GALOIS EXTENSIONS AS MODULES OVER THE GROUP RING

GERALD GARFINKEL AND MORRIS ORZECH

- 1. Introduction. Suppose that R is a commutative ring and G is a finite abelian group. In § 2 we review the definition of E(R,G) (T(R,G)), the group of all (commutative) Galois extensions S of R with Galois group G. We discuss the properties of these groups as functors of G and give an example which exhibits some of the pathological properties of the functor E(R,-). In § 3 we display a homomorphism from E(R,G) to Pic(R(G)); we use this homomorphism to prove that if S is commutative, G has exponent M, and M (G) has Serre dimension 0 or 1, then a direct sum of M copies of G is isomorphic as a G-module to a direct sum of G copies of G (G). (This result is related to [5, Theorem 4.2], where it is shown that if G is a free G-module and G is any finite group with G elements, then G is isomorphic to G (G) as G-modules.) We also give some examples of Galois extensions without normal bases.
- **2.** The groups E(R, G) and T(R, G). Let R be a commutative ring, let G be a finite group, and suppose that S is an R-algebra on which G acts as a group of R-algebra automorphisms. S is said to be a Galois extension of R with group G if (i) $S^G = R$, where $S^G = \{s \text{ in } S | xs = s \text{ for all } x \text{ in } G\}$; and (ii) there exist a_1, \ldots, a_n and b_1, \ldots, b_n such that $a_1xb_1 + \ldots + a_nxb_n = \delta_{1,x}$ for all x in G. We will use [5] and [9] as references for facts about Galois extensions.

Let $\mathscr{E}(R,G)$ denote the category whose objects are Galois extensions of R with group G; a morphism is a map which is an R-algebra homomorphism and an RG-module homomorphism. In [5, Theorem 3.4] it is shown that a morphism between commutative Galois extensions is an isomorphism. The argument in [5] actually proves the stronger result below.

PROPOSITION 1. Let S_1 and S_2 be R-algebras on which G acts as a group of R-algebra automorphisms. Suppose that $S_2^G = R$ and suppose that S_1 is a Galois extension of R with group G. Let $j: S_1 \to S_2$ be a map which is an R-algebra homomorphism and an RG-module homomorphism. Then j is an isomorphism.

Let G be a finite abelian group, and define an equivalence relation on the objects of $\mathscr{E}(R,G)$ by writing $S_1 \sim S_2$ if S_1 and S_2 are isomorphic. The set $E(R,G) = \mathscr{E}(R,G)/\sim$ may be given the structure of an abelian group [7, § 1]: Writing (S) for the class of S in E(R,G), the multiplication is defined by $(S_1)(S_2) = ((S_1 \otimes_R S_2)^{\delta G})$; here $\delta G = \{(x,x^{-1}) \text{ in } G \times G\}$ and $G \times G$ acts

Received November 22, 1968. This research was partially supported by research grant NSF GP-5926.

on $S_1 \otimes_R S_2$ by $(x, y)(s_1 \otimes s_2) = xs_1 \otimes ys_2$. G acts on $(S_1)(S_2)$ by $x(s_1 \otimes s_2) = xs_1 \otimes s_2$. $(S_2)^{-1}$ is given by $(S_2)^{-1} = (S_2)^{-1}$, where

$$S^{-1} = \{ \text{Set maps } v \colon G \to S | v(x^{-1}y) = xv(y) \text{ for all } x \text{ and } y \text{ in } G \}.$$

The multiplication on S^{-1} is pointwise, and the G-action is (xv)(y) = v(yx). The identity element of E(R,G) is $(e_G(R))$, where $e_G(R) = \{\text{Set maps } v \colon G \to R\}$; the action of G on $e_G(R)$ is given by (xv)(y) = v(yx). That these operations give E(R,G) a well-defined group structure is shown in $[7,\S 1]$. It is easy to verify that S^{-1} is isomorphic in $\mathscr{E}(R,G)$ to the R-algebra having S for its underlying set, but with "inverse" G-action.

If $\mathcal{F}(R,G)$ denotes the full subcategory of $\mathscr{E}(R,G)$ whose objects are commutative R-algebras, then \sim defines an equivalence relation on $\mathcal{F}(R,G)$, and $T(R,G) = \mathcal{F}(R,G)/\sim$ is a subgroup of E(R,G); Harrison dealt with this group in [6].

