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Abstract

For non-singular intersections of pairs of quadrics in 11 or more variables, we prove an
asymptotic for the number of rational points in an expanding box.

1. Introduction

In 1962 Birch [Bir62], following Davenport [Dav59], used the Hardy–Littlewood circle method
to prove a very general statement about the asymptotic count for the number of rational points
on a variety defined by a system of forms of a given degree when the dimension is suitably
large. For hypersurfaces (i.e. varieties defined by one equation) the result has been improved
in some cases. Notably for cubic hypersurfaces, Heath-Brown [Hea07] has reduced the required
number of variables from 17 to 14 under certain conditions. But for varieties given by more than
one equation, Birch’s result has not been improved without imposing serious restrictions on the
nature of the forms.

In this paper we are concerned with non-singular varieties V which are given by the
intersections of two quadrics, say Qi(x) = txMix = 0, i = 1, 2, in n variables. It is a non-trivial
consequence of the non-singularity of V (see [Rei72, ch. 2]) that one of the matrices Mi (say M2)
has to be of full rank. The singular locus, in the sense of Birch, is given by

V ? = {x ∈ Cn : rank(M1x,M2x) 6 1},

which coincides with the union of the eigenspaces of M−1
2 M1. Let ∆ be the dimension of the

singular locus, which is same as the maximum dimension of the eigenspaces. The variety V ? is
an affine cone over a projective variety which we denote by V ??. Then dimV ?? = ∆−1. Suppose
that dimV ?? > 2. Then from dimension consideration it follows that V ?? ∩{Q1 = 0}∩ {Q2 = 0}
is nonempty, showing that there exists x ∈ V ? lying on V . This contradicts the non-singularity
of V . Thus we may conclude that ∆ 6 2. Let us now assume that ∆ = 2, i.e. dimV ?? = 1.
Then the projective variety V ?? ∩ {Q2 = 0} is nonempty. Thus there exists x0 ∈ Pn−1 such that
rank(M1x0,M2x0) 6 1 and Q2(x0) = 0. From this one can deduce that there is (a1, a2) 6= (0, 0)
such that the partials of a1Q1 + a2Q2 evaluated at x0 vanish. Since M2 is of full rank, a1 cannot
be zero. Taking the dot product with x0 one gets that a1Q1(x0)+a2Q2(x0) = 0. Since a1 6= 0 one
gets Q1(x0) = 0, thus obtaining a contradiction to V being smooth. Thus the non-singularity of
V implies that ∆ = 1.

It follows from Birch [Bir62, Thorem 1] that for any box P one has∑
· · ·
∑

m∈Zn∩BP
Q1(m)=Q2(m)=0

1 = SJ0(P)Bn−4 +O(Bn−4−δ) (1)
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where δ > 0 if the number of variables n > 14 (as ∆ = 1). Here S is the standard singular
series and J0(P) is the singular integral. One seeks to improve this and reduce the required
number of variables (at least) to n > 9. Indeed from the work of Demyanov [Dem56] it is known
that for n > 9 local solutions exist for any finite prime (also see [BLM62]). On the other hand
from the work of Colliot-Thélène et al. [CSS87a, CSS87b], we know that the Hasse principle
holds for n > 9. (This has been improved for non-singular intersections in a recent preprint of
Heath-Brown [Hea13], where he shows that the Hasse principle holds for n > 8.)

The purpose of this paper is to use a new form of the circle method (‘nested δ-method’) to
extend the admissible range for n in (1). Our result gives an asymptotic for the counting function
for n > 11. Moreover we believe that this is the first occasion where the δ-method is used to deal
with more than one (non-linear) equation.

Let W be a compactly supported non-negative smooth function on Rn whose support does
not intersect the singular locus, i.e. Supp(W ) ∩ V ? = ∅. Suppose that the derivatives of W
satisfy the bound W (j) �j H

j where H > 1. For example W can be such that W (y) = 1 for
y ∈

∏n
i=1[ai, bi] and W (y) = 0 for y /∈

∏n
i=1[ai−H−1, bi +H−1]. The extra parameter H will be

used later to obtain an asymptotic for the counting function without any smooth weight.

Theorem 1. Let Qi(x), with i = 1, 2, be two quadratic forms with rational coefficients in n
variables with matrices Mi. Suppose the variety given by Q1(x) = Q2(x) = 0 is non-singular.
Let W be a smooth function as above. Then we have∑

· · ·
∑

m=(m1,...,mn)∈Zn

Q1(m)=Q2(m)=0

W

(
m

B

)
= SJ0(W )Bn−4 +O(H2Bn−5+ε +H2nB3n/4−41/32+ε), (2)

where the singular integral J0(W ) depends on W , and the implied constant depends on Qi and ε.

In § 6 we will show that the singular integral is given by

J0(W ) = lim lim
ε1,ε2→0

1

4ε1ε2

∫
|Q1(y)|<ε1
|Q2(y)|<ε2

W (y) dy,

and the singular series is given by

S =

∞∑
q1=1

∞∑
q2=1

Cq1,q2(0)

qn−1
1 qn2

,

where Cq1,q2 is as defined in (7). One can show that the above series, which is also given by an
Euler product, in fact coincides with the product of the local densities. The technical hypothesis
regarding the support of the weight function Supp(W )∩ V ? = ∅ is required in our estimation of
the main term in § 6. One should relate this with Birch’s treatment of the singular integral in
[Bir62, § 6], where he needs to ‘dig out the singular points from the box’ P. More precisely, he
breaks the box into several smaller pieces, and then evaluates the integral for each smaller box
in two different ways depending on whether the box intersects the singular locus or not. Perhaps
a similar trick can be used in the present scenario to get rid of the technical hypothesis.

