
Canad. J. Math. Vol. 65 (3), 2013 pp. 544–552
http://dx.doi.org/10.4153/CJM-2012-020-8
c©Canadian Mathematical Society 2012

Iterated Integrals and Higher Order
Invariants
Anton Deitmar and Ivan Horozov

Abstract. We show that higher order invariants of smooth functions can be written as linear combina-
tions of full invariants times iterated integrals. The non-uniqueness of such a presentation is captured
in the kernel of the ensuing map from the tensor product. This kernel is computed explicitly. As a
consequence, higher order invariants form a free module of the algebra of full invariants.

Introduction

Modular forms of higher order have been studied extensively in recent years [4, 5,
8–14, 18]. To construct them, one often uses iterated integrals. From dimension
formulae [13] it is clear that in the case of holomorphic forms, iterated integrals
do not give all higher order forms. But there are strong indicators [11, 12, 14, 18]
that in the case of smooth functions, all higher order forms are indeed obtainable
via iterated integrals. This has been an implicit open question for a while that is
answered affirmatively in this paper. It is shown that on any smooth manifold, the
smooth module of higher order invariants is generated by the space of homotopy
invariant iterated integrals, thus allowing us to deduce structure assertions on higher
order invariants from iterated integrals.

In Section 1 we recall the ingredients of the theory of iterated integrals needed
in the sequel. In Section 2 we show that the restriction map from free homotopy
invariant iterated integrals to loops is a surjective map. This assertion is the key to
the subsequent sections. In Section 3 we first show that homotopy invariant iterated
integrals always give higher order invariants. For the case of surfaces, this was proven
by Sreekantan in [18]. We then use the result from Section 3 to deduce the main
result, saying that higher order invariants can always be expressed by iterated inte-
grals. In the final section we consider restricted forms of higher order, which come
with triviality assumptions along boundary components. This is typical for automor-
phic forms, where these restrictions refer to cusp forms or cuspidal cohomology. We
formulate the corresponding theorem asserting that the main result is stable under
boundary restrictions.

1 Generalities on Iterated Integrals

In this section we fix notations. Let X be a smooth connected manifold and x0, x ∈ X
points. We write PX for the path space, i.e., the set of all smooth maps p : [0, 1]→ X.
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We also write PXx0 for the subset of all paths that start at x0 and PXx0,x for the subset
of all smooth paths from x0 to x. The space LXx0 = PXx0,x0 is also called the loop space
at x0.

For a path p and 1-forms ω1, . . . , ωr we define the iterated integral:∫
p
ω1 · · ·ωr =

∫ 1

0

∫ tr

0
. . .

∫ t2

0
p∗ω1(t1) p∗ω2(t2) · · · p∗ωr(tr).

For an integer s, let Bs(X) denote the space of all maps ω : PX → C that are linear
combinations of iterated integrals of length ≤ s. Here we include constants as they
may be considered as iterated integrals of length zero. We also write B(X) for the
union of all Bs(X) as s varies. Let

T(Ω1(X)) = C⊕ Ω1(X)⊕
[
Ω1(X)⊗ Ω1(X)

]
⊕ · · ·

be the tensorial algebra over the space Ω1(X) of smooth 1-forms. The map assigning
ω1 ⊗ · · · ⊗ ωr to the map p 7→

∫
p ω1 · · ·ωr is a linear map from T(Ω1(X)) to B(X).

This map has a non-trivial kernel that was determined by Chen in [2].
We denote by Bs(X)x0 the set of restrictions of elements of Bs(X) to PXx0 , and the

space Bs(X)x0,x is defined analogously.

Lemma 1.1 (i) If ϕ is an orientation preserving diffeomorphism on [0, 1], then∫
p ω1 · · ·ωr =

∫
p◦ϕ ω1 · · ·ωr.

(ii) If F is a diffeomorphism on X, then
∫

F◦p ω1 · · ·ωr =
∫

p(F∗ω1) · · · (F∗ωr).

