GALOIS EXTENSIONS AS MODULES OVER THE
GROUP RING

GERALD GARFINKEL AND MORRIS ORZECH

1. Introduction. Suppose that R is a commutative ring and G is a finite
abelian group. In § 2 we review the definition of E(R, G) (I'(R, G)), the group
of all (commutative) Galois extensions .S of R with Galois group G. We discuss
the properties of these groups as functors of G and give an example which
exhibits some of the pathological properties of the functor E(R, —). In § 3 we
display a homomorphism from E(R, G) to Pic(R(G)); we use this homo-
morphism to prove that if S is commutative, G has exponent m, and R(G) has
Serre dimension 0 or 1, then a direct sum of m copies of .S is isomorphic as a
G-module to a direct sum of m copies of R(G). (This result is related to
[5, Theorem 4.2], where it is shown thatif S is a free R-module and G is any
finite group with # elements, then S” is isomorphic to R(G)" as G-modules.) We
also give some examples of Galois extensions without normal bases.

2. The groups E(R, G) and T'(R, G). Let R be a commutative ring, let G be
a finite group, and suppose that.Sis an R-algebra on which G acts as a group of
R-algebra automorphisms. S is said to be a Galois extension of R with group G
if (i) S¢ = R, where S = {s in S| xs = s for all x in G};and (ii) there exist
ai ..., a, and by, ..., b, such that a1xb; + . .. 4 a.xb, = 81, for all x in G.
We will use [5] and [9] as references for facts about Galois extensions.

Let & (R, G) denote the category whose objects are Galois extensions of R
with group G; a morphism is a map which is an R-algebra homomorphism and
an RG-module homomorphism. In [5, Theorem 3.4] it is shown that a
morphism between commutative Galois extensions is an isomorphism. The
argument in [5] actually proves the stronger result below.

ProrosiTiON 1. Let Sy and S, be R-algebras on which G acts as a group of
R-algebra automorphisms. Suppose that S:¢ = R and suppose that Sy is a Galois
extension of R with group G. Let j: Sy — Sy be a map which is an R-algebra
homomorphism and an RG-module homomorphism. Then j is an isomorphism.

Let G be a finite abelian group, and define an equivalence relation on the
objects of & (R, G) by writing S; ~ S, if S; and .S, are isomorphic. The set
E(R,G) = &(R,G)/~ may be given the structure of an abelian group
[7, § 1]: Writing (S) for the class of S in E(R, G), the multiplication is defined
by (S1)(S2) = ((S1 @ £ S2)%9); here 6G = {(x,x™ 1) in G X G} and G X G acts
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on S1 ®S: by (x, ¥)(s1 ® s2) = x51 ® y5. G acts on (S51)(S:) by
x(s1 ® s2) = x51 @ 2. (§)~lis given by (S)~! = (S-1), where

S—1 = {Set maps v: G — S| v(x~'y) = xv(y) for all x and y in G}.

The multiplication on S~! is pointwise, and the G-action is (xv)(y) = v(yx).
Theidentity elementof E(R,G)is (eq(R)), wherees(R) = {Setmaps v: G— R} ;
the action of G on e¢(R) is given by (xv)(y) = v(yx). That these operations
give E(R, G) a well-defined group structure is shown in [7, § 1]. It is easy to
verify that S—! is isomorphic in & (R, G) to the R-algebra having .S for its
underlying set, but with “inverse’’ G-action.

If (R, G) denotes the full subcategory of & (R, G) whose objects are
commutative R-algebras, then ~ defines an equivalence relation on.J (R, G),
and T'(R, G) =9 (R, G)/~ isasubgroup of E(R, G); Harrison dealt with this
group in [6].

Notonlyare E(R, G) and T (R, G) abelian groups, but E(R, —) and T'(R, —)
are functors from the category of finite abelian groups to the category of
abelian groups. Harrison showed this for T'(R, —) [6, p. 3], and a proof
applicable to our situation is given in [7, Theorems 1.2 and 1.9]. The definition
of the functoriality of E(R, —) and T'(R, —) is sketched here for convenience.

Let ¢: G — H be a homomorphism of finite abelian groups. Let .S be a
Galois extension of R with group G. Define

¢(S) = {Set maps v: H — S| v(¢(x)y) = xv(y) for x in G and y in H}.