Suppose W is such that H = 1 and J0(W ) > 0. Then the error term is smaller than the main
term if n − 4 > 3n/4 − 41/32 which holds if n > 11. Note that Birch [Bir62] required n > 14.
The asymptotic formula is the first improvement over (1), in such generality, for n = 11, 12
and 13. In special situations, however, there are a few instances which go far beyond Birch’s

1190

https://doi.org/10.1112/S0010437X1400801X Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X1400801X


Pairs of quadrics in 11 variables

result. In the case of pairs of diagonal quadratic forms an asymptotic for the count can be
obtained for fewer variables. This was done by Cook [Coo71] for diagonal quadric pairs with
nine or more variables (n > 9). Recently in two joint works with Browning [BM13, BM], we
established an asymptotic for the counting functions when the pair has a special structure,
namely Q1(x) = q1(x1, . . . , xn−2) − x2

n−1 − x2
n and Q2(x) = q2(x1, . . . , xn−2), with q1 and q2

being quadratic forms (not necessarily diagonal). Such pairs of quadrics appear naturally in
many other important counting problems, e.g. Batyrev–Manin conjecture for Châtelet surfaces
(see [BM13]). In [BM13] we treat the case where n > 9, and in [BM] we further specialize the
forms qi and prove an asymptotic for n = 8.

The strategy that we adopt here builds on [BM13]. There we used multiplicative characters
to deal with the first equation and additive characters (the circle method) to detect the second
equation. A vital ‘trick’ was to use the modulus of the multiplicative character to reduce the
size of the modulus in the circle method. This idea can also be used while applying the circle
method to detect both the equations. Say we use modulus 1 6 q1 6 B to detect the first equation
Q1(m) = 0, which has ‘size’ B2. Then we split the second equation Q2(m) = 0 into a congruence
Q2(m) ≡ 0 mod q1 and an (integral) equation Q2(m)/q1 = 0. Now to detect the last equation by
the circle method we need modulus of size B/

√
q1. Hence the total modulus q1q2 has size B3/2,

instead of B2 which should be the size if one used the circle method independently for both
the equations. Since the size of the modulus is much smaller than the square of the length of
the variables mi, we save by applying the Poisson summation formula to each variable. This is
already sufficient to give us an asymptotic for sufficiently many variables n > 15. But the method
allows us to have a Kloosterman refinement in the first application of the circle method and a
double Kloosterman refinement in the second application. This together with subconvexity for
Dirichlet L-functions reduces the number of variables to n > 11.

If the forms share an eigenspace then our analysis actually yields an asymptotic for n > 10.
Further if we assume that both the forms are diagonal then we can have double Kloosterman
refinement in both the applications of the circle method and thereby reduce the number of
variables further, and get a result as strong as that of Cook [Coo71]. Finally we should mention
that the nesting process, of course, comes with some extra complications beyond those reported
and carefully tackled by Heath-Brown in [Hea96]. But these, as we will see, can be handled with
some extra work.

Theorem 1 gives an analytic proof of the Hasse principle for intersections of quadrics under
the mild assumptions that we made. The Hasse principle is of course known in this case from
the work of Colliot-Thélène et al. [CSS87a, CSS87b]. The existence of the p-adic local solutions
follows from the work of Demyanov [Dem56].

Though we chose to state our result with a smooth weight function, it will be quite evident
from our analysis that the smooth weight can be removed. In fact this is the reason why we have
kept an extra parameter H in (2). In § 7 we will prove the following.

Theorem 2. Suppose P =
∏n
i=1[ci, di] is a box in Rn, such that P ∩ V ? = ∅. Then we have∑
· · ·
∑

m∈BP
Q1(m)=Q2(m)=0

1 = SJ0(P)Bn−4 +O(Bn−4−δ)

with some δ > 0, as long as n > 11. Here the singular integral is given by

J0(P) = lim lim
ε1,ε2→0

1

4ε1ε2

∫
|Q1(y)|<ε1
|Q2(y)|<ε2

y∈P

dy.
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For other investigations related to systems of quadratic forms we refer the reader to the works

of Dietmann [Die04], Heath-Brown [Hea10], Heath-Brown and Pierce [HP13], Schmidt [Sch82]

among others. For intersections of a quadric and a cubic the method of this paper yields an

asymptotic formula for the count of rational points as long as n > 28. We wish to take this up in

detail in a separate paper. The case of the intersection of a quadric and a cubic has been recently

investigated in detail via a different approach, in a recent preprint of Browning et al. [BDH13].

Unfortunately the present method does not readily yield any positive result in the case of

intersection of two cubics. For intersections of pairs of diagonal cubics we refer the reader to

the works of Brüdern and Wooley.

2. Nested δ-method and Poisson summation

We shall now make the above argument precise. First let us briefly recall a version of the circle

method introduced in [DFI93] and [Hea96]. The starting point is a smooth approximation of the

δ-symbol: δ(0) = 1 and δ(m) = 0 for m ∈ Z− {0}.

Lemma 1. For any Q > 1 there is a positive constant cQ, and a smooth function h(x, y) defined

on (0,∞)× R, such that

δ(n) =
cQ
Q2

∞∑
q=1

∑?

a mod q

eq(an)h

(
q

Q
,
n

Q2

)
(3)

for n ∈ Z. Here eq(x) = e2πix/q, the ? over the sum indicates that a and q are coprime. The

constant cQ satisfies cQ = 1 +OA(Q−A) for any A > 0.

The definition of the smooth function h will be recalled in § 4. At present we just note that

h(x, y)� x−1 for all y, and h(x, y) is non-zero only for x 6 max{1, 2|y|}. So the q-sum in (3) is

in fact finite. In practice, to detect the equation n = 0 for a sequence of integers in the range

[−X,X], it is logical to choose Q = X1/2.

Let N(B) denote the left-hand side of (2). Using (3) and choosing Q to be B, we get

N(B) =
cB
B2

∞∑
q1=1

∑?

a1 mod q1

∑
· · ·
∑

m∈Zn

Q2(m)=0

eq1(a1Q1(m))h

(
q1

B
,
Q1(m)

B2

)
W

(
m

B

)
,

which we rewrite as

cB
B2

∞∑
q1=1

∑?

a1 mod q1

∑
· · ·
∑

m∈Zn

Q2(m)≡0 mod q1

eq1(a1Q1(m))h

(
q1

B
,
Q1(m)

B2

)
W

(
m

B

)
δ

(
Q2(m)

q1

)
.