(iii) If p and q are composable paths, then

∫
pq
ω1 · · ·ωr =

r∑
j=0

∫
p
ω1 · · ·ω j

∫
q
ω j+1 · · ·ωr.

(iv) One has(∫
p
ω1 · · ·ωr

)(∫
p
ωr+1 · · ·ωr+s

)
=
∑
σ

∫
p
ωσ(1) · · ·ωσ(r+s),

where the sum runs over all (r, s)-shuffles, i.e., permutations σ on r + s letters with
σ−1(1) < · · · < σ−1(r) and σ−1(r + 1) < · · · < σ−1(r + s).

(v)
∫

p−1 ω1 · · ·ωr = (−1)r
∫

p ωr · · ·ω1, where p−1(t) = p(1− t).

(vi) For given ω ∈ B(X), we extend the map p 7→
∫

p ω to the free abelian group Z[PX]

generated by PX. For givenα1, . . . , αs ∈ PXx0,x0 let η = (α1−1)(α2−1) · · · (αs−
1) ∈ Z[PX]. For 1-forms ω1, . . . , ωr, r ≤ s, we have

∫
η

ω1 · · ·ωr =

{∏s
i=1

∫
αi
ωi r = s,

0 r < s.
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Note that (iv) implies that

B(X)x0 =
∞⋃
s=0

Bs(X)x0

is a filtered algebra and likewise for B(X)x0,x.

Proof (i)–(v) are easy exercises. (vi) is a result of Hain; see [15, Proposition 2.13].

If we replace the tensor product on T(X) by the shuffle product ∗ given by

ω1 · · ·ωr ∗ ωr+1 · · ·ωr+s =
∑
σ

ωσ(1) · · ·ωσ(r+s),

where the sum runs over all (r, s)-shuffles, we obtain the shuffle algebra Sh(X). We
have shown that the iterated integrals form an algebra homomorphism

Sh(X)→ B(X),

where the latter is an algebra under pointwise multiplication.
Let Bs(X)hom denote the space of all elements of Bs(X) that are invariant under

homotopies with fixed end-points. Similarly define Bs(X)hom
x0

and Bs(X)hom
x0,x .

2 The Restriction Map

Theorem 2.1 The restriction map Bs(X)hom
x0
→ Bs(X)hom

x0,x0
is surjective.

Proof For a real vector space V , let T(V ) = R ⊕ V ⊕ V⊗2 ⊕ · · · be the tensorial
algebra. Consider the map D : T(Ω1(X))→ T(Ω(X)) given by

D(ω1 ⊗ · · · ⊗ ωn) =

n∑
j=1

ω1 ⊗ · · · ⊗ (dω j)⊗ · · · ⊗ ωn

+
n−1∑
j=1

ω1 ⊗ · · · ⊗ (ω j ∧ ω j+1)⊗ · · · ⊗ ωn,

and D(c) = 0, for c ∈ R. By [3, Proposition 1.5.2] the map
∫

: T(Ω1X) → Ω0(PX)
sending ω1⊗· · ·⊗ωs to the map p 7→

∫
p ω1 · · ·ωs extends to a map T(ΩX)→ Ω(PX)

such that for ω ∈ T(Ω1(C)) one has

d

(∫
ω

)
= −

∫
Dω − p∗0ω1

∫
ω1 · · ·ωs + (−1)s−1 p∗1ωs

∫
ω1 · · ·ωs−1,

where p0, p1 : PX → X are the evaluation maps that map a path to its start and
end point, respectively. Therefore, the kernel of D is mapped to homotopy invariant
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iterated integrals on PXx0 . Let M be the kernel of D. Then M has a natural filtration
by degrees:

R = M0 ⊂ M1 ⊂ · · · .
The map Ix0 : ω1⊗· · ·⊗ωs 7→

∫
ω1 . . . ωs maps Ms to Bs(X)hom

x0
. We get a commutative

diagram:

Ms Bs(X)hom
x0

Bs(X)hom
x0,x0

.

