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Abstract

We study the L w -norm (2 < W < oo) of the discrepancy of a sequence of points in the unit cube relative
to similar copies of a given convex polygon. In particular, we prove the rather surprising result that the
estimates obtained have the same order of magnitude as the analogous question when the sequence of
points is replaced by a set of points.
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1. Introduction

Suppose that ^ is a distribution of N points in the unit torus UL = [0, 1)L, where
L > 1. For every y = (yly... , yL) e UL, let

= [0,yi)x-.-x[0,yL),

and let

; B(y)] =

where #5 denotes the cardinality of the set 5. We are interested in the discrepancy
function

Dd&\ B(y)] = ZL[&\ B(y)] - NnL(B(y)),

where fiL denotes the usual volume in UL. The case L = 1 is trivial. For L > 2, the
following results are well known.
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[2] On irregularities of distribution III 229

THEOREM 1A. (Roth [6]) Suppose that &> is a distribution of N points in UL.
Then

I DL[&;B(y))\2dy»L(logN) L-\

THEOREM IB. (Roth [7]) For every natural number N > 2, there exists a distri-
bution & of N points in UL such that

L
We also have the following more general results.

THEOREM 1C. (Schmidt [8]) Let W > 1. Suppose that 3* is a distribution of N
points in UL. Then

f \DL[&\ B(y)]\wdy»L,w(logNyL-l)W/2.
JuL

THEOREM ID. (Chen [4]) Let W > 0. For every natural number N > 2, there
exists a distribution & of N points in UL such that

JuL \ B{y)]\w

Note that the above theorems remain true in the trivial case L = 1.
Suppose now that & is a distribution of Af points in the unit torus UK = [0, 1]*\

where K > 2. Let A be a compact and convex body in UK. For any real number
k e (0, 1], any proper orthogonal transformation r in K* and any vector u e UK, let

A(k, T, u) = {T(A.X) + u : x e A]

(note that A(k, r, u) and A are similar to each other), and let

ZKW\ A(k, r, u)] = #{&> n A(k, r, u)).

We are interested in the discrepancy function

DK{&; A(k, r, u)] = ZK[&>; A(k, r, u)] - N^K(A(k, r, u)),

where \xK denotes the usual volume in UK. Corresponding to Theorem 1A, we have
the following result. Let & be the group of all proper orthogonal transformations in
KK, and let dx be the volume element of the invariant measure on &, normalized
such that fy. dx = 1.
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230 W. W. L. Chen [3]

THEOREM 2A. (Beck [1]) Suppose that & is a distribution of N points in UK,
and that A is a compact and convex body in U K. Suppose further that r (A) > N~1/K,
where r(A) denotes the radius of the largest inscribed ball of A. Then

f f f \DK[&;A(X,T,u)]\2dudTdk>ANl-l/K.
Jo Jsr JuK

We comment here that Theorem 2A is sharp. The following analogue of Theorem
IB can be deduced using ideas in Beck and Chen [2].

THEOREM 2B. Suppose that A is a compact and convex body in UK. Then for
every natural number N, there exists a distribution 2? of N points in UK such that

I I i
Jo J> Ju

K[^>; A(k,x,u)]\2dudr dk«ANl~l/K.
uK

On the other hand, the following is a trivial deduction from Theorem 2A.

THEOREM 2C. Let W > 2. Suppose that & is a distribution of N points in UK,
and that A is a compact and convex body in UK. Suppose further that r{A) > N~l/K,
where r(A) denotes the radius of the largest inscribed ball of A. Then

f [ [ \DK[^;A(k,r,u)]\wdudrdk»A,wN^K^2.
Jo Jsr JuK

In Beck and Chen [2], a version of the following problem was investigated. Suppose
that 9* is a distribution of N points in the unit torus UK+l, where K > 2. Let A
be a compact and convex body in UK. For any real number A. e (0, 1], any proper
orthogonal transformation r in RK, any vector u e UK and any y e U, we consider
the cartesian product

A(A.,r,u)x[0,;y),

where A(k, r, u) € UK is defined as before, and let

Z[£»; A(X, r, u) x [0, y)] = #(£» n (A(k, r, u) x [0, y))).

We are interested in the discrepancy function

D\9>\ A(k, r, u) x [0, y)] = Z[&>; A(k, r, u) x [0, y)] - NnK(A(k, x, u))y.