This seemingly trivial step is most vital in this paper. We are building up the second application

of the circle method using the existing modulus from the first application of the circle method.

This ‘nesting’ process acts like a conductor lowering mechanism and we end up having sums over

m ∈ Zn with modulus of size B3/2 instead of B2, which is what one has without nesting.
There is one technical problem that we need to take care of. For small q1 the congruence

condition is not strong enough to lower the conductor sufficiently. In this case we need to push
in a weight function that will regulate the size of Q2(m)/q1. Let U be a bump function with
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support [−2, 2] and such that U(x) = 1 for x ∈ [−1, 1], U(−x) = U(x) and U (j) �j 1. We have

N(B) =
cB
B2

∞∑
q1=1

∑?

a1 mod q1

∑
· · ·
∑

m∈Zn

Q2(m)≡0 mod q1

eq1(a1Q1(m))h

(
q1

B
,
Q1(m)

B2

)

×W
(
m

B

)
δ

(
Q2(m)

q1

)
U

(
Q2(m)

q1B

)
. (4)

Of course the introduction of the extra weight function U2 is allowed at this point due to the tight
support of the δ function. This extra weight is a restriction on the range of Q2(m), especially
when q1 is small. However this does not worsen the situation any further (as far as the estimation
of the error term is concerned) as an oscillation of comparable magnitude is already present in
the analytic function h(q1/B,Q1(m)/B2). We will be able to remove the weight from the main
term in § 6 using the properties of h(x, y). Now applying (3) again, choosing Q =

√
B in this

application of the circle method, and rearranging the sums, we get

N(B) =
1

B3

∞∑
q1=1

∞∑
q2=1

∑?

a1 mod q1

∑?

a2 mod q2

N(a,q;B) +O(B−2013)

where

N(a,q;B) =
∑
· · ·
∑

m∈Zn

Q2(m)≡0 mod q1

eq1q2(a1Q1(m)q2 + a2Q2(m))

×h
(
q1

B
,
Q1(m)

B2

)
h

(
q2√
B
,
Q2(m)

q1B

)
U

(
Q2(m)

q1B

)
W

(
m

B

)
.

The error term of size O(B−2013) is introduced as cQ is being replaced by 1 (see Lemma 1).
Applying the Poisson summation formula with modulus q1q2 we deduce that

N(a,q;B) =
Bn

(q1q2)n

∑
· · ·
∑

m∈Zn

Iq1,q2(m)

[ ∑
· · ·
∑

b mod q1q2
Q2(b)≡0 mod q1

eq1q2(a1Q1(b)q2 + a2Q2(b) + b ·m)

]
,

(5)
where

Iq1,q2(m) =

∫
Rn

h

(
q1

B
,Q1(y)

)
h

(
q2√
B
,
BQ2(y)

q1

)
U

(
BQ2(y)

q1

)
W (y)eq1q2(−Bm · y) dy. (6)

We set

Cq1,q2(m) =
∑?

a1 mod q1

∑?

a2 mod q2

∑
· · ·
∑

b mod q1q2
Q2(b)≡0 mod q1

eq1q2(a1Q1(b)q2 + a2Q2(b) + b ·m). (7)

Lemma 2. We have
N(B) = N?(B) +O(B−2013)

where

N?(B) = Bn−3
∑∑
q1�B

q2�B1/2

1

(q1q2)n

∑
· · ·
∑

m∈Zn

Cq1,q2(m)Iq1,q2(m).
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Proof. To complete the proof of the lemma all that remains to show is that the contribution
from q1 � B and q2 � B1/2 is negligibly small for some appropriate implied constants. Indeed

h

(
q1

B
,Q1(y)

)
vanishes for

q1 > c1B where c1 = 1 + sup
y∈Supp(W )

|Q1(y)|,

and

h

(
q2√
B
,
BQ2(y)

q1

)
U

(
BQ2(y)

q1

)
vanishes for q2 > 2B1/2. Note that without the weight function U , we would need to take q2 up
to B3/2/q1, which can be as large as B3/2 for small q1. 2

3. The character sum

The character sum (7) can be compared with the character sum which appears in [BM13,
Lemma 8]. So we expect to have analogous results for this character sum. In particular we
have multiplicativity property. Let (q1, q2) = d, and we write q1 = q′1d1 and q2 = q′2d2 where
d1d2|d∞ and (q′1q

′
2, d) = 1 (consequently (q′1, q

′
2) = 1). Then we have

Cq1,q2(m) = Cq′1,1(m)C1,q′2
(m)Cd1,d2(m).

A major part of [BM13] is devoted to the study of the character sum

Sq1,q2(m) =
∑?

a mod q2

∑
· · ·
∑

b mod q1q2
Q2(b)≡0 mod q1
Q1(b)≡0 mod q2

eq1q2(aQ2(b) + b ·m),

where q1 and q2 are positive integers, and m ∈ Zn. (We introduce the convention that Sq1,q2(m) =
0 if either q1 or q2 is not a positive integer or if m is not an integral vector.) This is similar to
the character sum Cq1,q2(m). We will analyze this character sum using the same techniques that
we employed in [BM13, §§ 4–6]. But first we will explicitly relate the two character sums, which
will enable us to translate some of the end results from [BM13] to the current situation. This
shortens the exposition in this section tremendously, albeit at the cost of making it not entirely
self-contained. We begin by proving the following relation.