-
Ix0

@
@
@
@R

Ix0 ,x0

?

res

The integral
∫
ω1 · · ·ωs is a function on the path space PX. Its restriction to the

loop space Lx0 X is homotopy invariant if and only if it is locally constant, which is
the case if and only if it is anihilated by the differential of the complex Λ(PM) as
in [3]. Now the differential D above also coincides with the differential of the bar
construction on [3, Section 4.1]. Theorem 4.1.1 of [3] states that the iterated integral
map is an isomorphism of graded differential algebras from that bar construction to
the iterated integrals on the loop space. Therefore the iterated integral map Ix0,x0 is
surjective, hence the restriction map is also surjective.

3 The Fundamental Group

For a group Γ we write its group ring as A = ZΓ. Let J ⊂ ZΓ be the augmenta-
tion ideal, i.e., the span of all elements of the form (γ − 1), where γ ∈ Γ. For any
ZΓ-module V we write H0

s (Γ,V ) for the Z-module of all v ∈ V with Jsv = 0. This
space can be identified with HomZΓ(ZΓ/ Js,V ). The elements of H0

s (Γ,V ) for vary-
ing s are called higher order invariants. If v is in H0

s (Γ,V ), but not in H0
s−1(Γ,V ), then

s is called the order of v.
Let X be a connected smooth manifold, x0 ∈ X a base-point, and Γ = π1(X, x0)

the corresponding fundamental group. We consider Γ as group of deck transforma-
tions on the universal covering X̃ of X. We also fix a pre-image x0 in X̃, which we will
denote by the same symbol x0 as no confusion can arise.

As X̃ is simply connected, the iterated integral
∫

pω for ω ∈ Bs(X̃)hom only depends
on the endpoints x, y of the path p. We therefore write

∫ y
x ω =

∫
p ω.

Every γ ∈ Γ can be viewed as a homotopy class of a loop based at x0 ∈ X. In
this way we get a map Bs(X)hom

x0,x0
→ Map(Γ,C) that maps ω ∈ Bs(X)hom

x0,x0
to the map

γ 7→
∫
γ
ω. The latter map induces a Z-linear map from the group ring ZΓ to C. It is

the content of Chen’s de Rham Theorem for fundamental groups (see [3, Corollary 1
to Theorem 2.6.1], see also [17]) that this map induces a bijection

Bs(X)hom
x0,x0

∼=
−→ HomZ(ZΓ/ Js+1,C).

Each ω ∈ Bs(X)hom
x0

lifts to X̃ and gives an element of Bs(X̃)hom
x0

. For x ∈ X̃ we
write

∫ x
x0
ω for the iterated integral of this lift over any path joining x0 and x, or, what

amounts to the same, the integral of ω over the projection to X of any such path.
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Theorem 3.1 If ω ∈ Bs(X)hom
x0

, then the function
∫ x

x0
ω, x ∈ X̃, is an invariant of

order at most s + 1 in the Γ-module C∞(X̃). This defines an injective linear map

Ψ : Bs(X)hom
x0

↪→ H0
s+1

(
Γ,C∞(X̃)

)
.

The case when X is the hyperbolic plane is in [18].

Proof Let ω ∈ Bs(X)hom, and for x ∈ X̃, set fω(x) =
∫ x

x0
ω. We have to show that[

(γ1 − 1) · · · (γs+1 − 1)
]∗

fω = 0

for any γ1, . . . , γs+1 ∈ Γ. For given x ∈ X and γ ∈ Γ, we choose a path γx from x to
γx. The map γ 7→ γx is extended linearly to a map ZΓ→ Z[PX]. For every x ∈ X we
also fix a smooth path px from x0 to x. Let ω ∈ Bs(X)hom, and let η =

∑
γ cγγ be an

arbitrary element of the group ring ZΓ. We have

η∗ fω(x) =
∑
γ

cγγ
∗ fω(x) =

∑
γ

cγ

∫ γx

x0

ω

=
∑
γ

cγ

∫
pxγx

ω =

∫
px

∑
γ cγγx

ω =

∫
pxηx

ω.

