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Sepsis is a severe disease with high mortality, and liver injury is an independent risk factor for sepsis morbidity and mortality. We
analyzed co-differentially expressed genes (co-DEGs) to explore potential biomarkers and therapeutic targets for sepsis-related
liver injury. .ree gene expression datasets (GSE60088, GSE23767, and GSE71530) were downloaded from the Gene Expression
Omnibus (GEO). DEGs were screened between sepsis and control samples using GEO2R. .e association of these DEGs with
infection and liver disease was analyzed by using the CTD database. GO functional analysis, KEGG pathway enrichment analysis,
and protein-protein interaction (PPI) network analysis were performed to elucidate the potential molecular mechanism of DEGs.
DEGs of different tissues in GSE60088 were analyzed again to obtain specific markers of septic liver injury. Mouse model of sepsis
was also established by cecal ligation and puncture (CLP), and the expression of specific markers in liver, lung, and kidney tissues
was analyzed using Western blot. Here, we identified 21 DEGs in three datasets with 8 hub genes, all of which showed higher
inference scores in liver diseases than bacterial infections. Among them, only TNFRSF1A had a liver-specific differential ex-
pression. TNFRSF1A was also confirmed to be specifically reduced in septic liver tissues in mice..erefore, TNFRSF1Amay serve
as a potential biomarker for septic liver injury.

1. Introduction

Sepsis is an infection-induced systemic inflammatory re-
sponse syndrome. It is a common complication of patients
with severe trauma, shock, and critical diseases and a leading
cause of death for patients in the intensive care unit (ICU).
.e occurrence of sepsis is associated with the hypersen-
sitivity cascade and excessive inflammatory mediators [1–3].
Identification of sepsis-related biomarkers is critical for the
diagnosis to distinguish the severity and develop a treating
strategy of sepsis. Increasing evidence has demonstrated that
multiple genes are involved in sepsis progression and organ
damage [4–7]. Zheng et al. identified fourteen long non-
coding RNAs that could be used to diagnose sepsis patients
with insignificant clinical manifestations [8]. Studies

uncovered that the ribosome-related genes TLCD4,
PRSS30P, and ZNF493 had a moderate performance to
identify sepsis-induced acute respiratory distress syndrome
(ARDS) in sepsis patients [9, 10]. Five genes (NKG7, SPTA1,
FGL2, RGS2, and IFI27) have been proved to be potential
biomarkers for sepsis-induced ARDS and exert crucial roles
in the occurrence and development of sepsis [11]. Sepsis may
also induce acute kidney injury (AKI), and studies showed
that VMP1, SLPI, PTX3, TIMP1, OLFM4, LCN2, and
S100A9 genes were markedly correlated with the develop-
ment and progression of septic-shock-associated AKI [12].
Sepsis-caused failure in different tissues has different
mechanisms. Serving as an important host defense organ
through bacterial clearance, acute phase proteins, cytokine
generation, and metabolic adaptation to inflammation, the
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liver is one of the most vulnerable organs in patients with
sepsis. Sepsis-induced liver injury or dysfunction is con-
sidered as a strong independent predictor of mortality in
ICU (up to 54-68%) [13–15]. However, the genes involved in
sepsis-induced liver injury remain unclear.

Microarray technology and bioinformatics analysis have
been widely used to screen for genetic alterations at the
genome level, contributing to the identification of differ-
entially expressed genes (DEGs) and functional pathways in
disease models. Analysis of microarray data in a septic liver
injury model can build gene networks and screen for po-
tential key molecular targets to provide a new understanding
of the pathogenesis of septic liver injury and a potential
strategy for clinical treatment [16, 17]. In this study, we
downloaded and analyzed three mRNA microarray datasets
from the Gene Expression Omnibus (GEO) database to
obtain DEGs between normal and septic liver tissues. .e
GO functional analysis, KEGG pathway enrichment anal-
ysis, and protein-protein interaction (PPI) network analysis
were performed, and a total of 21 DEGs and 8 hub genes
were identified, of which only TNFRSF1A was critical for the
specificity of septic liver injury, which could be a candidate
biomarker.