Define a pointwise multiplication on ¢(S), and an H-action given by
(yv)(2) = v(zy) for y and z in H. Now E(R, ¢)((S)) = (¢(S)) determines a
homomorphism from E(R, G) to E(R, H). It also induces a homomorphism
from T'(R, G) to T'(R, H). We note that (S)~! = E(R, t)((S)), where t: G — G
is given by #(x) = x~ L

The following two facts about Galois extensions should also be explicitly
noted.

(1) LetS;and S; be Galois extensions of R with respective groups G and H.
Then S; ®z S: is a Galois extension of R with group G X H, the action being
given by (x, y) (s1 ® s2) = x51 @ ¥5».

(2) Let H be a subgroup of G and let S be a Galois extension of R with group
G.LetS? = {sinS| xs = sforallxin H}. G/H actson S¥ via (xH)s = «xs, and
S% is a Galois extension of R with group G/H. If ¢: G — G/H is the canonical
projection, then E(R, ¢)((S)) = (§%) in E(R, H).

The two facts just listed are proved in [9, Proposition 1 and Theorem 1].

Let 2; and 7, be the homomorphisms from G to G X G given by 71(x) = (x, 1)
and i5(x) = (1, x), respectively. The maps E(R, 71) and E(R, 7.) from E(R, G)
to E(R, G X G) induce a map u: E(R, G) X E(R,G) — E(R, G X G), which
may be shown to be given by u((S1), (S2)) = (S1 ®S:) [6, p. 3]. Moreover,
u induces a map v: T'(R,G) X T'(R,G) — T'(R, G X G). The projections p;
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and p, from G X G to G, onto the first and second factors, respectively, induce
homomorphisms x: E(R, G X G) — E(R, G) X E(R, G) and

0: T(R,G X G) > T(R,G) X T(R, G).

Using Proposition 1, it is not difficult to see that x((D)) = ((D™*9), (D)),
and 6 is defined by the same formula when D is commutative. In [6], Harrison
showed that # and v are isomorphisms inverse to each other. Thus T'(R, —) isan
additive functor.

PROPOSITION 2. xu 1s the identity map on E(R,G) X E(R,G), so that
E(R, G) X E(R, G) is a direct summand of E(R, G X G).

Proof. Let Sy and S, be Galois extensions with group G. We wish to show that
S1 ~ (51 ®g S2)X¢, Define j: S;1 — (S1 ®&.S2)™X¢ by j(s) = s ® 1. Using fact
(2) above and Proposition 1, we can conclude that j is an isomorphism. We
remark that the present proposition follows from the fact that E(R, —) is a
functor which sends the 0-object to the 0-object.

The following example is referred to in [4, p. 684].

Example 1. x need not be an isomorphism. Let R be any integral domain
containing 1/2. Let D be the ring of 2 X 2 matrices over R. Let G be the cyclic
group of order 2, with x as its generator. Let G X G act on D as follows:

e (2 0)=(C ) aw (00)-(0 )
wo (0 0)=(L8 7).

It is easy to see that G X G acts as a group of R-algebra automorphisms of D,
and that D¢ = R. Let ¢;; denote the element of D with 1 in the 7th row and jth
column, and zeros elsewhere. Let a1 = e11, a2 = €92, a3 = €13, a4 = €21, b1 = ey,
by = F€ss, by = }es1, by = 3e1. Then ayyby + ... 4+ agybs = 8;, so that D isa
Galois extension of R with group G X G. Now DX and D%X! are Galois exten-
sions of R with cyclic group G, and it is easily verified that they are commuta-
tive; D1 is the set of diagonal matrices. It is trivial to verify that D%<! is the
trivial Galois extension of R with group G. Moreover, D™X¢ is the set of

matrices of the form (3 Z). An isomorphism from D¢ to

eq(R) = {Set maps v: G — R}
is given by

<Z 2> — v, wherev(l) =a+bando(x) =a — b.

Thus D is in the kernel of x, but not being commutative, it is not the trivial
extension. The element (¢ ) gives rise to a normal basis for D. Letting R be
the complex numbers, for example, provides us with an example of a non-
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trivial Galois extension of an algebraically closed field. No such commutative
extensions exist.

3. Galois extensions as rank 1 projectives. The following result is proved
in [7, Theorem 3.6].

THEOREM 1. Let G be a finite abelian group, and let S be a Galois extension of R
with group G. Then S is a finitely generated projective RG-module of rank 1.

