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THE DECAY OF THE LOCAL ENERGY FOR
WAVE EQUATIONS WITH DISCONTINUOUS
COEFFICIENTS
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§0. Introduction

The exponential decay of the local energy for wave equations in
exterior domains of the odd dimensional space has been proved in [1]
~ [6] etc. under the Dirichlet boundary condition and in [5],[7] under
the Neumann condition and the other conditions. In this paper, we shall
consider this problem for the following equation:

0’ 1 .
I “y=_-——_V. Fu, R» 0,
@ atzu @) p@Wu in % (0, oo)

with the initial data
u(@,0) = f(®) and wu,(x,0) =g@),

where n > 3 is the space dimension, f(x) and g(x) are of compact sup-
port, and p(x) is the discontinuous function defined as follows:

X _
N 21 in =R —7.

It is convenient to regard the problem (I) as follows: Let v
= Ulsx 0,0y AN W = U|yx0,)» Then, v and w satisfy the equations Jv =0
and Jw =0 in & X (0, 00) and O X (0, o0), respectively, and the relation
between » and w

(01) ’v]ae = wlao ’
ov ow
0.2 AN R d
©.2) on |ae pan a0
holds on 90 = 66, where n = (n,, --+,n,) denotes the unit normal on 3¢
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which points into &. (From now on, we use % = (n,---,7n,) in this
sense in order to fix the notation.)

By a C%solution #, we mean that u belongs to C*Z x [0, o0))
N C¥& X [0, o)) and satisfies (0.1) and (0.2) on 9¢ and that « is real valued.

In fact, such a solution exists: We set A = ——(1-)—17 -p(x)V. Then, the
o(x
operator A is a positive self-adjoint operator in L*(p(x)dx) with weight
o(x) whose domain is given by
2(4) = {ue H'(R")|w = u), € H(0), v = u|, € H{(&), w and v satisfy
(0.1) and (0.2) in H**@¢) and HY*96), respectively},

H'(®) and H*&), --- being the usual Sobolev spaces. Hence, this implies
that for given f e HYR") and ge L*R") of problem (I), there exist a
unique weak solution u(z, ¢) such that u(x, t) € C*((0, T); L*(R™)) N C(0,T);

H'(R™) for any T >0. Moreover, if 96 is smooth enough, the following
regularity theorem holds for A:

2(AY) C {u e H(R")|w € H*¥(0), v € H¥(8)} .

Hence, if we choose the initial data f and g as f e 2(47) and g € 2(4%),
N being large enough, we can find a desired solution by the imbedding
theorem of Sobolev. We note that a weak solution is obtained as a limit
of such a solution in the energy norm.

As is easily seen, the total energy

[ o@quor +1rubpds
is conserved in ¢. We denote this quantity by G,(w), so that
—;—Gow) < [ (uoP + rutypas < G
since p > 1. We define E(u; h, T) as follows:
B, D= [ (uDF + FuDpds .

Before stating the main theorem, we make the following assumption
on O:
Assumption (A). (i) ¢ is a convex open bounded domain with smooth
boundary which contains the origin. For brevity,
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(0.3) 0c |z <3},

(ii) There exists a C*function y(x) such that

(a.1) x(x) = const > 0, on 9¢;

@.2) yn = % = (g m) > >0, 7, = :;Cj on 3¢;

@.3)  (eg)s yuy = 0%/0x,;0%,, is a positive definite matrix at each point
of R;

@4) xy=Q—rx;/r,r=|2,0<§ <1, for r > r, large enough.
If 0 is strictly convex, we can find such a function (see [5] p. 246).

MAIN THEOREM. Let n>3. Assume that Assumption (A) is satis-
fied. Let u be the C*solution of problem (I) with the initial data f and
g of compact support: support of f and g Clx|<y. Then, if n is odd

Ew; T < ke "Gy(w) ,
and if n is even,
Ew; h,T) < E,T'Gy(w) ,
where ki, k, and 8 are constants depending only on h and 7.

The above main theorem is proved by a modification or generaliza-
tion of methods used in Morawetz [4] and Strauss [6]. In §1, we show
that E(u; h,t) is integrable in ¢ and in §2, we prove that E(u; h,t) de-
cays at the rate of ¢-!. In §3, we prove the exponential dacay.