A simple corollary of Theorem 2A is the following lower bound result.
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THEOREM 3A. Suppose that g? is a distribution of N points in UK+l, and that A is
a compact and convex body in UK. Suppose further that r(A) > N~1/K, where r(A)
denotes the radius of the largest inscribed ball of A. Then

f I f f
Jo Jsr JuK Ju

, T , U ) x [0,y)]\2dydudrdX^>ANl-i/K.

The argument in Beck and Chen [2] can be adapted to show that Theorem 3A is
sharp. We therefore have the following complementary result.

THEOREM 3B. Suppose that A is a compact and convex body in UK. Then for
every natural number N, there exists a distribution 2? of N points in UK+l such that

I I I f \D[^>;A(X,T,u)x[Q,y)]\2dydudxdk«.AN1-l/K.
Jo Jsr Ju" Ju

As before, the following is a trivial deduction from Theorem 3A.

THEOREM 3C. Let W > 2. Suppose that g? is a distribution of N points in UK+l,
and that A is a compact and convex body in UK. Suppose further that r{A) > N~i/K,
where r(A) denotes the radius of the largest inscribed ball of A. Then

III f
Jo J sr JuK Ju

,x,n) x[0,y)]\wdydudx

The purpose of this paper is to prove the following generalizations of Theorems 2B
and 3B. Theorems 2D and 3D below complement Theorems 2C and 3C respectively.

THEOREM 2D. Let W > 0. Suppose that A is a compact and convex body in UK.

Then for every natural number N, there exists a distribution S? of' N points in UK

such that

J sr JuK

THEOREM 3D. Let W > 0. Suppose that A is a compact and convex body in UK.
Then for every natural number N, there exists a distribution g? of N points in UK+l

such that

f [ f f \D[gf;A(k, r,u) x [0,y)]\wdydudzdX<&A,wN(1-l/K)W/2.
Jo Jsr Ju" Ju

The author would like to thank the referee for his valuable comments and sugges-
tions.
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2. The basic idea

Let A be given and fixed. Given any natural number N, we shall show that there
exists a sequence q 0 , . . . , q^_i of N points in UK such that

W T F E T / / \DK[£M;A(X,T,u)]\wdudTdX«A,wN<l-^w<2,
M ti^\ Jo Jsr Ju"

where =SM = {q 0 , . . . , q^-i} for 1 < M < N. Theorem 3D follows easily. The
proof of Theorem 2D is simpler.

The construction of the sequence q 0 , . . . , q^-i may be done in the same way as in
Beck and Chen [2]. However, in view of further work, we follow the slightly different
approach in Beck and Chen [3].

Let h be a natural number, to be fixed later. For s = 0,1,... ,h and for every
eel, let

(2) I(s,c) = [c2-s,(c+l)2-s).

In other words, / (s, c) is an interval of length 2~s and whose endpoints are consecutive
integer multiples of 2~s.

We shall construct a finite sequence qn (0 < n < 2Kh) of 2Kh > N points in UK

such that the following is satisfied. For every s =0,1,... ,h, every set of the form

/ 0 , a , ) x ••• x I(s,aK)

in UK, where au ... ,aK e 7L, contains exactly one point of

{qn :c2Ks <n < (c+l)2Kt),

where c is any non-negative integer satisfying c < 2K(H~S).
The construction of such a sequence involves ideas in combinatorics and poses

no real difficulty. However, such a sequence alone is insufficient to give a proof of
either Theorem 2B or Theorem 3B, let alone Theorems 2D and 3D. As in Beck and
Chen [2, 3], we appeal to tools in probability theory. A natural consequence of this
is that our proof will not give any explicit description of the well-distributed sets in
question. This is a common phenomenon in most upper bound proofs in irregularities
of distribution.