2. Methods

2.1. Microarray Data. GEO (https://www.ncbi.nlm.nih.gov/
geo) is a public functional genomics repository containing
global gene expression data andmicroarrays [18]..ree gene
expression datasets, GSE60088 [19], GSE23767 [20], and
GSE71530 [21], were downloaded from public GEO (Affy-
metrix GPL570 platform, Affymetrix Human Genome U133
Plus 2.0). Among them, GSE60088 contains 5 sepsis samples
and 3 control samples; GSE23767 includes 4 sepsis and 3
control samples; and GSE71530 contains 3 sepsis and 3
control samples. .e datasets from septic and normal liver
tissues were collected and screened for subsequent analysis.

2.2. Identification of DEGs. GEO2R (https://www.ncbi.nlm.
nih.gov/geo/geo2r) was used to screen significant DEGs
between sepsis and control liver samples. .e application of
P-values and Benjamini and Hochberg false discovery rates
provided a balance between the discovery of statistically
significant genes and false positive limits. .e probe sets
without any gene symbols or genes with multiple probe sets
were excluded or averaged, respectively. A fold change
(logFC) >1 and P-value <0.05 were considered statistically
significant.

2.3. PPI Network Construction and Analysis. PPI networks
were predicted using an online database searching tool
(STRING; https://www.string-db.org) to retrieve gene in-
teractions [22]. Analysis of protein functional interactions
provides insights into the inner mechanism of the related
disease pathogenesis and development. In this study, the PPI
network of DEGs was constructed by using the STRING, and
interactions with a combined score >0.4 were considered to

have statistical significance. Cytoscape software was applied
to construct and visualize themolecular interaction network.

2.4. KEGG and GO Enrichment Analyses of DEGs. .e Da-
tabase for Annotation, Visualization, and Integrated Dis-
covery 6.7 (DAVID; https://www.david.ncifcrf.gov) is an
online bioinformatics database that integrates biological data
and analysis tools to provide complete annotation informa-
tion of functional genes and proteins for users [23]. GO
functional analysis (including cellular composition [CC],
biological process [BP], and molecular function [MF]) is a
major bioinformatics tool that can classify gene expression
and its related biological processes [24]. KEGG is a database
resource that integrates large-scale molecular datasets using
high-throughput techniques to understand their related
functional pathways and biological systems [25]. To analyze
the functions of screened DEGs, DAVID and the online
bioinformatics database were used to perform biological
analyses. P< 0.05 was considered statistically significant.

2.5. Associations of Common DEGs with Infection and Liver
Disease. .e Comparative Toxicogenomics Database (CTD;
https://www.ctdbase.org/) is a public resource that describes
the interactions between environmental chemicals and gene
products and their relationship to disease [26]. We used
these data to analyze and determine the association of
common DEGs with infection and liver disease.

2.6. Mouse and Histological Analysis (Experimental Study).
Male C57BL/6 mice (6-8-week-old, weighing 20-25 g) from
the Fourth Military Medical University (Xi’an, China) were
housed under standard laboratory conditions. Mice were
randomly divided into sham (n� 3) and CLP (n� 3) groups.
.e sepsis model was induced by CLP as previously de-
scribed [27]. .e experiment was repeated three times. Mice
in the sham group were administrated with similar proce-
dures without CLP. All mice were received 1mL of normal
saline in the abdominal cavity after surgery to compensate
for fluid loss. While animals subjected to CLP appear healthy
in the initial phase after the procedure, they begin to show
clinical signs of sepsis at around 12 h following CLP, fea-
turing malaise, fever, chills, piloerection, generalized
weakness, and reduced gross motor activity. After 24 hours,
the mice were sacrificed by decapitation, and the liver, lung,
and kidney specimens were collected for hematoxylin and
eosin (HE) staining. Briefly, the tissues were paraffin-em-
bedded, sectioned at 5 μm thickness, and stained with he-
matoxylin and eosin. .e pathological sections were
randomly observed by pathologists to analyze the patho-
logical damage in each group. .e animal study was per-
formed following the Guide for the Care and Use of
Laboratory Animals and approved by the ethics committee
of the Xijing Hospital (approval number KY20193106).