Finally we note the following facts throughout this paper: (a) k,
k., k,, --- are used to denote positive constants, which are not necessarily
the same. (b) Integration with no domain attached is taken over the
whole space. (¢) we use the summation convention. (d) we write
dy v

Simply Xns Vns * ** instead of R IR
on - an

1. Integrability of the local energy

We state some preliminary lemmas.
LEMMA 1.1. Let x(x) be a C*-function. Then, the identity
a.1n Uy — Uz )Qretts + Fxet) = Xo(w) + V- Y () + Z(w)

holds, where

https://doi.org/10.1017/50027763000017864 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000017864

38 HIDEO TAMURA

X(u) = u,(pst; + xa) »
Y () = —u;Qaus + $xe0) + Sx((Fuf — ug) + %Xiijuz .
Z(W) = JuUUy — Foarg s -

LEMMA 1.2. Assume that y(x) is a C'-function satisfying (a.4).
Then, we have

1.2) KUty > or~ 0 [Puf
1.3 Yirj; < —06(1 + o)r~*?,
for r = x| > 7, large enough.

By a direct calculation, we obtain Lemmas 1.1 and 1.2. (see Lemmas
1 and 2 of Strauss [6])

LEMMA 1.8, Let u be a C?-solution of problem (I). Suppose that
Assumption (A) is satisfied. Then, for any ¢ > 0 small enough,

r j et (Fuf + (1 + 1)) + 1)~ —'dedt

< kGw) + k, jTJ e~2hdadt
0

lz| <70

where k, and k, are constants independent of ¢ and T, and G (u) is the
total energy.

Proof. We set v = U|,xo,ry a0d W = Ul|gyo,rn. We multiply the iden-
tity (1.1) with x(z) satisfying (a.1l) ~ (a.4) by e *¢ and integrate over
& X (0,T) and 0 x (0,T), separately. We have

7 T
j f e~ Z(v)dxdt = _.[ j e~ X,(v)dxdt
0 N 0 &

(1.4) + j: L (Y ,(v)-n,)dod
= 11 + Iz ’

j OT j e Z(w)dadt = — j : j o2 X ,(w)dadt

(1.5) — jT L e4(Y (w)-n)dodt
0 '3
= II _— IIZ .

Integration by parts yields
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L= ~[ X, Ddw + | X0, 0dw - 2 [[] erexaaat
=I,+1I,+1;.
Recalling the expression of X(v) in Lemma 1.1, we have
X() < k@i + [Fof! + r~*?)

for some k> 0, since y; = O (r™!) as r — oo. Integrating X(v) over &,
we have

j Xy < kj(uf + Puf + - de .

Note that if n > 8, jw-zwdx < kleu]z de. Then, it follows that

1.6 Ly, I, < kGy(u) .

Moreover, we have
1.7 I, < ke IT e dtGow) < b, Go(t) .
0

Combining (1.6) and (1.7), we obtain

1.8) I, < kGy(w) .
Similarly we have

1.9) II, < kEGy(w) .

Next, we consider the terms I, and II,, Making use of the fact that
XV = YV, ON 06 by (a.1) and writing |[Fvf =92 + [V, v on 3&, we have

(Y ;) 1) = — 32295 — $%6Va? + $0a(Vean ¥ — VD + $xua?® .

We obtain a similar expression also for (Y, (w)-n,). In view of relations
(0.1) and (0.2), we see that

Y ;)-ny) — (Y w)-ny) = 31 — oy, + 31 — X w,w .
Since (1 — )y, <0 by p > 1 and (a.2), it follows that on 9¢
Y ;)my) — (Y;(w)-ny) < bw?,

for k> 0. Furthermore we have for any » > 0 small enough,
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J wide < ”I Vwlt de + lc(p)j widx .

ae o [4

Hence, we obtain

(1.10) I,—1I, < 7,” et \Pw dx + kGp) rf e-ttuid
0 o 0 o

for any » > 0 small enough.
Now, by (1.2) and (1.3),
(1.11) ZWw) > or ' Pol 4+ L6 + 8)yr~-%?, for |r| > 7, .
And by (a.3),
(1.12) Z() >k, |Pvff — ko, injzj<r,N§é&,
1.13) Z(w) >k |Fwl — kaw?, in 0.
Taking 7 in (1.10) small enough and combining (1.8) ~ (1.12) with (1.13),
we finally obtain

f fe—w(wu[z + 1+ M)A + ) dadt

< kGw) + E, r.f e Btyldxdt .
0

lz|<7o

LEMMA 1.4. Under the same assumption as in Lemma 1.3, the fol-
lowing estimate holds:

r el + 1) ddadt
0
< 5Go) + K, f j e-idudt .
0 JizI<ro

Proof. Let p(x) = (1 + 5)~@*»72 Then, |dp| < k1 + )% As in
the proof of Lemma 1.3, we set v = U|.xo,ry and W = U|yxo,r. We mul-
tiply the equation [Jv =0 by e *p(x)v and integrate over & x (0, 7).
Then, we have