We shall describe the combinatorial part of the argument in §3 and the probabilistic
part of the argument in §4.
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3. A combinatorial approach

233

For every integer s satisfying 1 < s < h, integers T], . . . , r ^ € {0, 1, . . . , 2K -1}
and vectors a! , . . . , a.,_i e {0, 1}*, let

G[xu . . . . w i , a,-,] : {0, 1 , . . . , 2* - 1} - • {0, 1}*

be a bijective mapping, with the convention that the mapping in the case s = 1 is
denoted by G[0]. Given these mappings, we can define a bijective mapping

F : {0, 1 , . . . , 2Kh - 1} -> {0, 1 , . . . , 2" - 1}*

as follows. Suppose that n is an integer satisfying 0 < n < 2Kh. Write

(3) n =

where ru ... , xh e {0, 1 , . . . , 2K - 1}. We now let a 1 ; . . . , ah e {0, 1}* be the
solution of the following system of equations

= a , ,

= a 2 ,

= a3,

(4)

G[T1,T2;a1,a2](T3)

G[TU . . . , T , _ i ; a , , . . . ,as-i =as,

G[xu . . . , rh-2; a i , . . . , aA_

G [ r , , . . . ,xh-uSkU... ,a*_

Suppose now that for each integer t = 1 , . . . , h,

(5) a, = ( f l ( i l , . . . , a f i J r ) e {0, 1}*.

We write

= a h .

Fj(n) = ahj2"-1 + a2J2>-2
ahJ(6)

and let

(7)

We next partition UK into a sequence of 2Kh smaller cubes

S(n) = I(h, Fdn)) x • • • x /(A,

where, for every y = I,..., K and every « = 0, 1 , . . . , 2Kh — 1, the interval
/(/!, Fj(n)) is defined by (2H6) .
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LEMMA 1. Suppose that s is an integer satisfying 0 < s < h. Then for every integer

n0, the set

(8) S(n)

n=no (mod 2Ks)

is a cube of the form

(9) C{s, c) = 7(5, c,) x • • • x I(s, cK) C UK,

where c = (cu . . . , cK) e {0, 1 , . . . , 2s — 1}K. On the other hand, every cube of the

form (9), where c = ( A , . . . , cK) e {0, 1 , . . . , 2s — 1}*, is a union of the form (8)/or
some integer no.

PROOF. Note that the condition n = n0 (mod )2Ks determines precisely the values
of T i , . . . , T, in (3). We can therefore solve the system of equations

(10)
G[Ti;a,](T2)

G[TU ... , rs_,;

- H i

= as

for a i , . . . , as. On the other hand, xs+l,... , xh in (3) can take all possible values. It

follows from

(ID

G[ru... , T , ; a i , .

G[ru . . . , r A _ i ;

= as

ah

that a i + i , . . . , ah can take all possible values. The first assertion follows. To prove
the second assertion, simply note that ru ... , zs are determined uniquely with given
a i , . . . , as by (10), and that if a J + 1 , . . . ,ah take all possible values, then T5+1 , . . . , xh

take all possible values in view of (11).

For every c = (c\,... , cK) e {0, 1 , . . . , 2h — 1} , let q(c) be a point in the cube

C(h; c) = 7(A, c,) x • • • x I(h, cK) C UK.

Using F, we can define a permutation qn (0 < n < 2Kh) of the q(c) as follows. For
n = 0, 1, . . . ,2Kh - 1, let

qn = q(F(n)) = ) , . . . , FK(n)).

Clearly qn e 5(n) for every n = 0, 1 , . . . , 2Kh — 1. Then it follows from Lemma 1
that
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LEMMA 2. Suppose that s and H are integers satisfying 0 < s < h and 0 < H <
2K(h-s)_ j n e n eyery cube fly tne form (9^ wnere c _ (Clj . . , ( Cjf) e {0, 1, . . . ,

2s — 1}K, contains exactly one element of the set

{qn : H2Ks < « < ( / / + 1)2^}.

PROOF. The restriction H2Ks <n< (H + l)2Ks determines precisely the values of
r J + 1 , . . . , rh in (3) with no restriction onzu ... ,rs. On the other hand, the restriction
qn € C(s; c) for a given c determines precisely the values of a i , . . . , as with no
restriction on a J + 1 , . . . ,ah. The system of equations (10) now determines precisely
the values of X\,... ,rs. Hence n is uniquely determined.

We denote this element obtained by Lemma 2 by q(s; c; H). In other words, for
integers s, C\,... ,cK,H satisfying the hypotheses of Lemma 2,

q(s; c; H) = {qn : H2Ks < n < (H + 1)2^} n C(s; c).

