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Abstract

Expansion postponement is a tantalisingly simple conjecture about pure type systems which

has so far resisted all attempts to prove it for any interesting class of systems. We prove the

property for all normalising pure type systems, and discuss the connection with typechecking.

Pure Type Systems (PTS) (Barendregt, 1991, 1992) provide a general framework for

describing a large class of type theories (or typed lambda calculi). Typically, PTSs

are expressive type theories, where we not only have β-reduction on terms, but

also on types. To derive a type for term it may then be necessary to perform some

β-conversions of types.

Expansion Postponement (EP) is the conjecture that to typecheck terms we only

ever have to β-reduce types, and never have to β-expand them. This is clearly a

desirable property: β-expansion a very non-deterministic relation, and there is no

sensible strategy for β-expanding terms. As we will explain later, EP is a necessary

condition for correctness of the natural typechecking algorithm for PTSs proposed

by Pollack (1992) (but, unfortunately, not a sufficient one).

For a more precise definition of EP, we have to consider the PTS type inference

rule for converting types:

conversion
Γ ` b : B Γ ` B′ : s B =β B

′

Γ ` b : B′

It allows any type B to be replaced by a β-convertible one B′, provided this new type

B′ is a well-formed type-expression, which is guaranteed by the premise Γ ` B′ : s.

This rule for converting types can be split into two rules: one for reducing and

one for expanding types. And because reducing a well-formed expression always

produces a well-formed expression, the premise Γ ` B′ : s can safely be dropped in

the former rule. This results in the following rules:

reduction
Γ ` b : B B →→β B

′

Γ ` b : B′

expansion
Γ ` b : B Γ ` B′ : s B ←←β B

′

Γ ` b : B′
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It is not difficult to show that replacing conversion with the two rules above does

not change the typing relation (Lemma 16 in van Benthem Jutting et al. (1993)).

But is expansion really needed? When we look at some type derivations, it

seems that we can always get by with just reduction. The most obvious place

where conversion is needed is to check if the types of a function and its argument

match, and for this just reduction would be sufficient (since β-reduction is Church–

Rosser).

Expansion postponement is the conjecture that any typing judgement Γ ` a : A

can be derived by first deriving Γ ` a : A′ for some A′ without using expansion,

and then possibly using expansion just once to β-expand A′ to A. In other words,

EP says that the use of expansion can always be postponed to the end of a type

derivation. It would follow from EP that if we are interested in finding just any type

for a given term, we can forget about the expansion rule altogether.

Definition of PTSs and EP

We quickly recall the definition of Pure Type Systems (PTS). For more information

on PTSs see, for instance, Barendregt (1991, 1992).

Definition 1

A Pure Type System (PTS) is a triple (S,A,R), with S a set of symbols called the

sorts, A ⊆ S× S a set of axioms, and R ⊆ S× S× S, a set of rules.

The terms of a PTS are generated by

T ::= Var | S | (TT) | (λVar:T. T) | (ΠVar:T. T)

where Var is a set of variables.

We use the following conventions: s, s1, . . . range over sorts; x, y range over

variables; a, A, b, B, . . . range over terms. Terms equal up to the names of bound

variables are identified, and ≡ denotes syntactic equality. We write b[x := a] for the

capture-free substitution of a for x in b, →β for one-step β-reduction, →→β for its

reflexive and transitive closure, and =β for β-equality.

The typing relation ` of a PTS is the smallest relation closed under the rules:

axiom ε ` s : s′ (s : s′) ∈ A

variable
Γ ` A : s

Γ, x : A ` x : A

weakening
Γ ` b : B Γ ` A : s

Γ, x : A ` b : B

formation
Γ ` A : s1 Γ, x : A ` B : s2

Γ ` (Πx:A. B) : s3
(s1, s2, s3) ∈ R

abstraction
Γ, x : A ` b : B Γ ` (Πx:A. B) : s

Γ ` (λx:A. b) : (Πx:A. B)

application
Γ ` b : (Πx:A. B) Γ ` a : A

Γ ` ba : B[x := a]
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reduction
Γ ` b : B B →→β B

′

Γ ` b : B′

expansion
Γ ` b : B Γ ` B′ : s B ←←β B

′

Γ ` b : B′

where we assume that no variable is declared twice in a context.

Two of the most important properties of PTSs are:

Theorem 2

• Subject Reduction (SR). If Γ ` a : A and a→→β a
′, then Γ ` a′ : A.

• Correctness of Types (CT). If Γ ` a : A, then Γ ` A : s or A ∈ S.

