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1. Introduction. Suppose that R is a commutative ring and G is a finite 
abelian group. In § 2 we review the definition of E(R, G) (T(R, G)), the group 
of all (commutative) Galois extensions S of R with Galois group G. We discuss 
the properties of these groups as functors of G and give an example which 
exhibits some of the pathological properties of the functor E(R, — ). In § 3 we 
display a homomorphism from E(R, G) to Pic (i^(G)); we use this homo-
morphism to prove that if 5 is commutative, G has exponent m, and R(G) has 
Serre dimension 0 or 1, then a direct sum of m copies of 5 is isomorphic as a 
G-module to a direct sum of m copies of R(G). (This result is related to 
[5, Theorem 4.2], where it is shown that if S is a free i^-module and G is any 
finite group with n elements, then Sn is isomorphic to R(G)n as G-modules.) We 
also give some examples of Galois extensions without normal bases. 

2. The groups E(R, G) and T(R, G). LetR be a commutative ring, let G be 
a finite group, and suppose that S is an i^-algebra on which G acts as a group of 
.R-algebra automorphisms. 5 is said to be a Galois extension of R with group G 
if (i) SG = R, where SG = {s in S\ xs = s for all x in G} ; and (ii) there exist 
ai, . . . , an and bi, . . . , bn such that aixbi + . . . + anxbn = di,x for all x in G. 
We will use [5] and [9] as references for facts about Galois extensions. 

Let <o (R, G) denote the category whose objects are Galois extensions of R 
with group G; a morphism is a map which is an jR-algebra homomorphism and 
an i^G-module homomorphism. In [5, Theorem 3.4] it is shown that a 
morphism between commutative Galois extensions is an isomorphism. The 
argument in [5] actually proves the stronger result below. 

PROPOSITION 1. Let Si and S2 be R-algebras on which G acts as a group of 
R-algebra automorphisms. Suppose that S2

G = R and suppose that Si is a Galois 
extension of R with group G. Let j : Si —> S% be a map which is an R-algebra 
homomorphism and an RG-module homomorphism. Then j is an isomorphism. 

Let G be a finite abelian group, and define an equivalence relation on the 
objects of (f (Rj G) by writing Si ~ S2 if Si and S2 are isomorphic. The set 
E(R,G) = <o(R,G)/~ may be given the structure of an abelian group 
[7, § 1]: Writing (S) for the class of S in E(R, G), the multiplication is defined 
by (Si) (S2) = ((Si (g) B S2)

8G) ; here 8G = {(x, x"1) in G X G} and G X G acts 
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on Si ®RS2 by (x,y)(si ® s2) = xsi ® ys2. G acts on (5i)(52) by 
x(s± ® s2) = xsi ® s2. (5 ) - 1 is given by (5)_ 1 = (5 - 1) , where 

5 - 1 = {Set maps v: G —> 5| ^(x-1^) = xy(^) for all x and y in G}. 

The multiplication on 5 _ 1 is pointwise, and the G-action is (xv)(y) = v(yx). 
The identity element of E(R, G) is (eG(R)), where eG{R) — {Setmaps v: G—+R} ; 
the action of G on eG(R) is given by (ocv)(y) = v(yx). That these operations 
give E(R, G) a well-defined group structure is shown in [7, § 1]. It is easy to 
verify that S~l is isomorphic in é? (R, G) to the i^-algebra having 5 for its 
underlying set, but with "inverse" G-action. 

If <^~(R, G) denotes the full subcategory of <§ (R, G) whose objects are 
commutative i^-algebras, then ~ defines an equivalence relation on^(R} G), 
and T(R, G) = 3T{R, G)/~ is a subgroup of E(R, G) ; Harrison dealt with this 
group in [6], 

Not only are E(R,G) and r( i? , G) abelian groups, but E(R, -) and T(R, - ) 
are functors from the category of finite abelian groups to the category of 
abelian groups. Harrison showed this for T(R, — ) [6, p. 3], and a proof 
applicable to our situation is given in [7, Theorems 1.2 and 1.9]. The definition 
of the functoriality of E(R, — ) and T(R, — ) is sketched here for convenience. 

Let 0: G —> H be a homomorphism of finite abelian groups. Let 5 be a 
Galois extension of R with group G. Define 

0(5) = {Set maps v: H —> S\ v(<t>(x)y) = xv(y) for x in G and y in H]. 

