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ON q-EXPONENTIAL FUNCTIONS FOR jqj = 1

D. S. LUBINSKY

ABSTRACT. We discuss the q-exponential functions eq, Eq for q on the unit circle,
especially their continuity in q, and analogues of the limit relation limq!1 eq((1�q)z) =
ez.

1. Introduction and results. In recent years, there has been increasing interest in
q-series for jqj = 1. The case where q is not a root of unity has been useful in investigating
various phenomena in Padé approximation [3–7], [15] and the case where q is a root of
unity has been useful in the former and in various applications in theoretical physics [17],
[19–21]. While investigating Ramanujan’s continued fraction for jqj = 1, the author was
led to consider continuity properties of q-exponentials for q on the unit circle. Recall
that the q-exponential functions are [10, p. 9]

eq(z) :=
1X
j=0

zjÛ(q; q)j;(1.1)

Eq(z) :=
1X
j=0

qj(j�1)Û2zjÛ(q; q)j;(1.2)

where (a; q)0 = 1 and for 1 � n � 1,

(a; q)n :=
nY

j=1
(1 � aqj�1)(1.3)

If jqj Ú 1, then eq and Eq admit the product representations [1], [2], [10]

eq(z) = 1Û(z; q)1; Eq(z) = (�z; q)1(1.4)

and hence
eq(z)Eq(�z) = 1(1.5)

Their connection with the exponential function is the last functional equation, and the
limit

lim
q!1

eq

�
(1 � q)z

�
= ez = lim

q!1
Eq

�
(1 � q)z

�
(1.6)

Here the limit is taken with q restricted to 0 Ú q Ú 1. See [1], [2], [8–10]. McIntosh [16]
has studied the asymptotic behaviour of series that include the functions eq(z)ÒEq(z) as
q ! 1 with 0 Ú q Ú 1 and z restricted to be real, but without scaling the variable z.
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q-EXPONENTIAL FUNCTIONS 87

In this paper, we consider eq, Eq for q on the unit circle. Obviously eq, Eq are not
defined for q a root of unity, but at least their Maclaurin series coefficients are defined
for q not a root of unity. The radius of convergence of both eq and Eq is

R(q) := lim inf
n!1

þþþþ
nY

j=1
(1 � qj)

þþþþ1Ûn
(1.7)

It follows from a well known identity (and we shall indicate the proof in Section 2) that

R(q) = lim inf
n!1

j1 � qnj1Ûn(1.8)

The latter is readily formulated in terms of diophantine approximation: If q = eií, and
å := íÛ(2ô), and fxg denotes the distance from x 2 R to its nearest integer, it is easy to
see that

R(q) = lim inf
n!1

jfnågj1Ûn(1.9)

It is then clear that R(q) = 1 for “most” q. Indeed, if

G := fq : jqj = 1ÒR(q) Ú 1g(1.10)

then G is an Fõ set that has linear measure 0, Hausdorff dimension 0, and even logarithmic
dimension 2. This is a consequence of the Jarnik-Besicovitch theorem, see e.g. [14]. It
is by no means obvious that R(q) may assume any value in [0Ò 1]; this follows from a
lemma of G. Petruska [18, Lemma 2].

We note that (1.5) persists for jqj = 1; this is easily verified from the Maclaurin series.
In fact, in view of the simple identity

Eq(z) = eq̄(�q̄z)(1.11)

it takes the more attractive form

eq(z)eq̄(q̄z) = 1(1.12)

Moreover, as a consequence of the functional equations

eq(qz) = eq(z)(1 � z); Eq(qz) = Eq(z)Û(1 + z)(1.13)

which are easily verified from the Maclaurin series (the infinite products in (1.4) no
longer have meaning), we note the following simple:

PROPOSITION 1.1. Let q = eií, íÛ(2ô) irrational. Then eq and Eq have natural bound-
aries on the circle jzj = R(q).

We include the proof of this, although it is a special case of more general results in
[3]. Our goal is to study two questions that arise in analysing q-series for jqj = 1:

(I) To what extent are eqÒEq continuous in q?
(II) For q a root of unity, what is the correct analogue of (1.6)?
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88 D. S. LUBINSKY

The latter would suggest how to define a q-exponential function for q a root of unity
other than 1. We feel that (I) has intrinsic interest in that it indicates how solutions of
the functional equation (1.13) vary as q varies on the unit circle. However, our main
motivation arose in analyzing Ramanujan’s continued fraction for jqj = 1, where the
continuity properties of eq and similar functions give insight into Padé convergence
theory (we shall present this elsewhere). We feel that (I), (II) provide a model for many
of the problems that arise in treating q-series for jqj = 1.