Not only are E(R,G) and T(R,G) abelian groups, but E(R,-) and T(R,-) are functors from the category of finite abelian groups to the category of abelian groups. Harrison showed this for T(R,-) [6, p. 3], and a proof applicable to our situation is given in [7, Theorems 1.2 and 1.9]. The definition of the functoriality of E(R,-) and T(R,-) is sketched here for convenience.

Let $\phi: G \to H$ be a homomorphism of finite abelian groups. Let S be a Galois extension of R with group G. Define

$$\phi(S) = \{ \text{Set maps } v \colon H \to S | v(\phi(x)y) = xv(y) \text{ for } x \text{ in } G \text{ and } y \text{ in } H \}.$$

Define a pointwise multiplication on $\phi(S)$, and an H-action given by (yv)(z) = v(zy) for y and z in H. Now $E(R, \phi)((S)) = (\phi(S))$ determines a homomorphism from E(R, G) to E(R, H). It also induces a homomorphism from T(R, G) to T(R, H). We note that $(S)^{-1} = E(R, t)((S))$, where $t: G \to G$ is given by $t(x) = x^{-1}$.

The following two facts about Galois extensions should also be explicitly noted.

- (1) Let S_1 and S_2 be Galois extensions of R with respective groups G and H. Then $S_1 \otimes_{\mathcal{R}} S_2$ is a Galois extension of R with group $G \times H$, the action being given by $(x, y)(s_1 \otimes s_2) = xs_1 \otimes ys_2$.
- (2) Let H be a subgroup of G and let S be a Galois extension of R with group G. Let $S^H = \{s \text{ in } S | xs = s \text{ for all } x \text{ in } H\}$. G/H acts on S^H via (xH)s = xs, and S^H is a Galois extension of R with group G/H. If $\phi: G \to G/H$ is the canonical projection, then $E(R, \phi)(S) = S^H$ in E(R, H).

The two facts just listed are proved in [9, Proposition 1 and Theorem 1].

Let i_1 and i_2 be the homomorphisms from G to $G \times G$ given by $i_1(x) = (x, 1)$ and $i_2(x) = (1, x)$, respectively. The maps $E(R, i_1)$ and $E(R, i_2)$ from E(R, G) to $E(R, G \times G)$ induce a map μ : $E(R, G) \times E(R, G) \to E(R, G \times G)$, which may be shown to be given by $\mu((S_1), (S_2)) = (S_1 \otimes_R S_2)$ [6, p. 3]. Moreover, μ induces a map ν : $T(R, G) \times T(R, G) \to T(R, G \times G)$. The projections p_1

and p_2 from $G \times G$ to G, onto the first and second factors, respectively, induce homomorphisms $\chi: E(R, G \times G) \to E(R, G) \times E(R, G)$ and

$$\theta$$
: $T(R, G \times G) \to T(R, G) \times T(R, G)$.

Using Proposition 1, it is not difficult to see that $\chi((D)) = ((D^{1\times G}), (D^{G\times 1}))$, and θ is defined by the same formula when D is commutative. In [6], Harrison showed that θ and ν are isomorphisms inverse to each other. Thus T(R, -) is an additive functor.

PROPOSITION 2. $\chi\mu$ is the identity map on $E(R,G) \times E(R,G)$, so that $E(R,G) \times E(R,G)$ is a direct summand of $E(R,G \times G)$.

Proof. Let S_1 and S_2 be Galois extensions with group G. We wish to show that $S_1 \sim (S_1 \otimes_R S_2)^{1 \times G}$. Define $j: S_1 \to (S_1 \otimes_R S_2)^{1 \times G}$ by $j(s) = s \otimes 1$. Using fact (2) above and Proposition 1, we can conclude that j is an isomorphism. We remark that the present proposition follows from the fact that E(R, -) is a functor which sends the 0-object to the 0-object.

The following example is referred to in [4, p. 684].

Example I. χ need not be an isomorphism. Let R be any integral domain containing 1/2. Let D be the ring of 2×2 matrices over R. Let G be the cyclic group of order 2, with x as its generator. Let $G \times G$ act on D as follows:

$$(x,1) \quad \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} a & -b \\ -c & d \end{pmatrix}; \qquad (1,x) \quad \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} d & c \\ b & a \end{pmatrix};$$

$$(x,x) \quad \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} d & -c \\ -b & a \end{pmatrix}.$$