LemwMa 1. Let S be a Galois extension of R with (not necessarily abelian) group
G. Let H be a subgroup of G. Define a map trg: S — S by tru(s) = Y ,em %s.
Then try maps S onto SE.

Proof. Choose e in S such that >, xe = 1; that such an element exists is
shown in [5, Lemma 1.6]. Let Hyy, ..., Hy, be a complete set of cosets of H
in G,andlete’ = Y71 y:e Then try(e’) = tre(e) = 1. Now trgisa (right and
left) S”-linear map, and hence it is onto .S¥.

We may consider the abelian group Pic(RG) [2, chapitre 2, § 5, no. 4] of
isomorphism classes of projective RG-modules of rank 1; we are here assuming
that G is a finite abelian group. For (P), (Q) classes in Pic(RG), {(P){Q) is
defined to be (P ®gz¢ Q). The inverse element (P)~!is (Homgzq(P, RG)).

THaEOREM 2. Let Sy and Ss be Galois extensions of R with abelian group G. Then
S1 Qre Se may be given the structure of a Galois extension of R with group G, and
as such, it is isomorphic to (S1 Qg S2)°¢. In particular, the natural map from
E(R, G) to Pic(RG), which sends (S) to {S), s a homomorphism of abelian groups.

Proof. To condense notation, we adopt several definitions. An unadorned
tensor product will be over R. If P and Q are RG-modules, then P Q¢ Q will
be written as P @ Q; for p in P and ¢ in Q we shall write p Q) ¢ for the element
P ® qof P Q®gegQ. We have a canonical epimorphism p: P @ Q — P Q Q.
Now let .S be a Galois extension of R with group G. The trace map tr: S —R is
defined by the formula tr(a) = > ,c¢ xa. By [5, Lemma 1.6], there is an ele-
ment ¢ of trace 1 in S. For S; and S,, Galois extensions of R with group G,
define x: 51 ® S; — 51 ® S, by

k(@®b) = > xa ®«x b
z€@
We note that «is a map into (S; ® S:)?¢, and in fact it is a map onto the latter
set by Lemma 1. (Recall that 6G = {(x,x 1)} in G X G, and (S1 ® S:)%¢
denotes the set of elements of S; ® S: which are fixed by 6G.)

Define an operation o on.S; @ .S; by setting p(a) 0p(b) = p(x(a)b) = p(ax(d)),

i.e. for s; and s,/ in S;, we have

(51Q@ 52) 0 (5" @ 52') = ;} %(s1)s1" @ %7 (59)s5".

z

It is easy to verify that this operation is well-defined, and that it endows
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S; ® S, with the structure of an associative ring. Letting e;, ¢ = 1, 2, be the
element of trace 1 in S;, we see that e; @ 1 = 1 @ ¢. is a unity element of
S1 @ S.; the latter is also an R-algebra, where 7 in R is identified with e; & 7.
Moreover, S; Q S; has a G-module structure with

x(s1 Q@ s2) = x51 Q) 52 = 51 Q) xs2
for s; in S; and x in G, ¢ = 1, 2. With this action, the elements of G act as
R-algebra automorphisms of S; @ Ss.

We remark that for  in R and s in S,, we have that r Q s is in R. For,
rQ®s=1Qrs = tr(e;) @ rs = e1 Q tr(rs).

The trace map tr: S; Q S: — S1 Q Sq, given by tr(a) = X ,c¢ xa, thus maps
S1 @ S, to R; it is R-linear and maps e; Q) ¢ to the identity element e; @ 1, so
that tr: S; @ S, — R is an epimorphism. Since the trace map is (S; &) Sy)¢-
linear, it follows that (S; @ S2)¢ = R.

Now define j: (S; ® S2)%¢ — 51 @ Ss by j(u) = p(u(e; ® 1)). From the
definition of the multiplication in S; @ .S; and from the fact that «is (S; ® S,)?°-
linear, it follows that j is a multiplicative map. It can be easily verified that j is
an R-algebra and RG-module homomorphism, and is thus an isomorphism by
Proposition 1. This completes the proof of the theorem.

Remarks. (a) The inverse of j may be verified to be given by the formula
JHe(a)) = k(a).