We now consider the system with only reduction of types:

Definition 3

The typing relation `r is the smallest relation closed under all the rules above except

expansion.

It is obvious that all `r-judgements are also `-judgements:

Theorem 4 ( `r ⊆ `)

If Γ `r a : A then Γ ` a : A.

Expansion postponement is essentially the reverse implication. However, ` ⊆ `r
will not always be true. For example, it may be possible that Γ, x : A ` x : A′ for

some A′ →→β A, whereas it is impossible that Γ, x : A `r x : A′ for some A′ →→β A,

because in `r types cannot be expanded as in `. So the best we can hope for is

` ⊆ `r ‘modulo’ β-reduction of types:

Open Problem 5 (Expansion Postponement)

If Γ ` a : A then Γ `r a : A′ for some A→→β A
′ ?

We will abuse notation when writing inclusions between relations, and for instance

(somewhat incorrectly) write ` ⊆ `r for EP.

The rest of this section illustrates some of the problems that arise when we try

to prove EP. None of this is relevant to the rest of the paper, so the reader who

already knows or believes that EP is not easy to prove may choose to skip it.

The obvious way to prove EP – induction on the derivation – fails when the last

step is abstraction:

• Suppose the last step in the derivation is:

abstraction
Γ, x : A ` b : B Γ ` (Πx:A. B) : s

Γ ` (λx:A. b) : (Πx:A. B)

By the induction hypothesis Γ, x : A `r b : B′(i) for some B →→β B′ and

Γ `r (Πx:A. B) : S for some s →→β S . And since s cannot be reduced, this

means that Γ `r (Πx:A. B) : s (ii). Now to derive Γ `r (λx:A. b) : (Πx:A. B′)

from (i) using the abstraction rule, we would need Γ `r (Πx:A. B′) : s as a

second premise. This is frustratingly close to (ii), but not exactly the same!

The root of the problem here is that in the abstraction rule (Πx :A. B)

occurs to the right of ‘:’ in the conclusion but to the left of ‘:’ in the premise.
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The natural thing to try now is proving some useful properties of `r . In particular,

SR would provide the missing link in the attempted proof above, as it would allow

us to deduce Γ `r (Πx:A. B′) : s from (ii). But it is surprisingly difficult to prove any

of the usual meta-theoretic properties for `r:

Open Problem 6

• Weak Subject Reduction (WSR) for `r .
If Γ `r a : A and a→→β a

′ then Γ `r a′ : A′ for some A→→β A
′ ?

(We do not have SR for `r; see (Pollack, 1994) for a counterexample).

• Correctness of Types (CT) for `r .
If Γ `r a : A then Γ `r A : s or A ∈ S ?

It is easily shown that EP is equivalent with WSR for `r , and that, for the so-called

functional PTSs, EP is also equivalent with CT for `r .

Expansion Postponement for normalising PTSs

From now on we restrict ourselves to PTSs with normalising types, i.e. the PTSs for

which for all Γ ` a : A the type A has a normal form. This clearly subsumes all

normalising PTSs, i.e. the PTSs for which for all Γ ` a : A both a and A have normal

forms.

The trick is that instead of `r we consider an even more restricted system, `nf ,
and we prove EP (` ⊆ `r) by proving the stronger property ` ⊆ `nf . The system

`nf gives types in normal form:

Definition 7

The typing relation `nf is the smallest relation closed under the following rules:

axiom ε `nf s : s′ (s : s′) ∈ A

nf-variable
Γ `nf A : s

Γ, x : A `nf x : nf (A)

weakening
Γ `nf b : B Γ `nf A : s

Γ, x : A `nf b : B

formation
Γ `nf A : s1 Γ, x : A `nf B : s2

Γ `nf (Πx:A. B) : s3
(s1, s2, s3) ∈ R

nf-abstraction
Γ, x : A `nf b : B Γ `nf (Πx:A. B) : s

Γ `nf (λx:A. b) : (Πx:nf (A). B )

nf-application
Γ `nf b : (Πx:A. B) Γ `nf a : A

Γ `nf ba : nf (B [x := a])

Here nf (A) denotes the β-normal form of A.

It is easy to see that all `nf-judgements are also `r-judgements:

Theorem 8 ( `nf ⊆ `r)
If Γ `nf a : A then Γ `r a : A.

https://doi.org/10.1017/S095679689700292X Published online by Cambridge University Press

https://doi.org/10.1017/S095679689700292X


Theoretical pearl 93

Proof

Easy induction on Γ `nf a : A. In fact, it suffices to observe that all `nf-rules are

derivable rules for `r . For instance, nf-abstraction can be derived by composing

abstraction and reduction.