It is easy to see that $G \times G$ acts as a group of R-algebra automorphisms of D, and that $D^G = R$. Let e_{ij} denote the element of D with 1 in the ith row and jth column, and zeros elsewhere. Let $a_1 = e_{11}$, $a_2 = e_{22}$, $a_3 = e_{12}$, $a_4 = e_{21}$, $b_1 = \frac{1}{2}e_{11}$, $b_2 = \frac{1}{2}e_{22}$, $b_3 = \frac{1}{2}e_{21}$, $b_4 = \frac{1}{2}e_{12}$. Then $a_1yb_1 + \ldots + a_4yb_4 = \delta_{1,y}$ so that D is a Galois extension of R with group $G \times G$. Now $D^{1\times G}$ and $D^{G\times 1}$ are Galois extensions of R with cyclic group R, and it is easily verified that they are commutative; $D^{G\times 1}$ is the set of diagonal matrices. It is trivial to verify that $D^{G\times 1}$ is the trivial Galois extension of R with group R. Moreover, R is the set of matrices of the form $\binom{a}{b}$ and isomorphism from R to

$$e_G(R) = \{ \text{Set maps } v \colon G \to R \}$$

is given by

$$\begin{pmatrix} a & b \\ b & a \end{pmatrix} \rightarrow v$$
, where $v(1) = a + b$ and $v(x) = a - b$.

Thus D is in the kernel of χ , but not being commutative, it is not the trivial extension. The element $\begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}$ gives rise to a normal basis for D. Letting R be the complex numbers, for example, provides us with an example of a non-

trivial Galois extension of an algebraically closed field. No such commutative extensions exist.

3. Galois extensions as rank 1 projectives. The following result is proved in [7, Theorem 3.6].

THEOREM 1. Let G be a finite abelian group, and let S be a Galois extension of R with group G. Then S is a finitely generated projective RG-module of rank 1.

LEMMA 1. Let S be a Galois extension of R with (not necessarily abelian) group G. Let H be a subgroup of G. Define a map $\operatorname{tr}_H: S \to S^H$ by $\operatorname{tr}_H(s) = \sum_{x \in H} xs$. Then tr_H maps S onto S^H .

Proof. Choose e in S such that $\sum_{x \in G} xe = 1$; that such an element exists is shown in [5, Lemma 1.6]. Let Hy_1, \ldots, Hy_m be a complete set of cosets of H in G, and let $e' = \sum_{i=1}^m y_i e$. Then $\operatorname{tr}_H(e') = \operatorname{tr}_G(e) = 1$. Now tr_H is a (right and left) S^H -linear map, and hence it is onto S^H .

We may consider the abelian group $\operatorname{Pic}(RG)$ [2, chapitre 2, § 5, no. 4] of isomorphism classes of projective RG-modules of rank 1; we are here assuming that G is a finite abelian group. For $\langle P \rangle$, $\langle Q \rangle$ classes in $\operatorname{Pic}(RG)$, $\langle P \rangle \langle Q \rangle$ is defined to be $\langle P \otimes_{RG} Q \rangle$. The inverse element $\langle P \rangle^{-1}$ is $\langle \operatorname{Hom}_{RG}(P, RG) \rangle$.

THEOREM 2. Let S_1 and S_2 be Galois extensions of R with abelian group G. Then $S_1 \otimes_{RG} S_2$ may be given the structure of a Galois extension of R with group G, and as such, it is isomorphic to $(S_1 \otimes_R S_2)^{\delta G}$. In particular, the natural map from E(R, G) to Pic(RG), which sends (S) to (S), is a homomorphism of abelian groups.

Proof. To condense notation, we adopt several definitions. An unadorned tensor product will be over R. If P and Q are RG-modules, then $P \otimes_{RG} Q$ will be written as $P \otimes Q$; for p in P and q in Q we shall write $p \otimes q$ for the element $p \otimes q$ of $P \otimes_{RG} Q$. We have a canonical epimorphism $p: P \otimes Q \to P \otimes Q$. Now let S be a Galois extension of R with group G. The trace map $tr: S \to R$ is defined by the formula $tr(a) = \sum_{x \in G} xa$. By [5, Lemma 1.6], there is an element e of trace 1 in S. For S_1 and S_2 , Galois extensions of R with group G, define $\kappa: S_1 \otimes S_2 \to S_1 \otimes S_2$ by

$$\kappa(a \otimes b) = \sum_{x \in G} xa \otimes x^{-1}b.$$

We note that κ is a map into $(S_1 \otimes S_2)^{\delta G}$, and in fact it is a map onto the latter set by Lemma 1. (Recall that $\delta G = \{(x, x^{-1})\}$ in $G \times G$, and $(S_1 \otimes S_2)^{\delta G}$ denotes the set of elements of $S_1 \otimes S_2$ which are fixed by δG .)