Define a pointwise multiplication on 0(5), and an inaction given by 
(yv)(z) = v(zy) for y and z in H. Now E(R, 0)((5)) = (0(5)) determines a 
homomorphism from E(R, G) to E(R, H). It also induces a homomorphism 
from T(i?,G) to T(R,H). We note that (5)-1 = E(R, t)((5)), where /: G -> G 
is given by t(x) = x~1. 

The following two facts about Galois extensions should also be explicitly 
noted. 

(1) Let 5i and 52 be Galois extensions of R with respective groups G and H. 
Then S± ®R S2 is a Galois extension of R with group G X H, the action being 
given by (x, y) (s\ ® s2) = xsi ® 3/s2. 

(2) Let i J be a subgroup of G and let 5 be a Galois extension of R with group 
G. Let 5 H = {s in 5| xs = 5 for all x in H}. G/i7 acts on 5 H via (xi7)s = xs, and 
5 H is a Galois extension of R with group G/H. If 0: G —» G/H is the canonical 
projection, then EÇR, 0)((5)) = (5H) in E(R, H). 

The two facts just listed are proved in [9, Proposition 1 and Theorem 1]. 
Let i\ and i2 be the homomorphisms from G to G X G given by iiix) = (x, 1) 

and i2{x) = (1, x), respectively. The maps E(R, i\) and E(R, i2) homE(R, G) 
to E(R,G X G) induce a map /*: £ ( £ , G) X E ( £ , G)-* E(R, G X G), which 
may be shown to be given by /x((5i), (52)) = (5i ®B52) [6, p. 3]. Moreover, 
fx induces a map v\ T(R, G) X T(R, G) —> T(R, G X G). The projections pi 
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and p2 from G X G to G, onto the first and second factors, respectively, induce 
homomorphisms x : E(R, G X G) -> E(R, G) X E(2î, G) and 

d: T(R, G X G) -> r ( £ , G) X r(2?, G). 

Using Proposition 1, it is not difficult to see that x((£>)) = ((D1XG), (DGX1)), 
and 0 is defined by the same formula when D is commutative. In [6], Harrison 
showed that 6 and v are isomorphisms inverse to each other. Thus T(R, — ) is an 
additive functor. 

PROPOSITION 2. %M is the identity map on E(R,G) X E(R,G), so that 
E(R, G) X E(R, G) is a direct summand of E(R, G X G). 

Proof. Let S± and S2 be Galois extensions with group G. We wish to show that 
Si ~ (Si ®B S2)

1XG. Define j : Si -> (Si ®RS2)
lxG by j(s) = s ® 1. Using fact 

(2) above and Proposition 1, we can conclude that j is an isomorphism. We 
remark that the present proposition follows from the fact that E(R, — ) is a 
functor which sends the 0-object to the 0-object. 

The following example is referred to in [4, p. 684]. 

Example I. % need not be an isomorphism. Let R be any integral domain 
containing 1/2. Let D be the ring of 2 X 2 matrices over R. Let G be the cyclic 
group of order 2, with x as its generator. Let G X G act on D as follows: 

It is easy to see that G X G acts as a group of i^-algebra automorphisms of D, 
and that DG = i^. Let £^ denote the element of D with 1 in the ith row and j th 
column, and zeros elsewhere. Let a\ = en, a2 = e22, az = e12, a4 = £21, &i = è^n, 
2̂ = 4^22, £3 = ^21, 4̂ = i^i2. Then a ^ i + . . . + a4̂ &4 = 5i,y so that Z? is a 

Galois extension of R with group G XG. Now Z)1XG and Z)GX1 are Galois exten­
sions of R with cyclic group G, and it is easily verified that they are commuta­
tive; DGX1 is the set of diagonal matrices. It is trivial to verify that DGXI is the 
trivial Galois extension of R with group G. Moreover, D1XG is the set of 
matrices of the form (I I). An isomorphism from D1XG to 

eG(R) = {Set maps v: G —̂  R] 

v, where v(l) = a + b and v(x) = a — b. 

Thus D is in the kernel of %, but not being commutative, it is not the trivial 
extension. The element (J J) gives rise to a normal basis for D. Letting R be 
the complex numbers, for example, provides us with an example of a non-

is given by 
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trivial Galois extension of an algebraically closed field. No such commutative 
extensions exist. 

3. Galois extensions as rank 1 projectives. The following result is proved 
in [7, Theorem 3.6]. 

THEOREM 1. Let G be a finite abelian group, and let She a Galois extension of R 
with group G. Then S is a finitely generated projective RG-module of rank 1. 

