Seventh Meeting, 14th May 1897.

Professor Gibson in the Chair.

The Bessel Functions and their Zeros. By Dr Peddie.

A Geometrical Theorem with application to the Proof of the Collinearity of the mid-points of the Diagonals of the Complete Quadrilateral.

By R. F. Muirerad, M.A., B.Sc.

Geometrical Note.

By R. Tucker, M.A.
On the sides $B C, C A, A B$ of the triangle $A B C$ are described two sets of equilateral triangles,
the set $\mathrm{B} a^{\prime} \mathrm{C}, \mathrm{C} b^{\prime} \mathrm{A}, \mathrm{A} c^{\prime} \mathrm{B}$ externally, and the set $\mathrm{B} a \mathrm{C}, \mathrm{C} b \mathrm{~A}, \mathrm{~A} c \mathrm{~B}$ internally.
The lines $\mathbf{A} a^{\prime}, \mathbf{B} b^{\prime}, \mathbf{C} c^{\prime}$ cointersect in \mathbf{Q}, the centre of Perspective of the triangles $\mathrm{ABC}, a^{\prime} b^{\prime} c^{\prime}$,
and the lines $\mathrm{A} a, \mathrm{~B} b, \mathrm{C} c$ in P , the centre of Perspective of $\mathrm{ABC}, a b c$. Since $a, a^{\prime}, b, b^{\prime}, c, c^{\prime}$ are on the perpendicular bisectors of $B C, C A, A B$, their joins cointersect in the circumcentre, O, which is the centre of Perspective of $a b c, a^{\prime} b^{\prime} c^{\prime}$.

Now

$$
\begin{aligned}
& O a^{\prime}=2 R \cos \left(60^{\circ}-A\right), \\
& O a=-2 R \cos \left(60^{\circ}+A\right),
\end{aligned}
$$

hence

$$
a a^{\prime}=a \sqrt{3}, \quad b b^{\prime}=b \sqrt{3}, \quad c c^{\prime}=c \sqrt{3}:
$$

and also

$$
\Sigma\left(a a^{\prime}\right)^{2}=3 \quad \Sigma\left(a^{2}\right)=3 k
$$

Using trilinear coordinates,
Q is
$\alpha \sin \left(60^{\circ}+\mathrm{A}\right)=\beta \sin \left(60^{\circ}+\mathrm{B}\right)=\gamma \sin \left(60^{\circ}+\mathrm{C}\right) ;$
P is $\quad \operatorname{asin}\left(60^{\circ}-\mathrm{A}\right)=\beta \sin \left(60^{\circ}-\mathrm{B}\right)=\gamma \sin \left(60^{\circ}-\mathrm{C}\right)$.