2.7. Western Blot. Total proteins of the liver, lung, and
kidney tissue samples from normal and septic mice were
extracted using RIPA buffer (containing 1% PMSF and 1%
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protease inhibitors). BCA protein assay kit (Pierce, Rock-
ford, USA) was used for protein quantification. Certain
amounts of protein were loaded onto the SDS-PAGE gels
and then transferred to PVDF membranes for Western blot
analysis. After blocking, themembranes were incubated with
the anti-TNFRSF1A primary antibody at 4°C overnight,
followed by incubation with diluted HRP-conjugated sec-
ondary antibody (Pierce Biotechnology, Inc, Rockford, IL,
USA) for 1 h at room temperature. Blots were visualized with
ECL-Plus reagent (GE Healthcare, Piscataway, NJ). β-Actin
antibody was used to confirm equal protein loading.

2.8. Statistical Analysis. Data analysis was performed using
GraphPad Prism software (v.6.0; GraphPad software, La
Jolla, CA, USA). Student’s t-test was used. All animal ex-
periments had at least three replicates. A value of P< 0.05
was considered statistically significant.

3. Results

3.1. Identification of DEGs in Septic Liver Tissue. After
normalization of the microarray results, there were 364,
1,030, and 665 DEGs identified in GSE60088, GSE23767,
and GSE71530, respectively (Figure 1(a)). .e overlap be-
tween the 3 datasets contained 21 genes, in which 15 genes
were downregulated and 6 were upregulated in sepsis
compared with the control (Figure 1(b)). A PPI network was
constructed to show the interaction between these 21 genes
(Figure 1(c)). Among them, eight of the 21 genes were closely
interacted (Figure 1(c)), all of which were downregulated.
Table 1 shows the brief description of them.

3.2. Functional Enrichment and Disease Association Analysis
of DEGs. We further analyzed the functional and pathway
enrichment of the eight DEGs through DAVID. Results
from GO functional analysis indicated that the alteration of
BP was mainly on the inflammatory and immune responses
(Figure 2(a)). .e changes of CC of DEGs focused largely on
the membrane-related regions (Figure 2(b)), and MF al-
terations were mainly in the cytokine or chemical receptor
binding (Figure 2(c)). KEGG pathway enrichment analysis
showed that these DEGs were mainly involved in cytokine
interaction, adipocytokine signaling, rheumatoid arthritis,
toxoplasmosis, hepatitis C, JAK-STAT3 pathway, and che-
mokine signaling pathways (Figure 2(d)). .e CTD database
was applied to evaluate the association between the eight
DEGs and infections and liver diseases. Results showed that
all of them had greater inference scores associated with liver
injury or disease than bacterial infections (Table 2).

3.3. Identification of TNFRSF1A as a liver-specific DEG in
Sepsis. .e eight DEGs were compared with the DEGs in the
septic liver, kidney, and lung tissues of GSE60088, and it was
found that only TNFRSF1A had a specific expression change
in the liver (Table 3). Combined with the higher association
of TNFRSF1A with liver-related diseases or injury than
infections, it seemed that TNFRSF1Amay be specific in liver

disease. We further established CLP-induced sepsis mouse
model. HE staining of the liver, lung, and kidney tissues of
sham and CLP groups showed that all tissues were struc-
turally disordered and had more or less inflammatory in-
filtration after CLP (Figure 3(a)). Liver tissues in sham were
intact with normal and well-structured hepatic cells, while
necrotic hepatocytes with extensive vacuolar degeneration
and nuclear rupture were observed in the liver after CLP..e
protein levels of TNFRSF1A in these animal septic tissues
were detected through Western blot, which showed that
TNFRSF1A was significantly downregulated in the liver
tissues of septic mice compared with the sham..ere was no
big change between them in the lung and kidney
(Figure 3(b)). Moreover, we searched TNFRSF1A in the
KEGG database, which showed that TNFRSF1A, binding to
TNF-α, mainly participates in the mTOR, MAPK, caspase 3,
and NFκB pathways that were related to the regulation of
inflammatory responses and cell apoptosis (Figure 4).