4. Some probabilistic lemmas

As in Beck and Chen [2, 3], we now use some elementary concepts and facts from
probability theory (see, for example, Chung [5]), and define a 'randomization' of the
deterministic points q(c) = q ( c i , . . . , cK), mappings G[tu ... , TS_I; a i , . . . , as-i]
and F, and the sequence qn as follows.

(A) For c = (C] , . . . , cK) € {0, 1 , . . . , 2h - 1}K, let q(c) be a random point
uniformly distributed in the cube C(h; c). More precisely,

for all Borel sets y cRK.
(B) For every integer s satisfying 1 < s < h, integers rx,... , r,_i e {0, 1 , . . . ,

2K - 1} and vectors a i , . . . , a^-i e {0, 1}*, let G[t\,..., rs-u ai . • • • , a^-i] be a
uniformly distributed random bijective mapping from {0 ,1 , . . . , 2K — 1} to {0, 1}*.
More precisely, if n : {0, 1 2K - 1} - • {0,1}* is one of the (2*)! different
(deterministic) bijective mappings, then

~ 1
Prob(G[T!,... , TS_U a i , . . . , a,-]] = n), - j - u - - , (2*)!

(C) Let F be the random bijective mapping from {0, 1 , . . . . 2Kh - 1} to {0, 1,
. , 2h - \}K defined by (3), (4) and (5)-{7), where (4) denotes that in the system
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(4) of equations, we replace each deterministic mapping by its corresponding random
mapping.

(D) Let qn (0 < n < 2Kh) denote the random sequence denned by F, i.e. for
n = 0, 1 , . . . ,2Kh - 1,

qn = q(F(«)) .

(E) Let q(s; c; H) denote the randomization of q(s\ c; / / ) , i.e. for integers s, C\,
. . . ,cK,H satisfying the hypotheses of Lemma 2,

(12) q(s; c; H) = {qn : H2Ks < n < (H + 1)2^} n C(s; c).

(F) Finally, we may assume that the random variables

q(c) (c = ( c , , . . . , c j r ) e { 0 , l , . . . , 2 " - l } " )

and

G[TU... , r ^ i j a , , . . . ,a,_i] (1 <s <handru... ,rs^ e { 0 , 1 , . . . , 2K - 1}

and a , , . . . , a,_, e {0,1}*)

are independent of each other. In fact, the existence of such a set of random variables
follows immediately from the Kolmogorov extension theorem in probability theory.

Let (Q, &', Prob) denote the underlying probability measure space. We have

LEMMA 3. Suppose that s and H are integers satisfying 0 < s < h and 0 < H <
2K(h~s). Then for every c = ( c i , . . . , cK) e {0, 1, . . . , 2s - 1}*, the random point
q(s; c; H) is uniformly distributed in the cube C(s; c).

PROOF. Suppose that for j = I,... , K,

cj = a X J 2 s - 1 + a 2 j 2 s ~ 2 + ••• + a s J .

For t = 1 , . . . , 5 , let

ar = ( a , , i , . . . .flr./c)-

Since the random mapping G[0] is uniformly distributed, it follows that the (random)
solution X\ of the equation

G[0](r,) = a,

has the property that for any S e {0, 1 , . . . , 2K - 1},

Prob(r! = 8) = 2~K.
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Now let ?, = Tj (i.e. fix the value of this random variable), and consider the (random)
equation

Since G[xx; ax] is also uniformly distributed, we have, for any 8 = {0, 1 , . . . , 2K — 1},
that

In other words, the random variables xt and x2 are independent of each other. Repeating
this argument, we conclude that r j , . . . ,%, obtained from

G [ 0 ] ( T , )

G[r1;a1](r2)

= a l f

= a2,

G [ x u . . . , x s . i \ a u ••• , a j _ i ] ( r , ) = a s ,

are independent random variables with common distribution function

Prob(r; = 8) = 2~K

for every / = 1 , . . . , s and 8 e {0, 1 , . . . , 2K - 1}. Let

Then n0 is uniformly distributed in the set {0, 1 , . . . , 2Ks — 1}. Write

where

Then

H 2 K s = xh2
K(h~X) + ••• + r s + l 2 K s .

q(s; c; H) = q?.

Suppose now that H2Ks < n < (H + 1 )2^ . Then

Prob(q(.s; c; H) = qn) = Prob(n = n) = 2~Ks.