Define an operation \circ on $S_1 \otimes S_2$ by setting $\rho(a) \circ \rho(b) = \rho(\kappa(a)b) = \rho(a\kappa(b))$, i.e. for s_i and s_i' in S_i , we have

$$(s_1 \bigotimes s_2) \circ (s_1' \bigotimes s_2') = \sum_{x \in G} x(s_1)s_1' \bigotimes x^{-1}(s_2)s_2'.$$

It is easy to verify that this operation is well-defined, and that it endows

 $S_1 \otimes S_2$ with the structure of an associative ring. Letting e_i , i = 1, 2, be the element of trace 1 in S_i , we see that $e_1 \otimes 1 = 1 \otimes e_2$ is a unity element of $S_1 \otimes S_2$; the latter is also an R-algebra, where r in R is identified with $e_1 \otimes r$. Moreover, $S_1 \otimes S_2$ has a G-module structure with

$$x(s_1 \bigotimes s_2) = xs_1 \bigotimes s_2 = s_1 \bigotimes xs_2$$

for s_i in S_i and x in G, i = 1, 2. With this action, the elements of G act as R-algebra automorphisms of $S_1 \bigotimes S_2$.

We remark that for r in R and s in S_2 , we have that $r \otimes s$ is in R. For, $r \otimes s = 1 \otimes rs = \operatorname{tr}(e_1) \otimes rs = e_1 \otimes \operatorname{tr}(rs)$.

The trace map tr: $S_1 \otimes S_2 \to S_1 \otimes S_2$, given by $\operatorname{tr}(a) = \sum_{x \in G} xa$, thus maps $S_1 \otimes S_2$ to R; it is R-linear and maps $e_1 \otimes e_2$ to the identity element $e_1 \otimes 1$, so that tr: $S_1 \otimes S_2 \to R$ is an epimorphism. Since the trace map is $(S_1 \otimes S_2)^G$ -linear, it follows that $(S_1 \otimes S_2)^G = R$.

Now define $j: (S_1 \otimes S_2)^{\delta G} \to S_1 \otimes S_2$ by $j(u) = \rho(u(e_1 \otimes 1))$. From the definition of the multiplication in $S_1 \otimes S_2$ and from the fact that κ is $(S_1 \otimes S_2)^{\delta G}$ -linear, it follows that j is a multiplicative map. It can be easily verified that j is an K-algebra and KG-module homomorphism, and is thus an isomorphism by Proposition 1. This completes the proof of the theorem.

Remarks. (a) The inverse of j may be verified to be given by the formula $j^{-1}(\rho(a)) = \kappa(a)$.

(b) A less computational proof, using homological machinery, can be given for the existence of a homomorphism $T(R, G) \to \operatorname{Pic}(RG)$, given by $(S) \to \langle S \rangle$. Let A be a faithfully-flat commutative R-algebra. Then

$$H^1(A/R, U(-G)) \cong \operatorname{Ker}(\operatorname{Pic}(RG) \to \operatorname{Pic}(AG)),$$

where U(AG) denotes the group of units of AG, H^1 is the first Amitsur cohomology group, and the map $\operatorname{Pic}(RG) \to \operatorname{Pic}(AG)$ is given by $\langle P \rangle \to \langle AG \otimes_{RG} P \rangle$ [3, Corollary 4.6]. Let

$$V(AG) = \left\{ \sum_{x \in G} a_x x \text{ in } AG \middle| a_x a_y = \delta_{x,y} a_x \text{ and } \sum_{x \in G} a_x = 1 \right\}.$$

Then

$$H^1(A/R, V(-G)) \cong \operatorname{Ker}(T(R, G) \to T(A, G)),$$

where the map $T(R,G) \to T(A,G)$ is given by $(S) \to (A \otimes_R S)$ for (S) in T(R,G); this follows from [7, Theorem 3.9] and from the observation that if $A \otimes_R S$ is commutative, then S is commutative. Now $V(AG) \subset U(AG)$, and hence there is a natural map $H^1(A/R, V(-G)) \to H^1(A/R, U(-G))$, which when composed with the isomorphisms just given yields a homomorphism τ from $\operatorname{Ker}(T(R,G) \to T(A,G))$ to $\operatorname{Ker}(\operatorname{Pic}(RG) \to \operatorname{Pic}(AG))$. By scrutinizing the construction of the isomorphisms mentioned above, it can be seen that $\tau((S)) = \langle S \rangle$. By using the naturality in A of the maps involved, and the fact that (S) is in the kernel of $T(R,G) \to T(S,G)$, we obtain a homomorphism $(S) \to \langle S \rangle$ from T(R,G) to $\operatorname{Pic}(RG)$.