4. Discussion

Despite extensive research in sepsis, there are still few
biomarkers that can be used to effectively detect and treat
sepsis [28]. Liver has a regenerative function and capability
to withstand attack. In sepsis, the liver is a major site oc-
curring inflammatory responses to defend bacterial endo-
toxins. Once liver dysfunction or failure happens, the
damaged liver may cause severe systemic inflammatory
responses spreading to other organs, leading to complication
progression and even death [29–31]. Hence, the identifi-
cation of liver damage-related genes could provide new
targets and strategies for exploring the effects of the liver in
sepsis and its related treatments.

Microarray assay is an effective method to screen novel
biomarkers of disease and find genetic alterations in disease
progression, which has been proved to be applicable in the
study of septic biomarkers and organ damage [32]. In the
current study, three databases GSE60088, GSE23767, and
GSE71530 were found by screening the experimental data of
sepsis complicated with liver injury in the GEO database.We
applied microarray assay analysis and obtained 21 DEGs
between septic liver tissues and normal ones, including 15
downregulated (ST5, NFKBIZ, PDK4, OSMR, STAT3,
CPNE8, S100A9, TNFRSF1A, ICAM1, SLC39A14,
SLC41A2, FGL1, CXCL1, LITAF, and SAA2) and 6 upre-
gulated genes (HES6, STBD1, DEXI, PANK1, SLC46A3, and
NUDT7). Among them, only 8 downregulated genes
(OSMR, TNFRSF1A, ICAM1, STAT3, CXCL1, NFKBIZ,
LITAF, and SAA2) interacted through the proteins they
expressed. To analyze the association of these 8 key genes
with sepsis and liver injury, we performed GO functional
analysis and KEGG pathway enrichment analysis on them;
GO functional analysis showed that they were mainly in-
volved in the processes of acute inflammatory response,
positive regulation of inflammatory response, activation of
T cells in the immune response, and positive regulation of
defense response. KEGG pathway enrichment analysis
showed that they were enriched in the pathways associated
with cytokine interactions. It was worth noting that
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Table 1: Description of the eight hub genes among the 21 overlapping genes in GSE60088, GSE23767, and GSE71530 datasets.

No Gene
symbol Full name Function

1 OSMR Oncostatin M receptor Binds IL31 to activate STAT3 and possibly STAT1 and STAT5

2 TNFRSF1A Tumor necrosis factor receptor superfamily,
member 1a

Receptor for TNFSF2/TNF-alpha and homotrimeric TNFSF1/
lymphotoxin-alpha

3 ICAM1 Intercellular adhesion molecule 1 ICAM proteins are ligands for the leukocyte adhesion protein LFA-1

4 STAT3 Signal transducer and activator of
transcription 3

Transcription factor that binds to the IL-6 responsive elements
identified in the promoters of various acute-phase protein genes

5 CXCL1 Chemokine (C-X-C motif ) ligand 1 Has chemotactic activity for neutrophils. Contributes to neutrophil
activation during inflammation

6 NFKBIZ Nuclear factor of kappa light polypeptide
gene enhancer in B cells inhibitor, zeta

Inhibits NF-kappa-B activity without affecting its nuclear translocation
upon stimulation. It is recruited to IL-6 promoters and activates IL-6 but

decreases TNF-alpha production in response to LPS

7 LITAF LPS-induced TN factor
May regulate through NFKB1 the expression of the CCL2/MCP-1

chemokine. May play a role in tumor necrosis factor alpha (TNF-alpha)
gene expression

8 SAA2 Serum amyloid A 2 Major acute phase reactant. Apolipoprotein of the HDL complex
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Figure 1: Identification of differentially expressed genes (DEGs) in septic liver tissues from the online database. (a) Distribution of DEGs in
GSE60088, GSE23767, and GSE71530 datasets. (b) Venn diagram of the DEGs. .ere were 21 overlapping genes among the three datasets.
(c) PPI network of 21 overlapping genes from STRING.
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TNFRSF1A, STAT3, ICAM1, and OSMR are involved in
multiple biological processes and signaling pathways in each
enrichment analysis. We speculated that the overlap in
significantly enriched GO terms and KEGG pathway might
represent vital pathways in the sepsis-induced liver injury.
During sepsis, it is very likely that the liver plays a role in
immune regulation and inflammatory clearance through
one or more of these 4 key genes. Moreover, all these 8 genes
showed higher correlation with liver diseases than bacterial
infections in the CTD database.