So, by Theorems 4 and 8, `nf⊆ `r ⊆ `. (Note that it immediately follows from this

that if ` produces normalising types, then so do `r and `nf .) The crucial difference

between `nf and `r is that for `nf we can prove SR. For this the following two

lemmas are needed:

Lemma 9 (Generation lemma for `nf)
If Γ `nf (λx:A′. b) : (Πx:A. B) then Γ, x : A′ `nf b : B.

Proof

Induction on the derivation of Γ `nf (λx:A′. b) : (Πx:A. B). The last step can only

be nf-abstraction or weakening, so these are the only cases we have to

consider.

Lemma 10 (Substitution lemma for `nf)
For PTSs with normalising types: if Γ, x : A,∆ `nf b : B and Γ `nf a : nf (A), then

Γ,∆[x := a] `nf b[x := a] : nf (B [x := a]).

Proof

This can be proved as the substitution lemma for ` (see, for instance, Barendregt

(1992)), by induction on the derivation of Γ, x : A,∆ `nf b : B.

Theorem 11 (Subject Reduction (SR) for `nf)
For PTSs with normalising types: if Γ `nf a : A and a→→β a

′ then Γ `nf a′ : A.

Proof

This can be proved as SR for ` (see, for instance, Barendregt (1992)). In fact, the

proof for `nf is a bit simpler. We simultaneously prove the following two properties

by induction on the derivation:

(1) if Γ `nf c : C and Γ→β Γ′ then Γ′ `nf c : C .

(2) if Γ `nf c : C and c→β c
′ then Γ `nf c′ : C .

All the cases are very boring, except the case in which c is the redex that is contracted,

which is where the substitution lemma and the generation lemma are needed:

Suppose the last step in the derivation of Γ `nf c : C is

nf − application
(i)Γ `nf b : (Πx:A. B) (ii)Γ `nf a : A

Γ `nf ba : nf (B [x := a])

i.e. c ≡ ba and C ≡ nf (B [x := a]).

(1) To prove: Γ′ `nf c : nf (B [x := a]) for Γ→β Γ′.

If Γ →β Γ′, then by the IH Γ′ `nf b : (Πx:A. B) and Γ′ `nf a : A, and by the

`nf-application rule Γ′ `nf ba : nf (B [x := a]).

(2) To prove: Γ `nf c′ : nf (B [x := a]) for ba→β c
′.

We distinguish two possibilities for the reduction ba→β c
′:
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— ba →β c
′ is a reduction ba →β b

′a′, with a →β a
′ and b ≡ b′, or b →β b

′

and a ≡ a′. Then by the IH Γ `nf b′ : (Πx:A. B) and Γ `nf a′ : A, and by

the `nf-application rule Γ `nf b′a′ : nf (B [x := a ′]).

— ba→β c
′ is the reduction (λx:A′. b′)a→β b

′[x := a], i.e. b ≡ (λx:A′. b′).

To prove: Γ `nf b′[x := a] : nf (B [x := a]).

Now (i) is Γ `nf (λx:A′. b′) : (Πx:A. B), and so by the generation lemma

Γ, x : A′ `nf b′ : B (iii). By the substitution lemma it follows from (ii) and

(iii) that Γ `nf b′[x := a] : nf (B [x := a]).

Theorem 12 ( ` ⊆ `nf)
For PTSs with normalising types: if Γ ` c : C then Γ `nf c : nf (C ).

Proof

Induction on the derivation of Γ ` c : C . Almost all the cases are trivial, except

abstraction, which is where SR for `nf is needed:

Suppose the last rule in the derivation of Γ ` c : C is

Γ, x : A ` b : B Γ ` (Πx:A. B) : s
abstraction

Γ ` (λx:A. b) : (Πx:A. B)

i.e. c ≡ (λx:A. b) and C ≡ (Πx:A. B).

To prove: Γ `nf (λx:A. b) : nf (Πx :A. B ). By the induction hypothesis we have

Γ, x : A `nf b : nf (B ) (i) and Γ `nf (Πx:A. B) : s (ii). By SR for `nf it follows from

(ii) that Γ `nf (Πx:A. nf (B )) : s (iii). Now by applying nf-abstraction to (i) and (iii)

we are done, since obviously nf (Πx:A. nf (B )) ≡ nf (Πx:A. B ).

Now by Theorems 8 and 12 (`nf ⊆ `r and ` ⊆ `nf), it immediately follows that

` ⊆ `r:

Corollary 13 (Expansion Postponement)

For PTSs with normalising types: if Γ ` a : A then Γ `r a : A′ for some A′ →→β A.