We apply this to the element (γ1 − 1) · · · (γs+1 − 1) of the group ring, and we look at
any monomial ω1 · · ·ωr in ω, where the ω j are 1-forms on X. We then have∫

px[(γ1−1)...(γs+1−1)]x

ω1 . . . ωr =

r∑
k=0

∫
px

ω1 . . . ωk

∫
[(γ1−1)...(γs+1−1)]x

ωk+1 . . . ωr.

Let x̄ ∈ X be the image of x ∈ X̃, and let γx̄ be the image of γx in X. Then γx̄ is a loop
based at x̄. As the forms ω j are Γ-invariant, we have∫

[(γ1−1)...(γs+1−1)]x

ωk+1 . . . ωr =

∫
[(γ1−1)...(γs+1−1)]x̄

ωk+1 . . . ωr

=

∫
(γ1,x̄−1)...(γs+1,x̄−1)

ωk+1 . . . ωr

= 0

by Lemma 1.1(v). This proves the first claim. For the injectivity of the induced map,
let ω ∈ Bs(X)hom

x0
with

∫ x
x0
ω = 0. This just means that ω = 0 in Bs(X)hom

x0
.

We formally set H0
0 = 0 and B−1 = 0.

Theorem 3.2 Let K be the ideal in the algebra B(X)x0 generated by d(C∞(X)) and let
Khom

s = Bs(X)hom
x0
∩ K. Then Khom

s is the kernel of the restriction map

Bs(X)hom
x0

res−→ Bs(X)hom
x0,x0

,
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and Ψ induces an isomorphism of C∞(X)-modules

C∞(X)⊗
(
Bs(X)hom

x0
/Khom

s

) ∼=−→ H0
s+1

(
Γ,C∞(X̃)

)
.

It follows that H0
s+1(Γ,C∞(X̃)) is a free module of the algebra C∞(X) of smooth func-

tions.

Proof The fact that Khom
s is the kernel of the restriction map is a consequence of

[2, Theorem 4.5]. Write B̄s = Bs/Bs−1 and let

K̄hom
s = ker

[
Bs(X)hom

x0
→ B̄s(X)hom

x0,x0

]
.

Then K̄hom
s contains Bs−1(X)hom

x0
, and our assertion is equivalent to

C∞(X)⊗
(
Bs(X)hom

x0
/K̄hom

s

) ∼=
−→ H̄

0
s+1

(
Γ,C∞(X̃)

)
,

which is what we prove.
By Chen’s de Rham Theorem for fundamental groups (see [3, Corollary 1 to The-

orem 2.6.1], see also [17]) the evaluation of iterated integrals gives an isomorphism

B̄s(X)hom
x0,x0

∼=
−→ HomZ( Js/ Js+1,C).

The right-hand side can also be viewed as HomZΓ( Js/ Js+1,C) and as such be embed-
ded into

HomA( Js/ Js+1,C∞(X)) ∼= HomA

(
Js/ Js+1,C∞(X̃)

)
,

where we have written A = ZΓ. More precisely, the image in

HomA

(
Js/ Js+1,C∞(X)

) ∼= C∞(X)⊗HomA( Js/ Js+1,C)

is a basis of this C∞(X)-module, which means that we have an isomorphism of
C∞(X)-modules,

C∞(X)⊗ B̄s(X)hom
x0,x0

∼=
−→ HomA

(
Js/ Js+1,C∞(X̃)

)
.

Lemma 3.3 The cohomology group H1(Γ,C∞(X̃)) is trivial.

Proof A 1-cocycle is a map α : Γ → C∞(X̃) such that α(γτ ) = γα(τ ) + α(γ)
holds for all γ, τ ∈ Γ. We have to show that for any given such map α there exists
f ∈ C∞(X̃) such that α(τ ) = τ f − f .

Fix a smooth map u : X̃ → [0, 1] such that∑
τ∈Γ

u(τ−1x) ≡ 1,
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where we can assume that the sum is locally finite. Set

f (x) = −
∑
τ∈Γ

α(τ )(x) u(τ−1x).