Obviously since eq, Eq are not defined for q a root of unity we must be careful not to
stray too close to roots of unity in limiting processes. Accordingly, we define the (closed
and, as we shall see, perfect) set

S(öÒL) := fq : 8n ½ LÒ j1 � qnj1Ûn ½ ög(1.14)

We prove:

THEOREM 1.2. Let jq0j = 1 and R(q0) Ù 0. Let jqkj = 1 8k, and assume that

lim
k!1

qk = q0(1.15)

The following are equivalent:
(I) For each ö 2 (0Ò 1) there exist L and k0 such that fqkg1k=k0

² S
�
öR(q0)ÒL

�
.

(II) Uniformly in compact subsets of jzj Ú R(q0),

lim
k!1

eqk (z) = eq0 (z)Ò(1.16)

and
lim

k!1
Eqk = Eq0 (z)

It is noteworthy that the (simpler) radial limit

lim
r!1�

erq0 (z) = eq0 (z)Ò jzj Ú R(q0)

was established by Hardy and Littlewood [11]. We remark that more generally, if

fq(z) :=
1X
j=0

hj(q)
(q; q)j

zj(1.17)

where each hj(q) is continuous in q and

lim
j!1

�
sup
jqj=1

jhj(q)j
�1Ûj

= 1;(1.18)

then the above proof shows that if (I) holds, then locally uniformly in jzj Ú R(q0),

lim
k!1

fqk = fq0 (z)(1.19)
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q-EXPONENTIAL FUNCTIONS 89

Next, we turn to analogues of (1.6). As a polynomial in q, (q; q)n has a zero of
multiplicity n at q = 1, but only a zero of multiplicity [nÛ2] at q = �1. (Here and in the
sequel, [x] denotes the greatest integer � x). More generally at a primitive l-th root of
unity, (q; q)n has a zero of multiplicity only [nÛl]. As a consequence, the scaling of the
variable z in (1.6) gives for q0 a primitive l-th root of unity, l ½ 2,

lim
q!q0

eq

�
(1 � q)z

�
= 1(1.20)

under the conditions of the following theorem. So a more meaningful scaling of the
variable z must be sought, and intuitively, it seems that it should involve (1 � q

q0
)1Ûl.

This is the situation in the following theorem. The scaling also allows us to let q ! q0

through a wider class than in Theorem 1.2. Accordingly we define for õ Ù 0

T (õÒ lÒL) := fq : 8n ½ LÒ j1 � qnj1Ûn ½ õj1 � qlj1Ûl Ù 0g(1.21)

Then we can state:

THEOREM 1.3. Let q0 be a primitive l-th root of unity. Let jqkj = 1 8k, and assume
that (1.15) holds. The following are equivalent:

(I) For each õ Ù 0, there exist L and k0 such that fqkg1k=k0
² T (õÒ lÒL).

(II) Uniformly in compact subsets of C,

lim
k!1

eqk

 �
1 �

qk

q0

�1Ûl
z
!

= ezlÛl2 Ò(1.22)

The same limit holds if we replace eq by Eq.

Note that one may use any of the l values of (1 � qk
q0

)1Ûl in (1.22). Alternative
formulations of (1.22) include

lim
k!1

eqk

�� lY
j=1

(1 � qj
k)
½1Ûl

z
�

= ezl
(1.23)

or
lim

k!1
eqk

�
[l(1 � ql

k)]1Ûlz
�

= ezl


So it seems that ezlÛl2 is the proper q-exponential function when q is a primitive l-th root
of unity.

We shall also consider limits as q ! q0 from inside the unit circle, where we can
allow somewhat more than a non-tangential limit: Define for given q0Ò ã Ù 0,

Ω(q0Ò ã) :=
²

q : jqj Ú 1 and 1 � jqj ½ j1 �
q
q0
jã
¦


The case ã = 1 corresponds essentially to non-tangential limits, that is a cone with
vertex at q0; the region when restricted to j1 � q

q0
j � 1 increases as ã increases. We

prove:
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90 D. S. LUBINSKY

THEOREM 1.4. Let q0 be a primitive l-th root of unity and ã Ù 0. Then

lim
q!q0

q2Ω(q0Òã)

eq

 �
1 �

q
q0

�1Ûl
z
!