0= I e"“‘p(x)v,'vdxr + w e (ol — v)p(@)dedt
& 0 &
+ 2 rj e tp(x)pdedt + J'Tj e-tp (@), wdodt
0 é 0 ae

170 1 (7
1 j f e-vip, vdodt — _f e~ Apvrdadt .
2 Jo Jae 2 Jo
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A similar identity for w is obtained by multiplying O w = 0 by pe~*'p(x)w
and integrating over @ X (0,T). By the definition of p(x), we can prove
in the same way as in the proof of Lemma 1.3 that

(1.14) f e p(a)v,0d LT < kG,)

(1.15) 2¢ r‘[ e~ *tp(x)vvdedt < kEGy(w) .
0 Je

The same estimates as (1.14) and (1.15) are obtained for w(x) with do-
main of integration ¢. Thus, by taking account of relations (0.1) and
(0.2), and by adding up the two identities obtained for v and w, the
boundary integral is estimated by

k rj e (Pl + wddedt ,
0 o

so that we have

r I e=t(1 + 1)--uidudt
0
T
< k,Gyw) + kzj je-m(wur + @+ M)A + P idwdt .
0

Combining this estimate with Lemma 1.3, we obtain the conclusion.

LEMMA 1.5. Suppose that the same assumption as in Lemma 1.3 is
satisfied. Let R be a positive fired number. Then, for any >0 small
enough, there exists a constant k = k(y) independent of ¢ such that

rj e~ uldaedt < EGy(uw) + nr I e (1 + ) uidxdt ,

0 IzI£R 0

where we note that the constant k may depend on the support of the
wnttial data f and g.

This lemma will be proved in Appendix.
Combining Lemmas 1.3 and 1.4 with Lemma 1.5, and letting 7' — oo
and ¢ — 0, we immediately obtain the following result.

THEOREM 1. Let n >3 and let u be a C?~solution of problem (I)
with initial data of compact support. Suppose that Assumption (A) is
satisfied. Then,
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j : J @ + [Pup)( + 1) —'dzdt < kGow)

for k> 0 depending only on & and the support of the initial dota. There-
fore, we have that

E@; h,t) = j _ @ + [Pup)da

[E4]

18 tntegrable in t.

§2. Uniform decay of the local energy

In this section, we shall prove the uniform decay of the local energy.
We introduce the following function: Let 4(x) be a C*function such

that

2.1 £(x) = const > 0, on 9é

2.2) 4, =WU;n)>p>0, on ¢

2.3) 4(x) = 1* for |z| > r, (r, large enough) .

We begin with the following identity (cf. Morawetz [4] and
Zachmanoglou [91): Let A(x,%) be a C~-function of z and ¢.

2.4 (uy — usAu, + teu; + (0 — Diw) = F(w) + V-G) + Hw) ,
where

Fuw = AW + [Fup) + t6uu, + (0 — Dty — 2(n — Du?
G,(w) = —u;(Au, + teu; + (0 — Ditw) + $t6,(Fuf — u))
Hw) = 3uité;; — A, — 2(n — DY) + uu(4; — ¢,)

+ 3@t + 2(n — Dt |Ful — té,\Fulf — A, [Fup) .

LEMMA 2.1. Let u be a C?-solution of problem (1) with initial data
of compact support and let w = Ulyxor. Assume that 4(x) satisfies
2.1) ~ 2.3). Then,

%TZ[ W (T) + [Pw(TYP)d
< ETG,@) + rj a()dodt
0 e

for k> 0 independent of T, where
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a(t) = §té,w; + 3t,(w; — Vi wP) + (0 — Diw,w + o(r* + tHw,w, ,
ond [Fw| = wi + [Vin w on 08.

Proof. We integrate (2.4) with A = p(#* 4+ t*) over @ X (0,T) to ob-
tain

@5 0= j F(w)dz ‘: + I: L‘ (G,(w) -n;)dodt + j: f H(w)dxdt .

We note the following estimates:

(2.6) Hw) < kt(wi + [Fwp)

I lwaw| de < k(f widx + J wzdx)
(2.7) 4 o 4

< kl(j wde + jr—wdx) < 5,Gy(w)
2.8) j wide < kGyw) .
Making use of these estimates, we see from (2.5) and the expression of
F(w) that
3T @iy + IPw@ s

2.9) ’

< ETGyu) — LT j (Gyw) m)dadt .