Lemma 3. Let p be any prime and r, ` > 0, then we have

Cpr,p`(m) = prSpr,p`(m)− pr−2Spr−1,p`+1(m)− pn+r−2Spr−1,p−`(p−1m). (8)

Proof. For any prime p we have

Cpr,p`(m) =
∑?

a2 mod p`

∑
· · ·
∑

b mod pr+`

Q2(b)≡0 mod pr

cpr(Q1(b))epr+`(a2Q2(b) + b ·m) (9)

where
cq(m) =

∑?

a mod q

eq(am)
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denotes the Ramanujan sum. Using the well-known formula for the Ramanujan sum

cq(m) =
∑

d|(m,q)

µ(q/d)d

(where µ denotes the Möbius function) we get

pr
∑?

a2 mod p`

∑
· · ·
∑

b mod pr+`

Q2(b)≡0 mod pr

Q1(b)≡0 mod pr

epr+`(a2Q2(b) + b ·m)

− pr−1
∑?

a2 mod p`

∑
· · ·
∑

b mod pr+`

Q2(b)≡0 mod pr

Q1(b)≡0 mod pr−1

epr+`(a2Q2(b) + b ·m) (10)

with the understanding that the second term appears only in the case r > 1. So the first term
in (10) is just prSpr,p`(m). In the second term in (10) the sum over a2 yields the Ramanujan sum
cp`(Q2(b)/pr). It follows that this term equals

pr+`−1
∑
· · ·
∑

b mod pr+`

Q2(b)≡0 mod pr+`

Q1(b)≡0 mod pr−1

epr+`(b ·m)− pr+`−2
∑
· · ·
∑

b mod pr+`

Q2(b)≡0 mod pr+`−1

Q1(b)≡0 mod pr−1

epr+`(b ·m). (11)

Again the second sum appears only if ` > 1. Now

Spr−1,p`+1(m) =
∑
· · ·
∑

b mod pr+`

Q2(b)≡0 mod pr−1

Q1(b)≡0 mod pr−1

cp`+1(Q2(b)/pr−1)epr+`(b ·m),

which decomposes as

p`+1
∑
· · ·
∑

b mod pr+`

Q2(b)≡0 mod pr+`

Q1(b)≡0 mod pr−1

epr+`(b ·m)− p`
∑
· · ·
∑

b mod pr+`

Q2(b)≡0 mod pr+`−1

Q1(b)≡0 mod pr−1

epr+`(b ·m). (12)

Comparing this with (11) we conclude that for ` > 1 we have

Cpr,p`(m) = prSpr,p`(m)− pr−2Spr−1,p`+1(m).

In particular for r = 0 we have C1,p`(m) = S1,p`(m). For ` = 0 the second term in (12) vanishes
unless p|m in which case it is given by pnSpr−1,1(p−1m). So it follows that

Cpr,1(m) = prSpr,1(m)− pr−2Spr−1,p(m)− pn+r−2Spr−1,1(p−1m).

This concludes the proof of Lemma 3. 2

We can now freely borrow the results from [BM13] about the character sum Sq1,q2(m) to
obtain sufficient bounds for the sum Cq1,q2(m). Let Mi be the symmetric matrices associated
to the quadratic forms Qi. Let Q?2 denote the adjoint quadratic form with underlying matrix
M?

2 = (detM2)M−1
2 . (Recall that M2 is invertible.) For any odd prime p let χp be the unique

quadratic character modulo p, and let ε(p) = 1 for p ≡ 1 mod 4 and ε(p) = i for p ≡ 3 mod 4.
Also let gq(m) denote the Gauss sum with modulus q. Lemma 15 and (4.1) of [BM13] translate
to yield the following, as from Lemma 3 we have C1,q2(m) = S1,q2(m).
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Lemma 4. Let p be prime with p - 2 detM2. For even n we have

C1,p`(m) = ε(p)n`χp(detM2)`pn`/2cp`(Q
?
2(m)).

For odd n we have

C1,p`(m) =

{
pn`/2cp`(Q

?
2(m)) if ` is even,

ε(p)nχp(−1)pn`/2gp`(Q
?
2(m)) if ` is odd.

(13)

Finally for any prime p and any integral vector m we have

C1,p`(m)� p`(n/2+1).

In [BM13, § 4] we also showed that there is cancellation when we average C1,q(m) over q.
This follows from the oscillation in the sign of the Gauss sum, and can be shown using the
standard properties of the Dirichlet L-function. One should recall that hybrid subconvexity of
the Dirichlet L-function plays a crucial role in this deduction. To state the result we define

N = N(m) =

{
2Q?2(m) detM2 if Q?2(m) 6= 0,

2 detM2 otherwise.
(14)

The following lemma summarizes the content of [BM13, § 4].

Lemma 5. Let M ∈ N with N |M . Suppose n is odd; then we have∑
q26x

(q2,M)=1

C1,q2(m)�

{
|m|7/16+εx(n+2)/2+εM ε if (−1)(n−1)/2Q?2(m) 6= 2,

x(n+3)/2+εM ε if (−1)(n−1)/2Q?2(m) = 2.
(15)

Suppose n is even; then we have

∑
q26x

(q2,M)=1

C1,q2(m)�


x(n+2)/2+εM ε if Q?2(m) 6= 0,

x(n+3)/2+εM ε if Q?2(m) = 0 and (−1)n/2 detM2 6= 2,

x(n+4)/2+εM ε if Q?2(m) = 0 and (−1)n/2 detM2 = 2.

(16)

We now turn to derive a bound for the sum Cq1,1(m). We begin by recalling the definition of
∆V . Let V be the non-singular projective variety defined by Q1(m) = Q2(m) = 0 in the space
Pn−1. The dual variety V ? is given by an equation G(m) = 0 where G is an irreducible form with
integral coefficients of degree 4(n−2) (see [BM13, § 2.2]). For any point b = [b1, b2] ∈ P1

Q consider
the matrix M(b) = b1M1 +b2M2. From [CSS87a, Lemma 1.13] it follows that rankM(b) > n−1
for all b ∈ P1. This (as well as the non-singularity of V ) continues to hold modulo p for all
but finitely many primes p. Let B be the product of this finite set of primes. Furthermore, from
Reid’s thesis [Rei72] it follows that the binary form detM(b) has non-zero discriminant D. Let

∆V = 2(detM2)BD. (17)

By ‘bad primes’ we shall mean the primes dividing ∆V .