Then the function f lies in the space C∞(X̃). We now compute for γ ∈ Γ,

γ f (x)− f (x) = f (γ−1x)− f (x)

=
∑
τ∈Γ

α(τ )(x)u(τ−1x)− α(τ )(γ−1x)u(τ−1γ−1x)

=
∑
τ∈Γ

α(τ )(x)u(τ−1x) + α(γ)(x)
∑
τ∈Γ

u
(

(γτ )−1x
)

−
∑
τ∈Γ

α(γτ )(x)u
(

(γτ )−1x
)

The first and the last sum cancel, and the middle sum is α(γ)(x). Therefore, the
lemma is proven.

Since H1(Γ,C∞(X̃)) = 0, [6, Lemma 2.1] implies that the exact sequence

0→ Js/ Js+1 → A/ Js+1 → A/ Js → 0,

induces an isomorphism

HomA

(
Js/ Js+1,C∞(X̃)

) ∼= HomA

(
A/ Js+1,C∞(X̃)

)
/HomA

(
A/ Js,C∞(X̃)

)︸ ︷︷ ︸
def
= HomA(A/ Js+1,C∞(X̃))

∼= H̄
0
s+1

(
Γ,C∞(X̃)

)
.

We have to show that the ensuing diagram

B̄s(X)hom
x0

B̄s(X)hom
x0,x0

HomA

(
A/ Js+1,C∞(X̃)

)
HomA

(
Js/ Js+1,C∞(X̃)

)

-res

? ?
-
∼=

commutes. This proves the claim, as we already have seen that the right vertical arrow
becomes an isomorphism after tensoring with C∞(X). This commutativity is a direct
consequence of Lemma 1.1(vi).
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4 Parabolic Restrictions

To satisfy requirements in the theory of automorphic forms, we also introduce fur-
ther structure: Let P ⊂ Γ be a conjugation-invariant subset and let 〈P〉 be the normal
subgroup generated by P. Then A JP is a two-sided ideal of A, where JP ⊂ Z 〈P〉 ⊂ A
is the augmentation ideal of 〈P〉. Let Js = Js + A JP, and let

H0
P,s(Γ,V ) = {v ∈ V : Jsv = 0}.

In the theory of automorphic forms (see [5, 8]), P will be the set of parabolic ele-
ments.

The P-restriction translates on the side of iterated integrals to the following. Recall
Chen’s map

Bs(X)hom
x0,x0

∼=
−→ HomZ(ZΓ/ Js+1,C).

We define the space BP,s(X)hom
x0,x0

to be the inverse image of

HomZ(ZΓ/ Js+1,C) =
{
α ∈ HomZ(ZΓ/ Js+1,C) : α(p − 1) = 0 ∀p∈P

}
under this map. Finally, we set BP,s(X)hom

x0
to be the inverse image of BP,s(X)hom

x0,x0
under

the restriction map. So then BP,s(X)hom
x0

is the set of all ω ∈ Bs(X)hom
x0

with
∫

p−1 ω = 0

for every p ∈ P. Theorems 3.1 and 3.2 generalize to the following.

Theorem 4.1 If ω ∈ BP,s(X)hom
x0

, then the function
∫ x

x0
ω is an invariant of order at

most s + 1 in the Γ-module C∞(X̃). This defines an injective linear map

Ψ : BP,s(X)hom
x0

↪→ H0
P,s+1

(
Γ,C∞(X̃)

)
.

Theorem 4.2 Let K be the ideal in the algebra B(X)x0 generated by d(C∞(X)) and let
Khom

P,s = BP,s(X)hom
x0
∩ K. Then Khom

P,s is the kernel of the restriction map

BP,s(X)hom
x0

res−→ BP,s(X)hom
x0,x0

,

and Ψ induces an isomorphism of C∞(X)-modules

C∞(X)⊗
(
BP,s(X)hom

x0
/Khom

P,s

) ∼=−→ H0
P,s+1

(
Γ,C∞(X̃)

)
.

Proof The proofs are the same as in the unrestricted case. One only has to check
that the restriction conditions match, which is easy to see.
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