LEMMA 1. Let She a Galois extension of R with {not necessarily abelian) group 
G. Let H be a subgroup of G. Define a map tr#: S —* SH by trH(s) = J^XZH XS. 

Then XxH maps S onto SH. 

Proof. Choose e in S such that J^XÇG xe = 1; that such an element exists is 
shown in [5, Lemma 1.6]. Let Hyi, . . . , Hym be a complete set of cosets of H 
in G, and let e' = YA=I Jie- Then trH(^) = t r ^ e ) = 1. Now tvH is a (right and 
left) vS^-linear map, and hence it is onto SH. 

We may consider the abelian group Pic(i^G) [2, chapitre 2, § 5, no. 4] of 
isomorphism classes of projective i?G-modules of rank 1; we are here assuming 
that G is a finite abelian group. For (P), (Q) classes in Pic (RG), (P)(Q) is 
defined to be (P ®RG Q). The inverse element (P ) _ 1 is (HomRG(P, RG)). 

THEOREM 2. Let Si and S2 be Galois extensions of R with abelian group G. Then 
Si ®RG S2 may be given the structure of a Galois extension of R with group G, and 
as such, it is isomorphic to (Si ®RS2)

8G. In particular, the natural map from 
E(R, G) to Pic(RG), which sends (S) to (S), is a homomorphism of abelian groups. 

Proof. To condense notation, we adopt several definitions. An unadorned 
tensor product will be over R. If P and Q are RG-modu\es, then P ®RG Q will 
be written as P ® Q; for p in P and q in Q we shall write p 0 q for the element 
p ® q of P ®RGQ> We have a canonical epimorphism p: P ® Q —> P 0 Q. 
Now let 5 be a Galois extension of R with group G. The trace map tr: 5 —>R is 
defined by the formula tr(a) = J^xeoxa. By [5, Lemma 1.6], there is an ele­
ment e of trace 1 in S. For Si and S2, Galois extensions of R with group G, 
define K: SI ® 52 —» Si ® S2 by 

K(Œ ® b) = ^2 xa ® x~ b. 
x£G 

We note that K is a map into (Si ® S2)
ÔG, and in fact it is a map onto the latter 

set by Lemma 1. (Recall that ÔG = {(x, x"1)} in G X G, and (Si ® S2)
ÔG 

denotes the set of elements of Si ® S2 which are fixed by 5G.) 
Define an operation oonSi®S 2 byset t ingp(a) op (b) = p(/c(a)&) = p(an(b)), 

i.e. for Si and s/ in Si, we have 

(si ® s2) o (si ® s2) = X) x(si)si ® x^(s2)s2. 
x£G 

It is easy to verify that this operation is well-defined, and that it endows 
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Si ® S2 with the structure of an associative ring. Letting eu i = 1, 2, be the 
element of trace 1 in Su we see that ex ® 1 = 1 ® e2 is a unity element of 
Si® S2\ the latter is also an P-algebra, where r in R is identified with e± ® r. 
Moreover, Si ® S2 has a G-module structure with 

x(si ® s2) = xsi ® s2 = si® ^ 2 

for 5i in St and # in G, i = 1,2. With this action, the elements of G act as 
P-algebra automorphisms of Si ® S2. 

We remark that for r in R and 5 in S2, we have that r ® 5 is in R. For, 
r<g)s = l<g)rs = tr(ei) 0 r5 = 61 0 tr(rs). 

The trace map tr: Si ® S2 —> Si ® S2, given by tr(a) = X ^ G xa> thus maps 
Si ® S2 to P ; it is P-linear and maps ei ® e2 to the identity element ei ® 1, so 
that tr: Si ® S2 —» R is an epimorphism. Since the trace map is (Si ® S2)G-
linear, it follows that (Si (g) S2)

G = P . 
Now define j : (Si ® S2)

ÔG -> Si (8) S2 by j («) = p(«(«i ® !))• From the 
definition of the multiplication in Si 0 S2 and from the fact that K is (Si ® S2)

ÔG-
linear, it follows that j is a multiplicative map. It can be easily verified that7 is 
an P-algebra and PG-module homomorphism, and is thus an isomorphism by 
Proposition 1. This completes the proof of the theorem. 

Remarks, (a) The inverse of j may be verified to be given by the formula 
j-i(P(a)) = K(a). 