Lemma 6. For (q1,∆VG(m)) = 1 we have

Cq1,1(m)� q
n/2+1+ε
1

rad(q1)
,

where rad(a) is the largest square-free factor of the positive integer a.
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Suppose p is a prime such that p - ∆VG(m). Then we have G(m) 6= 0 and p - m. From
Lemma 3 we get

Cpr,1(m) = prSpr,1(m)− pr−2Spr−1,p(m).

Then applying [BM13, Lemmas 19 and 20] we get prSpr,1(m) = 0 if r > 1, and pSp,1(m)� pn/2.
Also from Lemma 4 above and [BM13, Lemma 27] we obtain pr−2Spr−1,p(m) � p−1pr(n/2+1).
Substituting these bounds in the above expression the lemma follows.

Now we consider the general case. [BM13, Lemma 22] gives

Cq1,1(m)� (q1,∆
∞
V )n/2−2(q1,m)n/2−2q

n/2+1+ε
1 .

But here we will be able to remove the extra factor (q1,∆
∞
V )n/2−2(q1,m)n/2−2 from the bound.

Lemma 7. We have
Cq1,1(m)� q

n/2+1+ε
1 , (18)

where the implied constant depends on Qi and ε.

Proof. Indeed we have

Cpr,1(m) = p−r
∑?

a1 mod pr

∑
c mod pr

∑
· · ·
∑

b mod pr

epr(a1Q1(b) + a1cQ2(b) + b ·m), (19)

to which we apply Cauchy’s inequality and [BM13, Lemma 13] to get

Cpr,1(m) 6 pnr/2−r
∑?

a1 mod pr

∑
c mod pr

Kpr(c)1/2

where
Kpr(c) = 1 + #{v mod pr : M(c)v ≡ 0 mod pr},

with M(c) = M1 + cM2. This can be compared with [BM13, Equation (5.3)]. Notice that here
we have h = 1 as from the beginning a1 is coprime with p. Using [BM13, Lemma 21] we get (18)
if (q1,∆V ) = 1.

Now take p|∆V , r > 1, and consider the inner sum over b in (19). Taking j = [(r+ 1)/2] and
writing b = b1 + b2p

j we see that the sum over b is given by∑
· · ·
∑

b1 mod pj

epr(a1
tb1M(c)b1 + b1 ·m)

∑
· · ·
∑

b2 mod pr−j

epr−j (2a1
tb1M(c)b2 + b2 ·m).

This reduces to

pn(r−j)
∑
· · ·
∑

b1 mod pj

2a1M(c)b1+m≡0 mod pr−j

epr(a1
tb1M(c)b1 + b1 ·m),

which is dominated by

pn(r−j)
∑
· · ·
∑

b1 mod pj

2a1M(c)b1+m≡0 mod pr−j

1�V pnr/2Kp j (c).

Consequently we have

Cpr,1(m)� pnr/2
∑

c mod pr

Kp j (c).
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Let K be a finite extension of the local field Qp containing all the eigenvalues of the symmetric

integral matrix M?
2M1. Let π be a uniformizer for this extension, so that pOK = πeOK where e is

the ramification index. Now we have an invertible matrix U and a diagonal matrix D = diag(d1,

. . . , dn) with entries in OK , such that tUU = πhI for some non-negative integer h and such

that πhM?
2M1 = tUDU . The entries di of the diagonal matrix D are in fact the eigenvalues of

the matrix M?
2M1, with associated eigenvector tUei (where ei is the ith standard basis vector).

Since the singular locus has dimension ∆ = 1, it follows that the eigenvalues di are distinct. Now

M(c)v ≡ 0 mod p j implies M?
2M1v ≡ −c(detM2)v mod p j , which in turn implies

DUv ≡ −c(detM2)Uv mod πej−h.

Writing Uv = t(u1, . . . , un) we get a collection of independent congruences

diui ≡ −c(detM2)ui mod πej−h.

This leads us to consider the p-adic distance |di + cdetM2|p. Suppose δp = mindi 6=dj |di − dj |p
and δ = minp δp. We have δ > 0. If |di + cdetM2|p < δ 6 δp then by Krasner’s lemma we have

di ∈ Zp. We conclude that if i is such that di /∈ Zp then the number of ui satisfying the above

congruence is OV (1) (where the implied constant does not depend on p, c or j). On the other

hand if di ∈ Zp then we can suppose that tUei ∈ Znp , and consequently ui ∈ Zp. Now for any c

the number of ui ∈ Z/pjZ satisfying the ith congruence is bounded by OV ((di + c detM2, p
j)).

From u we obtain v by multiplying with tU . Hence we are able to conclude that

Kp j (c)�V 1 +
∏
di∈Zp

(di + cdetM2, p
j),

where the implied constant only depends on V , and the product is over all eigenvalues di of

the matrix M?
2M1 which belong to the ring Zp. Now using the fact that the multiplicities of

the eigenvalues are 1 we see that the last product is over distinct eigenvalues. Consequently

in the above product only one factor can grow with p and j. (Indeed if p`|di + cdetM2 and

p`|dj + cdetM2, then p`|di − dj .) It follows that

Kp j (c)�V

∑
di∈Zp

(di + cdetM2, p
j).

Hence ∑
c mod pr

Kp j (c)�V

∑
di∈Zp

∑
c mod pr

(di + cdetM2, p
j).

We have ∑
c mod pr

(di + cdetM2, p
j)�

j∑
a=0

pa
∑

c mod pr

c detM2≡−di mod pa

1� pr.

As result we conclude that (18) holds for any pr|∆∞V . This completes the proof of Lemma 7. 2

Next we will obtain a bound for Cq1,1(m) on average over q1. We will prove the following

analogue of [BM13, Lemmas 23 and 24].