However, these DEGs were not liver-specific. .rough
further analysis of dataset GSE60088 that contained DEGs of
the septic liver, lung, and kidney, it was found that only
TNFRSF1A was differentially liver-specific expressed among
the 4 key genes. .e effects of TNF-α can be exerted through
two different receptors belonging to the TNF receptor

superfamily. .e type I receptor is TNFRSF1A, also known
as p55, p60, CD120a, or TNFR1. TNFRSF1A is a 60 kDa
transmembrane glycoprotein and expressed in almost all
cells except for erythrocytes, but type II receptor mainly
exists in immune cells, endothelial cells, and cells of the
hematopoietic lineage. Both receptors can be activated by
transmembrane TNF-α, but TNFRSF1A can also have
functions by soluble TNF-α [33]. .e activation of THFR
induces the release of proinflammatory cytokines and
chemokines. Other than that, TNFRSF1A possesses a cy-
toplasmic death domain (DD) that allows them to transduce
regulated prodeath signals, leading to apoptosis or necrosis
[34, 35]. Several studies have investigated and revealed the
role of TNFR in the development of early and late renal
failure, including diabetic nephropathy, renal angiosclerosis,
acute renal transplant rejection, renal cell carcinoma,
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Figure 2: Functional enrichment pathway of the hub eight DEGs. (a-c) GO functional analysis of the genes, including pathways related to
biological process (BP), cellular composition (CC), and molecular function (MF). (d) KEGG pathway analysis of the genes.
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glomerulonephritis, sepsis, and obstructive renal injury [36].
In addition, TNFRSF1A mutation-caused tumor necrosis
factor receptor-associated periodic syndrome (TRAPS) is
the first and the only disease known to be caused by receptor
structure mutation [37]. In sepsis, TNFRSF1A is a key
participant during Staphylococcus aureus infections and is
associated with the bacterial clearance from the spleen [38].
.e significant increase of soluble TNFRSF1A in the cir-
culation is closely related to sepsis. Using soluble TNFRSF1A

to neutralize TNF reduces organ damage and mortality in
sepsis rat [39].

In our experimental study, TNFRSF1A expression was
detected in the liver, lung, and kidney tissues of sepsis mice,
and only TNFRSF1A in the liver was significantly down-
regulated, which was consistent with the bioinformatics
analysis. Hepatocytes from septic mice developed extensive
vacuolar degeneration and nuclear rupture, which were
closely related to the cytokine storm and inflammatory

Table 2: Association of the eight hub genes with infection and liver diseases (from the CTD database).

Gene Disease name Disease ID Inference score Reference count

OSMR

Bacterial infections MESH: D001424 11.47 4
Bacteremia MESH: D016470 6.67 5

Chemical and drug-induced liver injury MESH: D056486 181.83 996
Liver diseases MESH: D008107 97.81 80

Liver failure, acute MESH: D017114 44.32 190

TNFRSF1A

Bacterial infections MESH: D001424 12.97 10
Bacteremia MESH: D016470 7.65 7

Staphylococcal infections MESH: D013203 15.66 112
Chemical and drug-induced liver injury MESH: D056486 373.55 1473

Liver diseases MESH: D008107 173.23 133
Liver failure, acute MESH: D017114 105.65 219

ICAM1

Bacterial infections MESH: D001424 38.09 14
Bacteremia MESH: D016470 10.32 8

Immune suppression OMIM: 146850 22.44 4
Staphylococcal infections MESH: D013203 31.17 123

Chemical and drug-induced liver injury MESH: D056486 624.5 1763
Liver diseases MESH: D008107 253.83 168

Liver failure, acute MESH: D017114 145.9 251

STAT3

Bacterial infections MESH: D001424 30.62 14
Immune suppression OMIM:146850 9.5 4

Staphylococcal infections MESH: D013203 15.89 113
Chemical and drug-induced liver injury MESH: D056486 468.99 1621

Liver diseases MESH: D008107 196.71 155
Liver failure, acute MESH: D017114 104.56 220

CXCL1

Bacterial infections MESH: D001424 38.75 13
Bacteremia MESH: D016470 19.38 11

Staphylococcal infections MESH: D013203 27.98 126
Chemical and drug-induced liver injury MESH: D056486 492.25 1599