On the other hand, by (2.1), we have

—(Gyw)-ny) = 2to,w2 + Lo, — (Ve w)
(2.10) 2 2

+ o(r* + Pyw,w, + (v — Diw,w .
Combining (2.10) with (2.9), we obtain the desired estimate.

LEMMA 2.2. Let u be a C*-solution of problem (I) with initial data
of compact support and let v = U|pweo,r. Assume that 4(x) satisfies (2.1)
~ (2.8). Then, for fixed h > 0, there exists a constant k = k(h) inde-
pendent of T such that

szj W(T) + |[Po(T)Pda
8 lz1<hn e

< KTGyw) + j: L‘ B(t)dadt
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for any T > 0 large enough, where

B(t) = —éwnvz - %wnwz P 0P

— (1 + Y0, — (0 — Divyo
and the constant k(h) may depend on the support of the initial data.

Proof. First, we rewrite F(v) and G(v). To do so, we consider the
following identity :

—3(n — D), = —in — DV - (r~*((r* + t9)v),x)
+ 3 — DO~ + WP v-2)v + 3 — 2)v%),) ,

% = (2, --,2,) being a position vector. By use of this identity, we
rewrite the last term of F(v), —i(n — 1)2%, so that we have

@.11) (W, — v;)(Av, + t6w, + (0 — Dtv) = F,(w) + V-Gw) + Hw)
with A(z,t) = (#* + t?), where

F) = 30 + @2 + [PoP) + tb o, + (n — Dtvw
+ 3 — D@ + (v -2)v + 3n — 2)?)

G,(v) = —v,((r* + D, + t4,w; + (n — Ditv) + 3te,(Fv} — v?)
— 1 — Dr*((r* + tHv),, .

H@) = HWw) .

We integrate (2.11) over & X (0, T) to obtain
~ T T ~ T ~
@12) 0= LF('v)dxlo - L [ G npdot + L. [ Awdza .

Now, by (2.3), we have in |x| > 7,

L0 0, = 2PVf
‘gjj = 2% >

so that
ﬁ(v):O, in|z|>r.
Hence, we have in &
A@) < k1 + 17708 + o)
for £ > 0 independent of ¢, so that by Theorem 1,
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2.13) f ) j Hw)dedt < kTGyw)
0 s
with k£ > 0 independent of T. Clearly,
@.14) [ 17w dx\ < kGyu) ,
& 0

for k> 0 depending only on the support of the initial data, where we
have used that jr'zuzdx < Ic‘[[Vul2 dx for n>3. On the other hand,
F‘(v)|T can be rewritten as follows:

Fw)|, = K, T) + K,,T) ,
where

K, T) = 30" + TH(Vv} — v})
+ 177 + DHO™), + (™))
+ (r — D(r™), — (r"™v)))
+ (G — D — 2) — Fn — Dr~*(* + THo*,
m=m-—1)/2,
K0, T) = (4v; — 2rv,)Tv, .

Note that for n > 3, :(n — D(n — 2) — §(n — 1)* > 0 and that K,(»,T) > 0.

By 2.3),

Lv; =210, , inl|z|>mn,
so that

K,v, T) =0, in || > .
Hence, we have
@.15) f K, )| dz < kTGw)

for & > 0 independent of 7. Moreover, when |z| < h, h < 1T,

K\, T) > $T(Pof — 0})
+ I TE) + (")
+ 300 — D(n — Br0* + T
> Y7o + 0! + do — 17 - (~v'a)
—1(n — D — 3)r ) 4+ (n — D(n — 3)r *r* + THV®

(2.16)
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> 3PP + v; + (0 — DV -(r~?0%)) .
With the above estimates (2.13) ~ (2.16), we have from (2.12)

L[ (ipor + ot Lo~ 1700 do
@.17) 8 Jumizmne 2

T ~
< KTGyw) + L L‘ (G @) -n,)dodt .

Recalling the expression of Gj(v) and writing [Fv|f = v2 + [Fv,..v] on a6,
we have by (2.1)

(G,@)-my) = pE) — 3 — Vr@* + ) (x; ) ,
where p(t) is the function defined in this lemma. Hence,
ﬁ (G (v)-n,)dodt = r J B®)dodt
0 s 0 ¢
~ %(n - 1)[ 20?4 )0, n,)da| .
3 C
Since
L (p—2ny2 — —1p92 - —2,42, .
LIISWV (- )das jm:hr vido Lr V(@ n,)do .