(b) A less computational proof, using homological machinery, can be given
for the existence of a homomorphism T'(R, G) — Pic(RG), given by (S) — (S).
Let 4 be a faithfully-flat commutative R-algebra. Then

HY (A/R, U(—G)) = Ker(Pic(RG) — Pic(4G)),

where U(AG) denotes the group of units of AG, H! is the first Amitsur coho-
mology group, and the map Pic (RG) — Pic(4G) is given by (P)— (4G ®zeP)
[3, Corollary 4.6]. Let

ax0y = 65,0, and E a, = 1}.

z€G

V(AG) = {Z‘, ax in AG
ZEG

Then
HY(A/R, V(—G)) =2 Ker(T'(R,G) > T4, G)),

where the map T'(R, G) — 1'(4, G) is given by (S) — (4 ® £ .S) for (S) in
T(R, G); this follows from [7, Theorem 3.9] and from the observation that if
A Qg S is commutative, then .S is commutative. Now V(4AG) C U(4G), and
hence there is a natural map H'(4/R, V(—G)) — H*(A/R, U(—G)), which
when composed with the isomorphisms just given yields a homomorphism
from Ker(T'(R, G) — T'(4, G)) to Ker(Pic(RG) — Pic(4G)). By scrutinizing
the construction of the isomorphisms mentioned above, it can be seen that
7((S)) = (S). By using the naturality in 4 of the maps involved, and the fact
that (S) is in the kernel of T'(R, G) — T'(S, G), we obtain a homomorphism
(S) — (S) from T'(R, G) to Pic(RG).

https://doi.org/10.4153/CJM-1970-031-6 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1970-031-6

GALOIS EXTENSIONS 247

ProrosiTiON 3. Let S be a commutative Galois extension of R with abelian
group G. Suppose that G has exponent n. Then S Qge. .. QreS (n times) s
isomorphic to RG as an RG-module. Indeed, S ®gg... QreS is the trivial
Galois extension of R with group G.

Proof. Letting (S), as usual, denote the class of S in 7' (R, G), we have from
[6, Theorem 4] that (S)* = 1 in T'(R, G). From Theorem 2 we conclude that
(S =1, i.e. that S ®re ... Qre S = RG as RG-modules.

4. Normal bases. Let R be a commutative ring of Serre dimension 1, i.e. any
finitely generated projective R-module P may be decomposed as P = F @ P,,
where Fisfreeand P,is of rank 1. It is known [2, chapitre 2, § 5, exercise 21(c)]
that if the n-fold tensor product of P with itself (over R) isisomorphic to R, and
if P is a finitely generated projective R-module of rank 1, then the n-fold direct
sum of P with itself is isomorphic to R*. This follows readily by writing
Pr =~ R"1 @ Py and then taking the nth exterior product of both sides. Using
Proposition 3, we obtain the following analogue of [5, Theorem 4.2] for G
abelian.

THEOREM 3. Let S be a commutative Galois extension of R with abelian group G.
Suppose that G has exponent n. Let RG have Serre dimension at most 1. Then a
direct sum of n copies of S is RG-isomorphic to a direct sum of n copies of RG.

The ring RG has Serre dimension at most 1, for example, if R is a semi-local
ring, or if R is a finite-dimensional algebra over a Dedekind domain [1, Proposi-
tion 10.1].

Example 11. We conclude with an example of a Galois extension S of a ring R
which does not have a normal basis. Such examples exist in the case where R
and S are rings of integers of number fields; e.g. let K = Q(+/(—5)), L = K (4)
[L. R. McCulloh, private communication]. The example here is topological in
character.

Let X denote the real n-sphere, for # = 1. Let 7 be the map of X to itself
obtained by reflecting each point through the centre, i.e. 7 sends a point to its
antipode. Then {1, 7} = Gisa group acting on X without fixed points;let ¥ be
the identification space X /G, i.e. projective n-space. Let C(X) and C(Y) denote
the rings of continuous functions of X and Y to the real numbers. By [5, p. 21,
example (e)], C(X) is a Galois extension of C(Y) with group G. However, C(X)
does not have a normal basis. For suppose o in C(X) gives rise to a normal
basis, i.e. @ and ra freely generate C(X) over C(Y). By the Borsuk-Ulam
Theorem [8, Theorem 9, p. 266], there exists a pair of antipodal points, call
them p and p’, such thata(p) = a(p’). But then, every element of C(X) would
have the same value on p and p’. This is patently false.
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