EP and typechecking

To conclude, we say a few words about the connection between EP and typechecking,

and leave the reader with an interesting open problem.

By a typechecking algorithm we mean an algorithm that, given a term a and a

context Γ, answers the question Γ ` a :?, i.e. that returns a type A such that Γ ` a : A,

or reports failure if no such A exists. Several generic typechecking algorithms for

different classes of PTSs are known (see van Benthem Jutting et al. (1993) and Poll

(1993)).

However, correctness of the most natural typechecking algorithm, defined in

Pollack (1992), remains an open problem. This algorithm tries to answer Γ ` a : ? in

the obvious way, by trying to construct a type derivation for a in context Γ guided

by the shape a (and Γ), effectively trying to derive a type of a term from the types

of its sub-terms.
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Before considering its formal definition, we can already give an informal expla-

nation of why EP is a necessary condition for correctness of this algorithm. It is

not difficult to see that the algorithm will never use the expansion rule. To use

expansion it would have to guess a β-expansion of a type, and there is no sensible

strategy for doing this. But if the algorithm tries to answer Γ ` a : ? without using

expansion, then it really tries to answer Γ `r a : ? instead of Γ ` a : ?, and can only

be correct if these questions are equivalent.

A formal definition of algorithm is given below by the system `sd. The set of

inference rules for `sd are syntax-directed, which means that there is at most one type

derivation for a given term a in a given context Γ, which is completely determined

by the syntax of a and Γ (at least, for the so-called functional PTSs). So the rules

for `sd effectively provide a type-checking algorithm.ã

Definition 14 (Pollack, 1992 )

We write Γ `sd a :→ρ A for (∃A′Γ `sd a : A′ ∧A′ →ρ A), where →ρ is some reduction

relation.

The typing relation `sd is the smallest relation closed under the rules:

axiom ε `sd s : s′ (s : s′) ∈ A

sd-variable
Γ `sd A :→→β s

Γ, x : A `sd x : A

sd-weakening
Γ `sd b : B Γ `sd A :→→β s

Γ, x : A `sd b : B
b ∈ Var ∪ S

sd-formation
Γ `sd A :→→β s1 Γ, x : A `sd B :→→β s2

Γ `sd (Πx:A. B) : s3
(s1, s2, s3) ∈ R

sd-abstraction
Γ, x : A `sd b : B Γ `sd (Πx:A. B) :→→β s

Γ `sd (λx:A. b) : (Πx:A. B)

sd-application
Γ `sd b :→→wh (Πx:A′. B) Γ `sd a : A A =β A

′

Γ `sd ba : B[x := a]

Here →→wh denotes weak-head reduction. In sd-application weak-head reduction is

the quickest way to test if the type of b is β-convertible to a Π-type. In sd-weakening

the side-condition b ∈ Var ∪ S fixes a strategy for weakening, namely as high up in

the derivation tree as possible.

It is easy to see that the algorithm given by `sd is sound (i.e. if it finds a type then

this type is correct):

Theorem 15 (Soundness, `sd ⊆ `)

If Γ `sd a : A then Γ ` a : A.

Proof

Easy induction on Γ `sd a : A. Just observe that all the `nf-rules are derivable rules

for `r (and hence `).

ã In the same way, the rules for `nf also provide a type-checking algorithm, but reducing all
types to normal form is unacceptably inefficient for all but the simplest PTSs.
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However, it is not so simple to prove that the algorithm is complete (i.e. if a term

is typable then it will find a type):

Open Problem 16 (Completeness, ` ⊆ `sd)
If Γ ` a : A then Γ `sd a : A′ for some A′ =β A ?

In fact, this problem has to be restricted to the so-called functional PTSs; a

counterexample for a non-functional PTS is given in Pollack (1992).

Since `sd⊆ `r⊆ ` it is clear that EP (` ⊆ `r) is a necessary condition for ` ⊆ `sd.
Like EP, proving ` ⊆ `sd by induction on the derivation also fails in the case that

the last step is abstraction.

There are two ways in which EP might help us to solve the problem above. First,

having proved EP, the proof obligation ` ⊆ `sd above can be reduced to `r ⊆ `sd.
Unfortunately, this is still an open problem. Secondly, the problems we encounter

when trying to prove completeness of `sd and EP are similar, so a method for

proving EP might also useful for proving completeness of `sd. For the method we

used, though, this is not the case: `nf ⊆ `sd does not seem any easier to prove than

` ⊆ `sd.
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