= ezlÛl2

uniformly in compact subsets of C.

An obvious question is whether there exist for a given q0 sequences fqkg fulfilling the
hypotheses of Theorems 1.2 or 1.3, so that the specified convergence can take place! We
shall prove this using elementary continued fraction theory; we shall also reformulate
the conditions of Theorem 1.2. For a given q = eií, í 2 [0Ò 2ô), set

å := å(í) :=
í

2ô
(1.24)

and let å have continued fraction expansion

å(í) =
í

2ô
=

1j
ja1

+
1j
ja2

+
1j
ja3

+ Ð Ð Ð(1.25)

with convergents
ôj(í)
üj(í)

=
1j
ja1

+
1j
ja2

+
1j
ja3

+ Ð Ð Ð
1j
jaj
(1.26)

(So all aj, ôj, üj are non-negative integers). Small values of j1� qnj correspond to large
denominators üj in the convergents of å. Accordingly, we define for 0 Ú õ Ú 1,

U(õÒL) :=
(
í 2 [0Ò 2ô) :

logün+1(í)
ün(í)

� log
1
õ
Ò n ½ L

)
(1.27)

We may now reformulate the condition of Theorem 1.2:

PROPOSITION 1.5. Let 0 Ú ú � 1. Let qk = eiík , k ½ 0 and assume that (1.15) holds.
The following are equivalent:

(I) 8ö 2 (0Ò 1)Ò 9L and k0 such that fqkg1k=k0
² S(öúÒL).

(II) 8ö 2 (0Ò 1)Ò 9L and k0 such that fíkg1k=k0
² U(öúÒL).

As a consequence, we can construct sequences fulfilling the hypotheses of Theo-
rem 1.2:

THEOREM 1.6. Let q0 = eií0 where í0Û(2ô) is irrational. Let 0 Ú ú � 1. The following
are equivalent:

(I) 9fqkg with qk 6= q0; R(qk) ½ ú, k ½ 1; with qk ! q0, k ! 1 and such that for
each ö 2 (0Ò 1) there exist L and k0 such that fqkg1k=k0

² S(öúÒL).
(II) R(q0) ½ ú.

In particular, choosing ú = R(q0) gives a sequence satisfying the requirements of
Theorem 1.2. We note that the proof shows that each S(öÒL) is perfect, that is has no
isolated points. Our proof of (II) ) (I) is constructive as is the proof of the following
result:
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THEOREM 1.7. For each q0 that is a primitive l-th root of unity, there exists a sequence
fqkg with qk 6= q0; R(qk) = 1, k ½ 1, with qk ! q0, k !1 and satisfying the hypothesis
(I) of Theorem 1.3.

Our proof of Theorems 1.6, 1.7 is easily modified to give infinitely many non-
trivially distinct sequences with the desired property. It does not however indicate “what
proportion” of the sequences that approach q0 have the desired property. Intuitively, the
restriction that every qk with k ½ k0 should lie in S(öÒL) severely restricts the sequence.

We present the proofs in Section 2.

2. Proofs. We shall make use of the following identity:

eq(z) =
1X

n=0

zn

(q; q)n
= exp

 1X
n=1

zn

n(1 � qn)

!
=: exp

�
Φq(z)

�
(2.1)

Hardy and Littlewood [11] proved that even for q on the unit circle this identity holds
inside the radius of convergence of either series, and hence Φq and eq have the same
radius of convergence. Then (1.8) follows. We can now give the

PROOF OF PROPOSITION 1.1. We remarked that the functional equations (1.13) may
easily be verified from the Maclaurin series for eq and Eq even for q on the unit circle.
Thus if z0 is a point of analyticity of eq on jzj = R(q), then so is q�1z0 and hence so
are fq�jz0g1j=0 and as the latter is dense, we obtain that eq is analytic on the circle of
convergence of its power series, a contradiction. Similarly for Eq; Alternatively one may
use either (1.5) or the simple identity

Eq(z) = eq̄(�q̄z)

and note that R(q̄) = R(q).