(b) A less computational proof, using homological machinery, can be given 
for the existence of a homomorphism P(P , G) —> Pic (PG), given by (S) —» (S). 
Let A be a faithfully-flat commutative P-algebra. Then 

H^A/R, U(-G)) ^ Ker(Pic(PG) -> Pic (AG)), 

where U(AG) denotes the group of units of AG, H1 is the first Amitsur coho-
mology group, and the map Pic(PG)-^Pic(^4G) is given by (P) —> (AG ®RGP) 
[3, Corollary 4.6]. Let 

V(AG) = j S azx m AG\axay = ôXtVax and X) #* = 1 f . 

Then 
H^A/R, V(-G)) ^ Ker(P(P, G) -> T ( ^ , G)), 

where the map P(P , G) -> P ( ^ , G) is given by (S) -> (A ®RS) for (S) in 
T(R, G); this follows from [7, Theorem 3.9] and from the observation that if 
A ®ie S is commutative, then S is commutative. Now V(AG) C U(AG), and 
hence there is a natural map Hl(A/R, V(-G)) -^H^A/R, U(-G)), which 
when composed with the isomorphisms just given yields a homomorphism r 
from Ker(P(P, G) -> P ( ^ , G)) to Ker(Pic(PG) -> Pic(^G)). By scrutinizing 
the construction of the isomorphisms mentioned above, it can be seen that 
T((S)) = (S). By using the naturality in A of the maps involved, and the fact 
that (S) is in the kernel of T(R, G) —> T(S, G), we obtain a homomorphism 
(S) -> (S) from T(R, G) to Pic(PG). 

https://doi.org/10.4153/CJM-1970-031-6 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1970-031-6


GALOIS EXTENSIONS 247 

PROPOSITION 3. Let S be a commutative Galois extension of R with abelian 
group G. Suppose that G has exponent n. Then S ®RG. . . ®RG S (n times) is 
isomorphic to RG as an RG-module. Indeed, S ®RG. . . ®RG S is the trivial 
Galois extension of R with group G. 

Proof. Letting (5), as usual, denote the class of 6* in T(R, G), we have from 
[6, Theorem 4] that (S)n = 1 in T(R, G). From Theorem 2 we conclude that 
{S)n = 1, i.e. that S ®RG. . . ®BGS^RG<LS i?G-modules. 

4. Normal bases. LetR be a commutative ring of Serre dimension 1, i.e. any 
finitely generated projective R-modu\e P may be decomposed as P = F 0 P0, 
where Fis free and P 0 is of rank 1. It is known [2, chapitre 2, § 5, exercise 21 (c)] 
that if the n-îo\d tensor product of P with itself (over R) is isomorphic to R, and 
if P is a finitely generated projective i?-module of rank 1, then the n-iold direct 
sum of P with itself is isomorphic to Rn. This follows readily by writing 
Pn ^ Rn~l © Po and then taking the nth exterior product of both sides. Using 
Proposition 3, we obtain the following analogue of [5, Theorem 4.2] for G 
abelian. 

THEOREM 3. Let S be a commutative Galois extension of R with abelian group G. 
Suppose that G has exponent n. Let RG have Serre dimension at most 1. Then a 
direct sum of n copies of S is RG-isomorphic to a direct sum of n copies of RG. 

The ring RG has Serre dimension at most 1, for example, if R is a semi-local 
ring, or if R is a finite-dimensional algebra over a Dedekind domain [1, Proposi­
tion 10.1]. 

Example II. We conclude with an example of a Galois extension S1 of a ring R 
which does not have a normal basis. Such examples exist in the case where R 
and S are rings of integers of number fields ; e.g. let K = Q ( y/ ( — 5 ) ), L = K (i) 
[L. R. McCulloh, private communication]. The example here is topological in 
character. 

Let X denote the real ^-sphere, for n ^ 1. Let r be the map of X to itself 
obtained by reflecting each point through the centre, i.e. r sends a point to its 
antipode. Then {1,7-} = G is a group acting on X without fixed points; let Y be 
the identification space X/G, i.e. projective w-space. Let C(X) and C(Y) denote 
the rings of continuous functions of X and Y to the real numbers. By [5, p. 21, 
example (e)], C(X) is a Galois extension of C(Y) with group G. However, C(X) 
does not have a normal basis. For suppose a in C(X) gives rise to a normal 
basis, i.e. a and ra freely generate C(X) over C(Y). By the Borsuk-Ulam 
Theorem [8, Theorem 9, p. 266], there exists a pair of antipodal points, call 
them p and pf, such that a(p) = a(pf). But then, every element of C{X) would 
have the same value on p and p''. This is patently false. 
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