1198

https://doi.org/10.1112/S0010437X1400801X Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X1400801X


Pairs of quadrics in 11 variables

Lemma 8. For G(m) 6= 0 we have∑
q16x

(q1,∆V G(m))=1

|Cq1,1(m)| � x(n+2)/2+ε. (20)

For G(m) = 0 we have ∑
q16x

(q1,∆V m)=1

|Cq1,1(m)| � x(n+3)/2+ε. (21)

Proof. The first bound (20) follows directly from Lemma 6. Now to prove (21) we note that
from [BM13, Lemmas 19] we have pSp,1(m) � p(n+1)/2. This together with Lemma 4 yields
Cp,1(m)� p(n+1)/2. For r > 2 we use the bound from Lemma 7 above. We get∑

q16x
(q1,∆V m)=1

|Cq1,1(m)| �
∑
q16x

(q1,∆V m)=1
q12-free

|Cq1,1(m)|
∑

q′16x/q1
(q′1,∆V m)=1
q′12-full

|Cq′1,1(m)|

� xε
∑
q16x

(q1,∆V m)=1
q12-free

|Cq1,1(m)|x
n/2+1

q
n/2+1
1

x1/2

q
1/2
1

� x(n+3)/2+ε.

This completes the proof of Lemma 8. 2

Now we consider the mixed character sum Cpr,p`(m) with r, ` > 1. We will establish the
following bound.

Lemma 9. For d1, d2 positive integers with d1|d∞2 and d2|d∞1 , we have

Cd1,d2(m)� (d1d2)n/2+1+ε (rad(d2), Q?2(m))

rad(d2)
. (22)

Proof. For p - 2 detM2, using [BM13, Lemmas 26 and 27] we get that the first term of (8) is
bounded as

prSpr,p`(m)� p(r+`)(n/2+1) (p,Q?2(m))

p
.

The same bound also holds for the second term of (8), for the same reasons if r > 2, and because
of (13) in the case r = 1. Also from [BM13, Lemma 26] we see that the bound remains valid even
if p|2 detM2 in the case ` > r. Hence

Cpr,p`(m)� p(r+`)(n/2+1) (p,Q?2(m))

p
.

if p - 2 detM2 or if ` > r. Now take a prime p|2 detM2 and take r > `. Writing b = u+vpr in (9)
we get

Cpr,p`(m) =
∑?

a2 mod p`

∑
· · ·
∑

u mod pr

Q2(u)≡0 mod pr

cpr(Q1(u))epr+`(a2Q2(u) + u ·m)

×
∑
· · ·
∑

v mod p`

ep`(2a2∇Q2(u) · v + v ·m)
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which reduces to

Cpr,p`(m) = pn`
∑?

a2 mod p`

∑
· · ·
∑

u mod pr

Q2(u)≡0 mod pr

2a2M2u+m≡0 mod p`

cpr(Q1(u))epr+`(a2Q2(u) + u ·m).

Detecting the congruence modulo pr using exponential sum we get

pn`−r
∑? ∑?

a1 mod pr

a2 mod pr+`

∑
· · ·
∑

u mod pr

2a2M2u+m≡0 mod p`

epr+`(a1p
`Q1(u) + a2Q2(u) + u ·m).

The inner sum over u is dominated by∑
· · ·
∑

w mod p`

2a2M2w+m≡0 mod p`

∣∣∣∣∑ · · ·
∑

u mod pr−`

epr−`( tuM(a1, a2)u + u ·m′)
∣∣∣∣,

where M(a1, a2) = a1p
`M1 + a2M2 and m′ = 2a1M1w + p−`(2a2M2w + m). Using [BM13,

Lemma 13] we see that this is bounded by

p(r−`)n/2
∑
· · ·
∑

w mod p`

2a2M2w+m≡0 mod p`

Kpr−`(2M(a1, a2))1/2.

Consequently

Cpr,p`(m)� p(r+`)n/2−r(2 detM2, p
`)n

∑? ∑?

a1 mod pr

a2 mod pr+`

Kpr−`(2M(a1, a2))1/2.

It remains to estimate the last sum. For any v mod pr−` we write v = pcv′ with (p,v′) = 1.
The equation 2a1p

`M1v ≡ −2a2M2v mod pr−` implies 2a1p
`+cM?

2M1v
′ ≡ 2a2p

c detM2v
′ mod

pr−`. If p` - detM2 then we should necessarily have c > r − ` − vp(detM2), and it follows that
Kpr−`(2M(a1, a2)) � 1. Now suppose p`|detM2 (then p` � 1). Then using [BM13, Lemma 21]
we get that ∑? ∑?

a1 mod pr

a2 mod pr+`

Kpr−`(2M(a1, a2))1/2 � p2r.

The lemma follows. 2

4. The integral

We will follow the treatment given in [Hea96, §§ 7 and 8]. But there are new complications,
arising from the double application of the circle method, that we need to discuss. To this end,
we recall some facts about the smooth function h(x, y) which appears in (3). We begin by noting
that

h(x, y) =

∞∑
j=1

1

xj
{w(xj)− w(|y|/xj)} (23)
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where w is a smooth function supported on [1/2, 1] with
∫
w(x) dx = 1. So h(x, y) = 0 if x >

max{1, 2|y|}. It follows that h(x, y) satisfies (see [Hea96])

xi
∂i

∂xi
h(x, y)�i x

−1 and
∂

∂y
h(x, y) = 0 (24)

for x 6 1 and |y| 6 x/2. For |y| > x/2, we have

∂i

∂xi
∂j

∂yj
h(x, y)�i,j x

−1−i|y|−j . (25)

Also for any (x, y), and non-negative integers i, j and N , we have

∂i

∂xi
∂j

∂yj
h(x, y)�i,j,N x−1−i−j(xN + min{1, (x/|y|)N}). (26)

For notational simplicity let us set

r1 = q1/B, r2 = q2/
√
B, u = Bm/q1q2

so that

Iq1,q2(m) =

∫
Rn

h(r1, Q1(y))h(r2, r
−1
1 Q2(y))U(r−1

1 Q2(y))W (y)e(−u · y) dy.

Lemma 10. We have

Iq1,q2(m)�N

{
H + r−1

1 + (r1r2)−1

|u|

}N
.