Liver diseases MESH: D008107 194.1 160
Liver failure, acute MESH: D017114 119.02 237

NFKBIZ

Bacterial infections MESH: D001424 16.93 10
Pneumococcal infections MESH: D011008 11.06 4
Staphylococcal infections MESH: D013203 13.23 110

Chemical and drug-induced liver injury MESH: D056486 223.35 1151
Liver diseases MESH: D008107 118.82 94

Liver failure, acute MESH: D017114 71.4 189

LITAF

Bacterial infections MESH: D001424 20.71 8
Pneumococcal infections MESH: D011008 11.09 4
Staphylococcal infections MESH: D013203 10.05 99

Chemical and drug-induced liver injury MESH: D056486 269.74 1285
Liver diseases MESH: D008107 145.5 101

Liver failure, acute MESH: D017114 80.37 205

SAA2

Bacterial infections MESH: D001424 5.71 2
Candidiasis MESH: D002177 7.29 13
Q fever MESH: D011778 9.64 1

Chemical and drug-induced liver injury MESH: D056486 146.38 987
Liver diseases MESH: D008107 96.08 79

Liver failure, acute MESH: D017114 36.44 165
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cascade triggered by sepsis. Membrane TNFRSF1A induces
cellular inflammatory damage and apoptosis by participat-
ing in mTOR, JNK, IKK, caspase 3, MAPK, and NF-kB
pathways. .erefore, the decreased TNFRSF1A protein
expression in the liver tissue of the sepsis model combined

with the downregulation of gene expression verified that
TNFRSF1A may serve as a specific biomarker of septic
liver damage and liver immunoregulation. Although the
mortality of TNFRSF1A−/− mice in sepsis was comparable
with wildtype mice [40], it is still undeniable the

Table 3: TNFRSF1A has a specific expression change (√) in liver tissues after comparison with the DEGs in GSE60088.

Gene symbol Liver Lung Kidney
OSMR √ √ √
TNFRSF1A √
ICAM1 √ √ √
STAT3 √ √ √
CXCL1 √ √ √
NFKBIZ √ √ √
LITAF √ √ √
SAA2 √ √
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Figure 3: Identification of TNFRSF1A as a liver-specific DEG in sepsis. CLP-induced sepsis mouse model was established. (a) Repre-
sentative HE staining images of the liver, lung, and kidney tissues of sham and CLP groups. Scale bar means 50 μm. (b) Relative expression of
TNFRSF1A in these animal septic tissues was detected through Western blot. ∗∗P< 0.01 vs. Sham group.
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important role of TNFRSF1A in septic liver injury. .e
extracellular domain of membrane-bound TNFR1 can be
proteolytic-cleaved. Deng et al. confirmed that TNFR1
shedding in hepatocytes is through the iNOS-cGMP-
TACE pathway to defend bacterial lipopolysaccharide
[41], so intervention of this pathway may be beneficial for
the early clinical cause of severe sepsis. Nevertheless,
TNFRSF1A also participates in other pro- or anti-in-
flammatory pathways in liver cells. .e KEGG database

showed that TNFRSF1A involves in the mTOR and
MAPK pathways to further regulate inflammatory re-
sponses, as well as caspase 3 and NFκB pathways to
control cell apoptosis, which maybe the inner mechanism
of TNFRSF1A regulating liver immune defense and im-
munity adjustment. Our study indicated that not only the
TNFRSF1A membrane protein in septic liver cells sig-
nificantly decreased but also its gene expression had a
specific decline. Its gene regulation mechanism remains to
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be investigated. Only by further exploring the duration,
concentration, and related inflammatory factors of
TNFRSF1A in the immunoregulation of sepsis, can we
better understand its role in the occurrence and devel-
opment of septic liver injury and provide potential in-
sights and targets for the diagnosis and treatment.

In conclusion, our study showed that TNFRSF1A is
closely associated with sepsis-induced liver injury, which
provides a potential diagnostic signature for septic liver
injury and a basis for exploring the roles the liver plays in
defense homeostasis during sepsis. TNFRSF1A may serve as
an intervention target to alleviate and treat sepsis in the
future.
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