Since qn is uniformly distributed in S(n) for every n satisfying H2Ks < n < (H +
1)2^, the result follows from the independence of n and qn.
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238 W. W.L.Chen [11]

Let y be a fixed compact and convex set in UK. For integers s and H satisfying
0 < i < h and 0 < H < 2Kih~s), consider the random set

(13) &(s, H) = {q(s; c; H) : c = (c , , . . . , cK) e {0, 1, . . . , 2* - 1}*},

and write

and

(14) DK(s, H) = ZK[&(s, / / ) ; y] - 2 * S / Z K ( ^ ) .

Note that DK(s, H) depends on y . Let

T(s, //) = { c e { 0 , l , . . . , 2 I - I}* : C(s; c) n ^ 9̂  0 and C(.s; c) \ y ^ 0}.

It is easy to see that

(15) #T(s, H) <2K2«-l)s.

Since every cube C(s; c) contains exactly one element (namely q(s; c; //)) of the
(random) set £?(s, H), we have

_ceT(s,H) ceT(s.H)

For every c e T(i, H), let

10 otherwise.

By Lemma 3, we have, writing E for 'expected value',

U(s; c; H) = ^ f ^ = 2^K(C(s; c) n ^
fiK(C(s;c))

so that writing

(17) »j(s; c; //) = £(s; c; //) - Ef (s; c; / / ) ,

we have

(18) DK(s,H)=
ceT(s.H)

Note that E?j = 0 and |r?| < 1.
We need the following analogue of Lemma 3 of Beck and Chen [2].
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LEMMA 4. Suppose that 0 < s < h. Suppose further that H is an integer satisfying
0 < H < 2K{h-s) and that c(1\ . . . , c(VV) e {0, 1 , . . . , 2s - 1}K are distinct. Then the
random variables r](s; c(1>; H),..., r){s\ ciW); H) are independent.

Note that Lemma 4 here covers only one very special case of Lemma 3 of [2]. In
fact, the analogue of the remaining cases of Lemma 3 of [2] is replaced by applications
of Holder's inequality later in the argument here.

PROOF OF LEMMA 4. It follows from (16) and (17) that it is sufficient to prove
that q(s; c(1); H),... ,q(s; c(H°; H) are independent. For every w — 1 , . . . , W, let

() M for e v e r y j _ 1( ( K

A
— C,

-t- C2j -V- •

where c[wj,..., c^j e {0, 1}. For every t = 1 , . . . , s, let

Furthermore, let

H2Kl = k,+12
K',

where ks+u . . . , kh e {0, 1, . . . , 2K - 1}. Then the random variable q(s; c(u>); H)
depends only on the following random variables: the random mappings

(I9w)

where
points

(20w)

LJI / -1> • • • > ^M> A-s+l' • • • i "A- l i c l ' • • • » S » °i+l> • • • > a / i- lJ>

,XJ e {0, 1, . . . , 2^ -1} and dJ+1).. . ,dA_i e {0, 1}^; and the random

(q(c) : C(A; c) C C(s; c(w))}.

Note that ku ... ,ks are random variables, and the random functions in (I9w) for
w = 1, . . . , W all have the same common distribution function for different values of
A-i,... , A., (see proof of Lemma 3). On the other hand, c(1 ) , . . . , c(1V) are distinct, and
so (cS0,... , c<0), • • • , (c\w>,..., c(

s
W)) are also distinct. It follows that the random

mappings and random points in (19u>) and (20m) for w = 1 , . . . , W are independent,
and the lemma follows.
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5. Proof of Theorems 2D and 3D

For every natural number M satisfying 1 < M < 2Kh, let

(21) i2M = { q o , q i , . . . ,qM-i}

and, for every compact and convex set 5? C UK, let

and write

LEMMA 5. Let W be an even natural number. For every natural number M satis-
fying 1 < M < 2Kh, we have

~. w
-l/K)W/2

Lemma 5 follows easily from the lemma below, which is stated in a form suitable
for proof by induction.