it follows from (2.17) that

lTZI (Pof + v)dz
(2.18) 8 lzl<hne

< kTGyw) + j [ swdoit + Lw) ,

where

_ 1 __ 2 ~2p92( .
L) = (0 — VT j i, nj)do]T

s

— 7}(% -1 J.M i 4 tHv*(x; - ny)do

T
0

Since (x;-m;) > 0 on 96 because of the convexity of ¢,

L) < k[ vz, m;)do

< kGy(u) .
0

This, together with (2.18), completes the proof.
Combining Lemmas 2.1 and 2.2, we have the following theorem.
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THEOREM 2. Suppose that Assumption (A) is satisfied. Let u be
the C’-solution of problem (I) with the initial date f and g such that
the support of f and g is contained in |x| < y. Then, there exists a
constant k = k(h,y) independent of T such that

(2.19) Etwu; h, T) < ET'Gy(w) .

Remark. This result is valid for weak solutions, since a weak so-
lution is obtained as a limit of C*-solutions in the energy norm.

Proof. We add up the two inequalities obtained in Lemmas 2.1 and
2.2. Then, we have

}—Tzf Fu(D} + u,(T)Hdx
8 |zl <h

< kTGyu) + j j (@(®) + B&)dadt ,

a(t) and B(t) being the functions defined in Lemmas 2.1 and 2.2, respec-
tively. Recall the relations (0.1) and (0.2). Then, we have

a@® + p@ = 31 — e, w, + (v — DA — p)tw,w .
Since p > 1 and ¢, > > 0 on d¢ by (2.2), it follows that
a(t) + @) < ktw?, on 9¢ ,

for k > 0 independent of {. Moreover, we have by Theorem 1,
T
j I wdedt < krf (Fwp + w)dedt < kGyw) .
0 Er's 0 o
This completes the proof.

§3. Exponential decay of the local energy

In this section, we shall prove the exponential decay of the local
energy when 7 is odd, using Theorem 2 and following the procedure of
Morawetz [4].

We recall the definition of E(u; h,t):

Eu; h,t) = j _ Gty + Pu®)pdz

Iz|

and introduce the new notation:
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3.1) Gau; 1) = | . Py + Pu®Pda

Since p > 1, we have
(3.2) E;h,t) < Gu; h,t) < pE(u; k, ) .

In this section, by a solution we mean a weak solution. As was
stated in Introduction, G(u; co,t) (= Gy(w)) is conserved in ¢ for the so-
lution u of problem (I). For later use, we rewrite (2.19) as follows:

3.3) E@; h,T) < p(T,h,DE(u; oo, 0)
with (T, h,y) = pk(h, )T, k(h,7) being the constant in Theorem 2. By

Remark after Theorem 2, (3.3) is valid for weak solutions.

LEMMA 3.1. Let u be the solution of problem (I) with the initial
data f and g such that fe H'(R™) and ge< L*(R"™) and that the support
of f and g is contained in || <y. (>34, 0C|z]<y by (0.8)). Then,
the solution u may be written as

U = Ro + F 0
where F, is the free space solution with the same initial data as u.
Furthermore,

F,=0 for r=|x|<t—7p.

R, has compact support of at most 3y at t =2y, and is a solution of
problem (1) for t > 2y. We have

E(RO;OO,S)£4G0(/L¢), 820'

Proof. 1t is clear that F\y = 0 for » <t — y by Huyghen’s principle.
Hence, for ¢ > 2y, F, =0 in |z| < 7, so that F, is a solution of problem
(I) for £ >2y. Since u is a solution of problem (I), R, is also a solution
for t > 2y. We easily see that R, has compact support of at most 3y at
t = 27 by the dependence of domain. Moreover, we have for s > 0,

E(Ry; 00,8) = E(u — Fy; c0,8) < 2(E(u; ,8) + E(F); =,3)) .

Using (3.2) and the fact that F, is the free space solution with the same
initial data as u, we conclude that

ER,; c0,8) < 2(G(u; o0,8) + E(F,); «,0))
< 2(Gy(u) + G(Fy; 00,0)) = 4Gy(w) .

https://doi.org/10.1017/5S0027763000017864 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000017864

WAVE EQUATIONS 49

LEMMA 3.2 (Morawetz [4], Lemma 2). For T > 4y,R =R, + F,.
Here F, is the free space solution with the same initial data as R, at
t=T, and

F,=0 for r <t—T—17p,

while R, is a solution of problem (I) for t > T + 2y and has compact
support of at most 3y at t =T + 2y. Furthermore,

E(R,; 0o, T + 2y) < EE(R,; 57, T)
with k= 2(p + 1).