We turn to the

PROOF OF THEOREM 1.2. Note first that (1.12) shows that eq0 has no zeros in B :=
fz : jzj Ú R(q0)g. Thus the convergence of eqk to eq0 is equivalent to that of eš1

qk
to eš1

q0
.

Our hypotheses on fqkg ensure that for each fixed L,

lim
k!1

LX
j=0

zj

(qk; qk)j
=

LX
j=0

zj

(q0; q0)j

uniformly in compact subsets of B. Thus the locally uniform convergence in Theorem 1.2
is equivalent to the uniform boundedness of feš1

qk
g in compact subsets of B. The identity

(2.1) shows that this is equivalent to uniform boundedness of fjRe Φqk jg in compact
subsets of B, and consequently of fΦqkg in compact subsets of B [13, p. 193]. Since
a fixed number of terms of the Maclaurin series of Φqk converge as k ! 1 to the
corresponding terms in the Maclaurin series of Φq0 , and since L2 norms on a circle
centre 0 may be used to bound above L1 norms on a smaller concentric circle, we see
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92 D. S. LUBINSKY

that the convergence in Theorem 1.2 is equivalent to the following assertion: For each
0 Ú r Ú R(q0), there exists L and k0 such that

1X
n=L

r2n

jn(1 � qn
k)j2

� CÒ k ½ k0(2.2)

Clearly if fqkg1k=k0
² S(rÒL) for some k0, then the series in (2.2) is bounded above byP1

n=1 n�2, independently of k ½ k0. Conversely, if (2.2) holds for a given r and k0, then
for any s Ú r we claim there exists k1 and L1 such that fqkg1k=k1

² S(sÒL1). If not, we
choose infinitely many k and n = n(k) for which n(k) !1, k !1 and

j1 � qn
k j

1Ûn Ú s

and hence
r2n

jn(1 � qn
k)j2

Ù n�2(
r
s

)2n !1Ò n !1

contradicting (2.2). Since r and hence s may be made arbitrarily close to R(q0), we have
the converse assertion of Theorem 1.2.

We turn to the

PROOF OF THEOREM 1.3. We first note the following limit, which concerns individual
terms of the Maclaurin series of eq

�
(1 � q

q0
)1Ûlz

�
:

lim
q!q0

(1 � q
q0

)nÛl

(q; q)n
=
(

l�2kÛk! if n = kl
0 otherwise

(2.3)

Recall that [x] denotes the greatest integer� x. The factor (1� q
q0

) occurs precisely [nÛl]

times in (q; q)n as a polynomial in q, since q0 is a zero of 1 � qj iff j is a multiple of l. It
follows that for n not a multiple of l, we have nÛl Ù [nÛl] and so we have the desired
limit. Now let us suppose that n = kl. Then as q ! q0,

(1 � q
q0

)nÛl

(q; q)n
=

k�1Y
r=0

1 � q
q0Ql

j=1(1 � qrl+j)
!

k�1Y
r=0

1�Ql�1
j=1 (1 � qj

0)
�
(rl + l)

But if Q(z) := (zl � 1)Û(z � 1), then Q has zeros at the l-th roots of unity other than 1,
that is at qj

0, 1 � j � l � 1, so

Q(z) =
l�1Y
j=1

(z � qj
0)

and hence
l�1Y
j=1

(1 � qj
0) = Q(1) = l

So we have (2.3). By much the same reasoning as in the proof of Theorem 1.2, we obtain
the locally uniform convergence in Theorem 1.3, iff for each r Ù 0, there exist k0 and L
such that

1X
n=L

r2nj1 � qk
q0
j2nÛl

jn(1 � qn
k)j2

� CÒ k ½ k0
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In turn, as
j1 � ql

kjÛj1 �
qk

q0
j ! lÒ k !1

this is equivalent to the following: For each s Ù 0, there exist k1 and L1 such that

1X
n=L1

s2nj1 � ql
kj

2nÛl

l2nÛljn(1 � qn
k)j2

� CÒ k ½ k1(2.4)

We see that the 2n-th root of the term with index n in the series is

sj1 � ql
kj

1Ûl

l1Ûln1Ûnj1 � qn
k j

1Ûn


Because of the freedom of choice in s, we see much as in the previous proof that (2.4)
holds with a corresponding value of k1ÒL1 for each s, iff for each õ Ù 0, there exist k2

and L2 such that

j1 � qn
k j

1Ûn ½ õj1 � ql
kj

1ÛlÒ n ½ L2Ò k ½ k2Ò

that is fqkg1k=k2
² T (õÒ lÒL2).