LEMMA 6. Let W be an even natural number. Suppose that M is a natural number
satisfying 1 < M < 2Kh, and that

(22) M - 1 = rh2K(f-1) + Th_aKih~2) + • • • + Ti,

where xu ... ,xh e {0, 1 , . . . ,2K — \}. Suppose further that exactly s of the coeffi-

cients xu ... ,xh are non-zero, and that xk+\ = • • • = rh = 0 and xk ^ 0. Then

(23) E(DK[£>M;y])W«KW\l + — + ••• / * V " ' ^ - ^ W{K-m^
1 V - ' l " ' rv

We shall prove Lemma 6 by induction on the number of non-zero coefficients when
M — 1 is written in the form (22). The following lemma is a summary of the case
5 = 1. However, it is stated in a form more general than is necessary to prove Lemma
6 in the case 5 = 1. This generality is necessary in order that we may handle the
inductive step in the proof of Lemma 6. For ease of notation, we write «S0 = 0-

LEMMA 7. Let W be an even natural number. Suppose either that M = 0, or that
in the expression (22) for M — 1, the coefficients xx = • • • = xs• = 0. Suppose further
that~M = M + Hj2K(j-l), where 0 < fij < 2K. Then

/ ~ ~ \ W i— W(K-l)U-l)
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where

(25) DK[(£M \ £M)\ •*"]=# {i^w \ &M) n

Note that Lemma 6 in the case s = 1 is the special case M = 0 and j = k of
Lemma 7.

PROOF OF LEMMA 7. Note first of all that M is a multiple of 2KU~1). By (12), (13)
and (21),

£w \ BM = {qn : M < n < M + Hjl^^}

= [ J {q,, : M + mj2
K(>-X) < n < M + (m} + \)2KU~l))

where

It follows from (14), (18), (21) and (25) that

(26) D

Applying Holder's inequality on the sum on the right-hand side of (26), we have

(27)

E E E^(^ -1; c; Hu> mJ
m;=0 \c€TU-l,H(j,mj))

)

Let

(28) Xmj = {n(j - 1; c; H(j, mj)) : c € T(j - 1, //(y, m;))}.

Combining (27) and (28), we have

my=0
••• E
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Consider any particular summand on the right-hand side of (29). Clearly

always. Suppose further that one of the terms among rj\,... ,r)w is distinct from

all the others, i.e. suppose that rj, is distinct from any of rj\,... , rj,_), JJ,-+1, . . . , rjw.

Then by Lemma 4, we have

E ( » j i . . . r ) w ) = E ( 7 ? , - ) E ( r ? i . . . r ? , _ i » 7 , + 1 . . . r ) w ) = 0 .

It follows that the only non-zero contribution to the sum in (29) arises from terms of
the form

(30) E (C •••<')>

where rj,-,, • • • , t]ir are distinct, min{«i , . . . ,nr] > 2 and «i + • • • + nr = W. In
this case, we clearly have r < W/2. Furthermore, if r = W/2, then we must have
/i, = • • • = nr = 2. Hence the number of terms in the sum

(31)

of the form (30) with r = W/2 is

On the other hand, if r < W/2, then r < W/2 — 1. It is easy to see that the number
of terms in the sum in (31) of the form (30) with r < W/2 is <&w \Xmj \

w/2~l. Hence

mj=0

Finally, note from (15) and (28) that

(33) \Xmj\ <

(24) now follows on combining (32) and (33).

PROOF OF LEMMA 6. We shall use induction on the number s of non-zero coeffi-
cients T1; . . . , rh in (22). The case 5 = 1 is proved in Lemma 7. Suppose now that
(23) holds for fixed s and k, and that r, = • • • = r, = 0. Now let M = M + nj2

K(>-'[\
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where 1 < \x) < 2K. Then in the expression of M — 1 analogous to (22), the number

of non-zero coefficients is now exactly s + 1. Also

DK[gw; y\ = DK\£M\ y\ + DK\(k-u \ i>M); y \

so that if W is an even natural number, then

Applying Holder's inequality, we have

We now apply the induction hypothesis to the term tii(DK[£>M; y]) and apply

Lemma 7 to the term E(DK[(£2^ \ £}M); y\) , and so

since clearly (/T — \){k — j) > s.

Let A be a given compact and convex body in UK. It now follows from Lemma
5 that for any real number A € (0,1], any proper orthogonal transformation r in W.K

and any vector u 6 UK,v/e have
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for every M satisfying 1 < M < 2Kh. If we now choose h to satisfy

2*(>!-i) < N <2Kh,

then

(1) follows immediately. This proves Theorem 3D. Note also the simpler inequality

7/
Jo JsrJuK

Theorem 2D follows.
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