Proof. We continue F, as F, =R, for t<T. Then, (JF, =0 in
the domain exterior to |z] <y X (0,7). We apply Huyghen’s principle
to F, in this domain. Let (z,?) be a point with |x|<¢ — T — y. Then,
the backward cone with vertex at (x,t) does not intersect x| =y X (0, T),
and intersect the plane ¢ = 2y outside the sphere |x| < 3y where the sup-
port of R, is contained in virtue of Lemma 3.1. Thus we conclude that
F,=0 for [x| <t — T — y. Consequently, when ¢t > T + 2y, F'| is a solu-
tion of problem (I). By Lemma 3.1, R, is a solution of problem (I) for
t > 2y. Hence, R, is also a solution for ¢ > T + 2y, and the fact that R,
has compact support of at most 3y at ¢t = T + 2y is easily obtained by
the dependence of domain, since [J R, =0 in [z| >y X (T,0) and R, =0
at ¢t = T. Therefore, we have

E(R,; 00, T + 2y) = ER,; 3y, T + 2y)
< 2ERy; 35, T+ 2p) + EWF; 3, T + 2p)
< 2GRy 37, T+ 2p) + EWF; 3, T + 2p) .
On the other hand, making use of the fact that R, and F', are solutions
of problem (I) and of the free space wave equation with the same ini-

tial data as R, at ¢ = T, respectively, we can obtain by the standard
method of energy estimate that

G(R,; 37’, T + 2?’) < G(R,; 57’9 D,
EF; 3y, T + 2y) < E(Ry; 51, T) .

Thus we conclude that

E(R; 00, T + 2p) < 2(p + DER,; 575 T) .
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This completes the proof.

THEOREM 3. Suppose that Assumption (A) is satisfied. Let u be
the solution of problem (I) with the initial data f and g such that
f e H(R™ and g€ L*(R"™) and that the support of f and g is contained
m x| <y. Let y,>y. Then, there exist constants k = k(y,y) and 6
= 6(yy, 1) such that

E@; 1, T) < ke™""Gy(u) .

Proof. In Lemma 3.2, we decomposed E, into B, =R, + F,. We
apply the same procedure to R, We define F, as follows: F, = R, for
T <t<2T and F, is continued for ¢t > 2T as the solution of the free
space wave equation with the initial data F,2T) = R,2T) and F,,(2T)
= R,,2T). Exactly in the same way as in the proof of Lemma 3.2, we
see that

F,=0, for || <t —2T — 7.

We set R, = R, — F,. Then, it follows from the above fact that R, is
a solution of problem (I) for ¢ > 2T + 2y. Furthermore, R, has compact
support of at most 3y at ¢ = 2T + 2y, and

E(R,; o0, 2T + 27) < kE(R,; 57,2T)

with k& = 2(p + 1). We repeat this procedure. Then, for ¢ > =T,

w=3F,+R,,
7=0

where

3.9 F,=0 for || <t —jT — 71,

and

3.5) R, is a solution of problem (I) for ¢ > nT + 27 .

Let yo> 7 and let ¢t > nT + 7 + 7, > nT + 2y. Then, in view of (3.4),
u =R, in |z]| <7, so that by (3.5) and (3.2),

E; 1, t) = BBy 70, < GRy; 10, 1) < G(R, 5 00, 1)
=GR,; o,nT + 27) < pE(R,; oo,nT + 2p) .

Moreover, by Lemma 3.2, it follows that
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E(; 70, t) < pB(R, ; 00,nT + 2p) < pkE(R,_,; 57,nT)

for k=2(p + 1). Note that R,_, is a solution of problem (I) for
t> m — 1T + 2y and that R,_, has compact support of at most 3y at
t=m— 1T + 2y. Hence, we can apply (3.3) to E(R,_,; 57,nT) to obtain

ER,_; 57,0T) < pkp(T, NER,_,; o0, (n — DT + 27)

with p(T,7) = pk(By, 37)(T — 2y)~'. Repeating this procedure and using
Lemma 3.1, we conclude that

Eu; 10, 1) < pexp {nlog kp(T, 1)}E(R,; oo, 2y)
< 4p exp {nlog kp(T, )}G,(w) .

Here, we take T so large that
log kp(T, ) = —6T
with 6 > 0. This is possible since p(T,7) — 0 as T — co. Therefore,
Ew; 1o, ) < 4pe”""TGy(u) .

Thus, if for given ¢ >0 large enough, we choose the maximal integer n
such that ¢t >nT + 7 + 7, then > (¢ — y — 79T — 1. Hence, we ob-
tain

E(u; 70 t) < ke " Gy(w)

with %, = 4pexpb(y + 7o + T). This completes the proof.
Finally we note the following fact: The method presented here can
be applied to a slightly more general problem of the following form:

0? 1
— U — —F-p(x)fu =0,
o’ " @ PW

where

o>1 in O
1

a in @

o(x) = { and a(x) = {1 e

and O satisfies Assumption (A). Then, if a < p, we canobtain the same
result as Main Theorem.