PROPOSITION 3. Let S be a commutative Galois extension of R with abelian group G. Suppose that G has exponent n. Then $S \otimes_{RG} \ldots \otimes_{RG} S$ (n times) is isomorphic to RG as an RG-module. Indeed, $S \otimes_{RG} \ldots \otimes_{RG} S$ is the trivial Galois extension of R with group G.

Proof. Letting (S), as usual, denote the class of S in T(R, G), we have from [6, Theorem 4] that $(S)^n = 1$ in T(R, G). From Theorem 2 we conclude that $\langle S \rangle^n = 1$, i.e. that $S \otimes_{RG} \ldots \otimes_{RG} S \cong RG$ as RG-modules.

4. Normal bases. Let R be a commutative ring of Serre dimension 1, i.e. any finitely generated projective R-module P may be decomposed as $P = F \oplus P_0$, where F is free and P_0 is of rank 1. It is known [**2**, chapitre 2, § 5, exercise 21(c)] that if the n-fold tensor product of P with itself (over R) is isomorphic to R, and if P is a finitely generated projective R-module of rank 1, then the n-fold direct sum of P with itself is isomorphic to R^n . This follows readily by writing $P^n \cong R^{n-1} \oplus P_0$ and then taking the nth exterior product of both sides. Using Proposition 3, we obtain the following analogue of [**5**, Theorem 4.2] for G abelian.

Theorem 3. Let S be a commutative Galois extension of R with abelian group G. Suppose that G has exponent n. Let RG have Serre dimension at most 1. Then a direct sum of n copies of S is RG-isomorphic to a direct sum of n copies of RG.

The ring RG has Serre dimension at most 1, for example, if R is a semi-local ring, or if R is a finite-dimensional algebra over a Dedekind domain [1, Proposition 10.1].

Example II. We conclude with an example of a Galois extension S of a ring R which does not have a normal basis. Such examples exist in the case where R and S are rings of integers of number fields; e.g. let $K = Q(\sqrt{(-5)})$, L = K(i) [L. R. McCulloh, private communication]. The example here is topological in character.

Let X denote the real n-sphere, for $n \ge 1$. Let τ be the map of X to itself obtained by reflecting each point through the centre, i.e. τ sends a point to its antipode. Then $\{1, \tau\} = G$ is a group acting on X without fixed points; let Y be the identification space X/G, i.e. projective n-space. Let C(X) and C(Y) denote the rings of continuous functions of X and Y to the real numbers. By [5, p. 21, example (e)], C(X) is a Galois extension of C(Y) with group G. However, C(X) does not have a normal basis. For suppose α in C(X) gives rise to a normal basis, i.e. α and $\tau \alpha$ freely generate C(X) over C(Y). By the Borsuk-Ulam Theorem [8, Theorem 9, p. 266], there exists a pair of antipodal points, call them p and p', such that $\alpha(p) = \alpha(p')$. But then, every element of C(X) would have the same value on p and p'. This is patently false.

References

 H. Bass, K-theory and stable algebras, Inst. Hautes Etudes Sci. Publ. Math. No. 22 (1964), 5-60.

- N. Bourbaki, Eléments de mathématique, Fasc. XXVII, Algèbre commutative, Chapitre 1: Modules plats, Chapitre 2: Localization, Actualités Sci. Indust., No. 1290 (Hermann, Paris, 1961).
- S. U. Chase and Alex Rosenberg, Amitsur cohomology and the Brauer group, Mem. Amer. Math. Soc. No. 52 (1965), 34-79.
- 4. —— A theorem of Harrison, Kummer theory, and Galois algebras, Nagoya Math. J. 27 (1966), 663-685.
- S. U. Chase, D. K. Harrison, and Alex Rosenberg, Galois theory and Galois cohomology of commutative rings, Mem. Amer. Math. Soc. No. 52 (1965), 15–33.
- D. K. Harrison, Abelian extensions of commutative rings, Mem. Amer. Math. Soc. No. 52 (1965), 1-14.
- M. Orzech, A cohomological description of abelian Galois extensions, Trans. Amer. Math. Soc. 137 (1969), 481–499.
- 8. E. H. Spanier, Algebraic topology (McGraw-Hill, New York, 1966).
- 9. Y. Takeuchi, On Galois extensions over commutative rings, Osaka J. Math. 2 (1965), 137-145.

University of Illinois, Urbana, Illinois;

University of Illinois, and Queen's University, Urbana, Illinois Kingston, Ontario