$\cdot 24781$	'24581
89	1930	454	1976	520	$2 \cdot 773$	$\cdot 26316$	${ }^{2} 5923$
90	1476	394	1456	411	$2 \cdot 585$	$\cdot 28228$	$\cdot 27778$
91	1082	309	1045	319	$2 \cdot 405$	-30526	-29708
92	773	304	726	233	$2 \cdot 242$	$\cdot 32093$	'31069
93	469	235	493	168	2.066	$\cdot 34077$	-33029
94	234	0	325	124	1-875	$\cdot 38154$	$\cdot 35694$
95	234	26	201	79	1.724	$\cdot 38806$	$\cdot 36441$
96	208	130	122	48	1-516	-39837	$\cdot 37334$
97	78	39	74	36	$1 \cdot 207$	$\cdot 48648$	$\cdot 46809$
98	39	0	38	26	$\cdot 815$	-68420	-65999
99	0	0	12	12	$\cdot 500$	$1 \cdot 00000$	$1 \cdot 00000$
100	0	0	0	0			

ON HERR LAZARUS'S PAPER ON THE THEORY OF PROBABILITIES.

To the Editor of the Journal of the Institute of Actuaries.
Sir,--In the July number of the Journal you inserted a letter from me, having for its object the elucidation of a passage in Herr Lazarus's paper "On some problems in the Theory of Probabilities." I have since received a very courteous communication from Herr Lazarus in reference to the subject of my letter; and I beg to send you the substance of that communication out of fairness to Herr Lazarns, at the same time feeling confident that it will greatly interest some of your readers.

He says, in explanation of the passage upon which my remarks were based, "The simplest way to find the sum $\Omega_{0}+\Omega_{1}+\Omega_{2}$ would be to extend " one of the equations (28) or (29), so as to include Ω_{0}. I think it is self" evident from (28) that

$$
\because \Omega_{0}+\Omega_{1}=\frac{\int_{0}^{p} x^{m-1}(1-x)^{n} d x}{\int_{0}^{1} x^{m-1}(1-x)^{n} d x}-\frac{\int_{0}^{p} x^{m+z}(1-x)^{n-z-1} d x}{\int_{0}^{1} x^{m+z}(1-x)^{n-z-1} d x}
$$

$"$ and as by $(29) \Omega_{2}=\frac{\int_{0}^{p} x^{m-z-1}(1-x)^{n+z} d x}{\int_{0}^{1} x^{m-z-1}(1-x)^{n+z} d x}-\frac{\int_{0}^{p} x^{m-1}(1-x)^{n} d x}{\int_{0}^{1} x^{m-1}(1-x)^{n} d x}$;
" it follows directly by mere addition that

$$
" \Omega_{0}+\Omega_{1}+\Omega_{2}=\frac{\int_{0}^{p} x^{m-z-1}(1-x)^{n+z} d x}{\int_{0}^{1} x^{m-z-1}(1-x)^{n+z} d x}-\frac{\int_{0}^{p} x^{m+z}(1-x)^{n-z-1} d x}{\int_{0}^{1} x^{n+z}(1-x)^{n-z-1} d x}
$$

" and from this equation I derive
$" \Omega_{0}+\Omega_{1}+\Omega_{2}=\frac{1}{\sqrt{\pi}} \int_{0}^{k_{2}} \varepsilon^{-t^{2}} d t+\frac{1}{\sqrt{\pi}} \int_{0}^{k_{3}} \varepsilon^{-t^{2}} d t+\frac{\mathrm{B}_{2}}{\mathrm{~A}_{2} \sqrt{\pi}}=\varepsilon^{-k_{2}^{2}}-\frac{\mathrm{B}_{3}}{\mathrm{~A}_{3} \sqrt{\pi}} \varepsilon^{-k_{3}^{2}}$.
With regard to the signs of the first two terms in this expression, Herr Lazarus says, "On page 246, at the bottom, we found the inequalities

$$
" m<p(\mu+1), \quad m>p(\mu+1)-1
$$

" It follows that

$$
" \frac{m}{\mu+1}<p, \quad \frac{m+1}{\mu+1}>p ;
$$

" and in consequence thereof,
" $\frac{m+z}{\mu-1}>p$, the + sign of the first term is fixed;
" $\frac{m-z-1}{\mu-1}<p$, the $+\operatorname{sign}$ of the second term is fixed."
There is thus, then, no necessity for the double sign which I prefixed to these terms. At the same time I think it would have been as well had this step in the demonstration been inserted in Herr Lazarus's paper.

Herr Lazarus kindly points out a misprint in my letter. In the expression for $\Omega_{0}+\Omega_{1}+\Omega_{2}$, on page 454 , the factor $\frac{1}{\sqrt{\pi}}$ has been omitted from the first two terms.

> I am, Sir,
> Your obedient servant,

Dec. 1, 1870,
WILLIAM SUTTON.
18, Lincoln's Inn Fields.