Appendix
We shall prove Lemma 1.5.
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Let s(t) be a C~-function such that s(f) =0 for 0 <t<t, —1 and
and s(®) =1 for t > ¢, t, > 1. We put iz, t) = s@®u(x,t). Then, %u(x,t)
satisfies the following equation:

iy — J—;V-p(x)m = ()

p(@

with the initial condition
Wx,0) =0 and ,(2,0) =0,

where p(x,t) = 2s,u, + s;u. Using the conservation of energy for » and
the fact that the support of # is bounded for 0 < t < t,, we see that

4.1) f X f wdadt < KBGw) = kGy@) .
Hence, in order to prove Lemma 1.5, it is sufficient to show that
“.2) j : J L edadt < @G + j: J et(1 4+ 1) -vdadt
where G,(u) is the total energy. N 3
I\Iow, we put 7 = Glixp,0y ANA W = T|yx(0,, and define U(x, w), V(x, »)

and W(z,0) for o = p + ix, £ > 0, as follows:

U@, 0) = I: e, Hdt
(4.3) V(@ 0) = I: o (x, t)dt

Wz, o) = I: et (z, )dt .

Then, V(x,w) and W(z,») satisfy the following equation:
AV — oV =P, in &,

@b AW — o'W =P, ino,
(4.5) V=W ona

4.6) Vn = an , on 9¢ ,
where

Pz, 0) = j“ etotp(z, Bt .
0
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Note that p(x,t) = 0 for ¢t > £, and that p(x,f) is of compact support in
x for 0 <t <t, so that P(x,w) is also of compact support uniformly in
. We can prove that if Imw > 0 and P e L*(R"), problem (4.4) ~ (4.6)
has a unique solution U such that Ue H'(R"),V = Ul|,e H¥(&) and W
= U|, € H¥0) and that (4.5) and (4.6) are satisfied in H¥*(9¢) and H*3¢8),
respectively.

Before proving (4.2), we introduce the functional space H*0, R):
Let By = {z||x| < R}.

H¥0,R) = {U e H(Bg)|U|, € H(0O), Ulgzns € H(Bg N &) .
The norm in H*, R) is given by
NUNGz =1URz + IWke + | VIEBane »

where W = Ul|,, V = Ulzpne and |||,z |'lles @nd |||z, 520 are the norms
in the Sobolev spaces H(Bjy), H¥(®) and HXBy N &), respectively.

With the above notation, we state the following lemma from which
(4.2) follows.

LEMMA Al. Let Imw > 0,0 =p + ik, and let G(x) be a function
with compact support. Let U(x,w) be the solution of problem (4.4) ~ (4.6)
with P = G. Then, we have the following statement:

(i) mn;odd. Let |p< A and 0 <k < 1. Then, there exists a constant
k = k(4, R) such that

MUz < KNG, -

(i) mn;even. Let uy > 0. Let py <|p|< 4 and 0 <2< 1. Then, there
exists a constant k, = k4, u, R) such that

MUz < kGl -

Here ||-||, is the norm in LYR"™) and the constants k and k, may depend
on the support of G.

The proof of this lemma is rather long and is done in the same
way as in the proof of Lemma 4.6, Wilcox [8], pp. 65, and so we omit
it.

We shall proceed to the proof of Lemma 1.5.

Proof of Lemma 1.5. As is stated above, it is sufficient to prove
(4.2). Using the Schwarz inequality and the fact that p(x,t) = 0 for
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t > t,, we have

JIP(x,w)F dz < t, I:"f[p(x, B dudt .
Moreover, since |p] < k(u? + u?), it follows from (4.1) that
@ [1P@ o) do < k6w

for k = k(t,) independent of w. First suppose that n is odd. Let U, »)
be the function defined by (4.3). Then, we have by Lemma A.1 and
4.7,

H et iz, O dudt = r j 0 (@, 1 + o) dadp
|z|<R - J [ZI<R

0

A ~
< J j O, i + i) dodp
-4 J |z|<R

+ A j - f WO, 4 9P dudy
< E(UD)Gy(w)
+ k(R)A—zr f e (1 + 1) 1-atdpdt .
0

Hence, if we take A sufficiently large, we obtain the desired result.