Proof. To prove this lemma one integrates by parts N times, and uses the last bound (26) for
the partial derivatives of h(x, y). 2

Now since q1� B and q2� B1/2 (see Lemma 2) it follows that the integral in (6) is negligibly
small if

|m| � HB1/2+ε.

So we can cut the sum over m in (5) at |m| � HB1/2+ε, as the tail makes a negligible
contribution. We now proceed towards a detailed analysis of the integral.

Let

fi(v) = f(ri, v) = rk+1
i vj

∂k+j

∂rki ∂v
j
h(ri, v)

with k, j = 0 or 1, and consider

I(u) =

∫
Rn

f1(Q1(y))f2(r−1
1 Q2(y))U(r−1

1 Q2(y))W (y)e(−u · y) dy.

(If one takes k, j = 0, then one gets I(u) = r1r2Iq1,q2(m).) In the rest of this section we will
prove the following lemma.

Lemma 11. Let W be as in Theorem 1, U as in (4) and let I(u) be as defined above. We have

I(u)� |u|−n/2HnBε.
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Proof. We choose a suitable weight function w : R → R, with vjw(j)(v) �j 1 such that
w(Q1(x)) = 1 for x ∈ Supp(W ). In particular, we can choose w so that w(x) = 1 for x ∈ [−c′, c′]
and w(x) = 0 for x /∈ [−2c′, 2c′] for some c′ > 1 depending only on the support of W and the
form Q1. Let

p1(t) =

∫
w(v)f1(v)e(−tv) dv

and let

p2(t) =

∫
U(v)f2(v)e(−tv) dv.

The Fourier transform p1(t) has been investigated in [Hea96, § 7]. We will recall the relevant
estimates. Since

∂N

∂vN
(w(v)f1(v))�N r−N1 min{1, (r1/|v|)2},

by repeated integration by parts we get

p1(t)� r1(r1|t|)−N

for any N > 0. In particular p1(t)� min{1, |t|−1}. The same bound holds for p2, as we are just
replacing w by a similar function U .

Next using Fourier inversion we get

I(u) =

∫∫
R2

p1(t1)p2(t2)

∫
Rn

W (y)e(t1Q1(y) + t2r
−1
1 Q2(y)− u · y) dy dt1 dt2. (27)

The inner integral over y in (27) is an exponential integral. To estimate it we break the domain
of integration into smaller domains, and in each domain either the integral is negligibly small or
the trivial bound suffices. To this end let

w0(x) =

{
e−1/(1−x2) if |x| 6 1,

0 otherwise,

and define c0 =
∫
w0(x) dx. For any δ ∈ (0, 1] set

wδ(u,v) = c−n0 W (δu + v)
n∏
i=1

w0(ui),

where u = (u1, . . . , un). Then

W (y) = δ−n
∫
Rn

wδ

(
y − z

δ
, z

)
dz.

The function wδ is supported in [−1, 1]n × [−c, c]n for some constant c, and the function

G(y) = wδ(δ
−1(y − z), z)

has Supp(G) ⊂ Supp(W ) for any given z. Substituting and making a change of variables we
arrive at

I(u) 6
∫

[−c,c]n

∫∫
R2

|p1(t1)||p2(t2)|
∣∣∣∣∫

Rn

wδ(y, z)e(F (y)) dy

∣∣∣∣dt1 dt2 dz, (28)

where
F (y) = t1Q1(δy + z) + t2r

−1
1 Q2(δy + z)− u · (δy + z).
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To estimate the exponential integral in (28) we will use the following estimate (see [Hea96,
Lemma 10]). Let v be a compactly supported smooth function on Rn with v(j)�j 1, and let f be
a real valued smooth function on Rn. Suppose we have positive real numbers λ and {A2, A3, . . . }
such that for x ∈ Supp(v) we have |∇f | > λ and |v(j)(x)| 6 Ajλ for j = j1 + · · ·+ jn > 2. Then
we have ∫

v(x)e(f(x)) dx�Ai,N λ−N (29)

for any N > 0.
Now we turn our attention to the exponential integral that appears in (28). Let M(t1, t2)

= t1M1 + t2r
−1
1 M2, and let

τ = τ(t1, t2) = ‖M(t1, t2)‖2 = max
x 6=0

|M(t1, t2)x|
|x|

be the Euclidean norm (or the spectral norm) of the matrix. The partial derivatives of F of order
k > 2 are O(τδ2). If ∇F (0)� τδ2Bε then we have

∇F (y) = ∇F (0) +O(τδ2)� τδ2Bε.

Suppose δ < H−1, then w
(j)
δ (?, z) �j 1 for any given z, and by (29) it follows that the inner

integral in (28) is negligibly small whenever

∇F (0)� max{τδ2, 1}Bε.

Now we consider |u| � H2Bε and pick δ = |u|−1/2. We say that (z, t1, t2) is ‘good’ if

|∇F (0)| = |u|−1/2|t1∇Q1(z) + t2r
−1
1 ∇Q2(z)− u| > cε max{τ/|u|, 1}Bε.

The total contribution of this set is negligibly small.
Now we need to estimate the contribution of the ‘bad’ points. We split into two cases. If

(t1, t2) is such that τ 6 c|u| for a small constant c, then by repeated integration by parts we can
show that the integral is small. So this case can be settled directly. In the remaining case, we
estimate the innermost integral in (28) trivially. We obtain a bound for I(u) by estimating the
size of the ‘bad’ set

B(t1, t2) =

{
z ∈ [−c, c]n : |2M(t1, t2)z− u| < cεB

ε τ√
|u|

}
,

for u 6= 0. If τ(t1, t2) = 0 (or equivalently M(t1, t2) = 0) then the set is empty and we have
meas(B(t1, t2)) = 0. Now consider the case where τ > 0. Suppose z and z + z′ are two points in
B(t1, t2). Then

|M(t1, t2)z′| 6 10cεB
ε τ√
|u|

and it follows that

meas(B(t1, t2)) 6 meas

{
z′ : |M(t1, t2)z′| 6 10cεB

ε τ√
|u|

}
.