PROOF OF THEOREM 1.4. We note from (2.3) that individual terms of the Maclaurin
series of eq

�
(1 � q

q0
)1Ûlz

�
converge to the corresponding terms of ezlÛl2 as q ! q0. Thus

it suffices to establish boundedness independent of q 2 Ω(q0Ò ã). As before, using (2.1),
this boils down to estimation, for each fixed s, of

∆ :=
1X

n=L1

s2nj1 � qlj2nÛl

l2nÛljn(1 � qn)j2


But for q 2 Ω(q0Ò ã) and close enough to q0

j1 � qnj ½ 1 � jqjn ½ 1 � jqj

½
þþþþ1 � q

q0

þþþþã ½ C
þþþþ1 �

� q
q0

�lþþþþã = Cj1 � qljã

Thus

∆ � C�2
1X

n=L1

s2n

l2nÛln2
j1 � qlj2nÛl�2ã

For a suitably large L1 and q close to q0 this is clearly bounded above independent
of q.

Before turning to the proof of Proposition 1.5, we recall some elementary properties
of continued fractions [12]. Our notation is as in (1.24) to (1.26). Firstly

1
2üj+1(í)

� jüj(í)å(í) � ôj(í)j �
1

üj+1(í)
(2.5)
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Moreover, if ô, ü are coprime and ôÛü is not a convergent, then

jüå(í) � ôj ½
1

2ü
(2.6)

The recurrence relation for the denominators of the convergents is

üj(í) = ajüj
�1(í) + üj�2(í)Ò j ½ 2(2.7)

Finally, since fxg 2 [� 1
2 Ò

1
2 ] for real x, we have for q = eiíÒ å(í) = í

2ô ,

j1 � qnj = 2j sinôfnågj
(
� 2ôjfnå(í)gj
½ 4jfnå(í)gj

(2.8)

We turn to the

PROOF OF PROPOSITION 1.5. In view of the last inequality, we see that (I) of Propo-
sition 1.5 is equivalent to the following: For each ö 2 (0Ò 1), 9L and k0 such that

jfnå(ík)gj1Ûn ½ öúÒ n ½ LÒ k ½ k0

Now if n is not a denominator of a convergent of the continued fraction for å(ík), then
(2.6) shows that

jfnå(ík)gj1Ûn ½ (2n)�1Ûn

If n is a denominator, say, n = üj(ík), then (2.5) shows that

�
2üj+1(ík)

��1Ûüj (ík)
� jfnå(ík)gj1Ûn � üj+1(ík)�1Ûüj (ík)

It follows that (I) of Proposition 1.5 is equivalent to the following: For each ö 2 (0Ò 1),
9L and k0 such that

üj+1(ík)�1Ûüj (ík) ½ öú for üj(ík) ½ LÒ k ½ k0

This is almost (II) of Proposition 1.5, the only difference being that instead ofüj(ík) ½ L,
we want j ½ L1. This follows in view of the fact that for fixed j, we have for large enough
k that üj(ík) = üj(í0).

PROOF OF THEOREM 1.6. We first show that (II) implies (I) Let us assume that
q0 = eií0 and R(q0) ½ ú. Write

å(í0) =
í0

2ô
=

1j
ja1

+
1j
ja2

+
1j
ja3

+ Ð Ð Ð

(note that å(í0) is irrational, so the cf does not terminate). We define

å(ík) =
ík

2ô
=

1j
ja1

+
1j
ja2

+ Ð Ð Ð
1j

jak�1
+

1j
jak + 1

+
1j
jak+1

+ Ð Ð Ð 
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Thus the cf for å(ík) is obtained from that for å(í0) by adding 1 to its k-th cf
coefficient. Then the cf of both å(í0) and å(ík) have the same first k � 1 convergents
and then (2.5) shows that å(ík) ! å(í0), k !1, and hence qk ! q0, k !1. Next, in
our situation the recurrence relations for the denominators of the convergents become:

üj(ík) = ajüj�1(ík) + üj�2(ík)Ò j 6= k

and
üj(ík) = (aj + 1)üj�1(ík) + üj�2(ík)Ò j = k

Then as üj(ík) = üj(í0), j � k,

ük(ík) = ük(í0) + ük�1(í0)

so for j = k
üj(í0) � üj(ík) � 2üj(í0)

This inequality also holds trivially for j � k, and an easy induction on the recurrence
relation shows that it holds for all j ½ 1. Then for all j, k

logüj+1(ík)
üj(ík)

�
log 2
üj(í0)

+
logüj+1(í0)
üj(í0)



But since R(q0) ½ ú, for each 0 Ú ö Ú ö0 Ú ö00 Ú 1, we have

j1 � qn
0j

1Ûn ½ ö00ú

for n large enough, and as in the previous proof, we deduce that

logüj+1(í0)
üj(í0)

� log
1
ö0ú

for j large enough. Thus we can find L such that

logüj+1(ík)
üj(ík)

� log
1
öú
Ò j ½ LÒ k ½ 1

So fíkg1k=1 ² U(öúÒL) and hence Proposition 1.5 shows that fqkg has the required
properties. Moreover, the last inequality for each ö Ú 1 shows that for each k, we have
R(qk) ½ ú.

We turn to the proof that (I) implies (II). Note that

S(öúÒL) =
1\

n=L
fq : jqj = 1 and j1 � qnj1Ûn ½ öúg

so is closed. Then if q0 is the limit of fqkg1k=k0
² S(öúÒL) it follows that q0 2 S(öúÒL)

and hence R(q0) ½ öú. Since this is true for each ö Ú 1, we have R(q0) ½ ú.

Next, we give the
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PROOF OF THEOREM 1.7. Write (for some r, m depending on å(í0))

å(í0) =
1j
ja1

+
1j
ja2

+ Ð Ð Ð
1j
jam

=
r
l

and set

å(ík) =
1j
ja1

+
1j
ja2

+ Ð Ð Ð
1j
jam

+
1j
jk

+
1j
j1

+
1j
j1

+
1j
j1

+ Ð Ð Ð 

Then as å(ík) is a quadratic irrational, R(qk) = 1, and the estimate (2.5) shows that
å(ík) ! å(í0), k !1. The cf’s of å(í0) and å(ík) have the same first m convergents.
Moreover,

üm(ík) = l;

üm+1(ík) = küm(ík) + üm�1(ík)
(
� (k + 1)l
½ kl



For j ½ m + 1,
üj+1(ík) = üj(ík) + üj�1(ík)

and so
üj+1(ík) � 2üj(ík)Ò j ½ m + 1

Then

üj+1(ík)�1Ûüj (ík) = exp
 
�

logüj+1(ík)
üj(ík)

!
½ exp

 
�

log 2 + logüj(ík)
üj(ík)

!

½ exp
 
�

log 2
kl

+
log(kl)

kl

!
Ò j ½ m + 1

Next, as l = üm(ík), (2.8) and then (2.5) show that

j1 � ql
kj � 2ôjflå(ík)gj �

2ô
kl


Then if n is not a denominator of a convergent of the cf of å(ík), we obtain (recall
(2.6))

j1 � qn
k j

1Ûn

j1 � ql
kj

1Ûl
½ (2n)�1Ûn

� kl
2ô

�1Ûl

and if n is a denominator, say n = üj(ík), with j ½ m + 1, then (recall (2.5))

j1 � qn
k j

1Ûn

j1 � ql
kj

1Ûl
½
� kl

2ô

�1Ûl�
2üj+1(ík)

��1Ûüj (ík)

½ 2�1Ûn
� kl

2ô

�1Ûl
exp

 
�

log 2
kl

+
log(kl)

kl

!


Clearly, given õ Ù 0, we can find k0 and L such that this last terms exceeds õ for n ½ L,
k ½ k0. So fqkg satisfies the hypothesis (I) of Theorem 1.3.
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3. K. A. Driver, Convergence of Padé Approximants for Some q-hypergeometric Series (Wynn’s Power

Series I,II and III). Ph. D Thesis, Witwatersrand University, Johannesburg, 1991.
4. K. A. Driver and D. S. Lubinsky, Convergence of Padé Approximants for a q-hypergeometric Series
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