Next, we consider the even-dimensional case which is more compli-
cated. Let 6 <<d¢ <2 andleto=1+¢. We choose b,1 <b <2, so that
q®) = (0 — b)(—4b* + b + $) ' =0. In fact, such a b exists since q(1)
=0 and q@2) =4. We set C, = b’(—30* + b + 1) for b defined above
and introduce the following function:

1 for 0<r<i1
4.8) o(r) = —3r +r+ % for 1<r<b
Cyr= for r>b,r="x|.

By the definition of b and C,, we see that ¢(r) is a C'-function and piece-
wise C*-function and that de(r) < 0.

Now, let U(z, ), V(z, ») and W(x, ®) be the functions defined by (4.3).
We multiply the equation —4V — o’V = P by @)V, integrate over &
and take the real parts. Then, using the fact that ¢y =1 and ¢, =0
on 9¢ by (0.3), we have
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ReJ‘M 7. Vdo + f o) [PV dzs — %f‘ do | VP da
= Re o’ f‘ o(r) |V dz + Re L PgoI:/dx .
Similarly multiplying the equation — AW — o'W = P by pﬁ’, we obtain
— Re L‘ oW, Wdo + prﬁqz dw
— Re aﬂprqu dz + Re j oPWdz .

Taking account of relations (4.5) and (4.6), and adding up these two
equalities, we have

“.9) et nmirOras < e "’quo_m Vide + L‘i’le dz)
+ Re j PoVdz + Re I pPWdz

where we have used that 4o < 0 and that ¢(r) > k1 + r)~°. We claim
that if n >4 and 1 <o <§,

(4.10) I(1 + | TP de < kj(l + PO pds .

This assertion will be proved later. The third and fourth terms on the
right side of (4.9) are estimated as

7@+ D10 do + k) [ PR do

for any » > 0 small enough, where we have used the fact that P is of
compact support uniformly in . Hence, in view of (4.9) and (4.10), it
follows that there exist constants k, and k&, such that

I(l + ) | Upde < klpzj(l + )| 0F dz + sz|13|2 de |

since Reo’ =4 — <o =p+ i, and ¢ < k(A 4 r)°. We rewrite
kl/ﬁj A + )~ |U} dx as follows:

k,,fja + ) | Opdes = f @D g0y OF da

+ ket lele A+ N7 + )7 |[7|2 dz ,
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where 6 =1+ ¢ and yy =& — 6> 0. For » > 0 small enough, we first
choose M = M(y) so large that k(1 + )" <y for || > M, and next
o = () so small that k*(1 + r)* <y for || < M and |p] < p(p). Thus,
we conclude that for any » > 0 small enough, there exist constants k(y)
and gy such that

ja + ) | TP de < Wﬁf A+ » | Tpde + k(y)ijlz dw

for |pu| < m(n). Hence, for each fixed B > 0 and any » > 0 small enough,
we have

4.11) f \UF de < W?I(l + )= | T de + k(r),R)j{PF da
|2I<R
for |p| < wiy, B).

Now, we shall prove (4.2). As in the proof of the odd dimensional
case, we have

rj e‘“‘ﬁzdxdt:r I Oz, p + ief dady
0 JlzI<R —o J |Z|<R

- f dady + f dedy + j dwdy
lulSpo(y) m<Llpl<4 {al=4
= I1 +1, + I3 .

I,1, and I, are estimated as follows:
L[  [@+n = 1ul,u+ ioF dedu + koG

by (4.11) and (4.7), if we take g (») sufficiently small for any » > 0.
I, < kz(% DG(uw)

by (ii) of Lemma A.1 and (4.7).
I, < kaA—zr j A + D)6l (w, p + 9 dady .

Here the constants k,, k, and k; may depend on RE. Thus, for any 5 >0
small enough, we can choose 4 so large that

r f et@tdadt < kGG + 7 f i j e-tt(1 + 1) -oadadt .
[} [zI<R 0
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This proves (4.2). It remains to prove (4.10). We start with the follow-
ing identity:

J,,.z—n IP((L + 7)~"re=2ry)p dg = j(l + ) |\Pulf do
— G [ @+ e up da
+ 26, [ (4 97r uf da

— C3f(1 + »)rtulf de

for u e H'(R™), where
Ci=%o"+20), C,=1%0(n —1), and C,=1in —2)°.

Furthermore, we have by the Schwarz inequality,

zczj A + P juf de < 04(1 + ) juf da
+ C3f(1 + )t |up da

with C, = ¢*(n — 1)(2n — 4)~*. Hence, if ¢ < § < 2(n — 2)2n — 3)7!, then
C, — C, > 0. This completes the proof.
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