Since |M(t1, t2)z′| 6 τ(t1, t2)|z′| the last set is contained in the ball{
z′ : |z′| 6 10cεB

ε 1√
|u|

}
.

1203

https://doi.org/10.1112/S0010437X1400801X Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X1400801X


R. Munshi

Hence we get

meas(B(t1, t2))� Bε|u|−n/2.

For z ∈ B(t1, t2) we use the trivial bound∫
Rn

wδ(y, z)e(F (y)) dy� 1

(which follows from the support of wδ(·, z)) in (28) to get

I(u)� Bε

|u|n/2

∫∫
R2

|p1(t1)||p2(t2)| dt1 dt2.

Next using the bounds for the Fourier transforms pi(t) we get

I(u)� Bε

|u|n/2

∫∫
|t1|�r−1

1 Bε

|t2|�r−1
2 Bε

min{1, |t1|−1}min{1, |t2|−1} dt1 dt2 +B−2013n.

We conclude that I(u) � |u|−n/2Bε if |u| > H2Bε. For smaller values of |u| we use the trivial

bound I(u)� Bε. So it follows that for any u we have

I(u)� |u|−n/2HnBε.

This completes the proof of Lemma 11. 2

As a consequence of Lemma 11 we get the following bounds, which will be used in our

estimation of the error term in the next section.

Lemma 12. We have

Iq1,q2(m)� B3/2+ε

q1q2

(
B|m|
q1q2

)−n/2
Hn (30)

and

∂

∂q2
Iq1,d2q2(m)� B3/2+ε

q1q2
2d2

(
B|m|
q1q2d2

)−n/2
Hn. (31)

Proof. To prove the first statement we take k = j = 0 in the definition of fi. For the second

statement we first make a change of variables to get

Iq1,q2(m) = qn2

∫
Rn

h(r1, q
2
2Q1(y))h(r2, r

−1
1 q2

2Q2(y))U(r−1
1 q2

2Q2(y))W (q2y)e

(
−Bm · y

q1

)
dy.

Differentiating with respect to q2, we see that q1q
2
2∂Iq1,q2(u)/∂q2 can be written as a linear

combination of integrals of the type I(u) (with various choices of the pair (k, j)). Then we just

use the bound from Lemma 11 for each component. 2
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5. The error term

For notational simplicity we will provide details only for n odd (n = 11 being the most interesting
case). So far we have proved (see Lemma 2) that

N?(B) = Bn−3
∑
q1�B

∑
q2�B1/2

1

(q1q2)n

∑
· · ·
∑

|m|�HB1/2+ε

Cq1,q2(m)Iq1,q2(m).

It is expected that the non-zero frequencies contribute to the error term, and accordingly we set

E(B) = Bn−3
∑
q1�B

∑
q2�B1/2

1

(q1q2)n

∑
· · ·
∑

0<|m|�HB1/2+ε

Cq1,q2(m)Iq1,q2(m). (32)

In this section we will prove the following estimate.

Proposition 1. We have
E(B)� H2nB3n/4−3/2+7/32+ε. (33)

Proof. Taking absolute values and using multiplicativity of the character sum we get

E(B) 6 Bn−3
∑
q1�B

1

qn1

∑
· · ·
∑

0<|m|�HB1/2+ε

∑
d2|(q1N(m))∞

|Cq1,d2(m)|
dn2

×
∣∣∣∣ ∑
q2�B1/2/d2

(q2,q1N(m))=1

C1,q2(m)q−n2 Iq1,q2d2(m)

∣∣∣∣
where N(m) is as defined in (14). To the inner sum over q2 we apply partial summation to get∑

q2�B1/2/d2
(q2,q1N(m))=1

C1,q2(m)q−n2 Iq1,q2d2(m) = −
∫ B1/2/d2

1

[ ∑
q26x

(q2,q1N(m))=1

C1,q2(m)

]
∂

∂x

Iq1,d2x(m)

xn
dx.

To the sum over q2 we use the bounds from (15) and (16), and to the derivative we apply the
bounds (30) and (31), to get∑

q2�B1/2/d2
(q2,q1N(m))=1

C1,q2(m)q−n2 Iq1,q2d2(m)� HnB3/2+ε|m|θ1(m)

q1d2

(
q1d2

B|m|

)n/2(B
d2

)θ2(m)

where

θ1(m) =

{
7/16 if (−1)(n−1)/2Q?2(m) 6= 2,

0 otherwise,

(recall that we are assuming that n is odd), and

θ2(m) =

{
0 if (−1)(n−1)/2Q?2(m) 6= 2,

1/4 otherwise.

Moreover from Lemma 4 it follows that∑
d2|N(m)∞

d2�B1/2

|C1,d2(m)|
d
n/2+1
2

� Bε

as 0 6= N(m)� H2B1+ε.
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Hence we get

E(B)� HnBn/2−3/2+ε
∑
· · ·
∑

0<|m|�HB1/2+ε

|m|θ1(m)−n/2
∑∑
q1�B

d2�B1/2

d2|q∞1

|Cq1,d2(m)|
(q1d2)n/2+1

(
B

d2

)θ2(m)

.

The last sum over q1 and d2 is dominated by

∑∑
d1�B

d2�B1/2

d2|d∞1
d1|(d2g(m))∞

|Cd1,d2(m)|
(d1d2)n/2+1

(
B

d2

)θ2(m) ∑
q1�B/d1

(q1,g(m))=1

|Cq1,1(m)|
q
n/2+1
1

,

where we set g(m) = ∆VG(m) if G(m) 6= 0 and g(m) = ∆V gcd(m) if G(m) = 0. Applying
partial summation together with Lemma 8, we arrive at

Bε
∑∑
d1�B

d2�B1/2

d2|d∞1
d1|(d2g(m))∞

|Cd1,d2(m)|
(d1d2)n/2+1

(
B

d2

)θ2(m)(B
d1

)δ(G(m))/2

.

Using Lemmas 7 and 9, we bound the above sum by

Bε
∑∑
d1�B

d2�B1/2

d2|d∞1
d1|d∞2

(rad(d2), Q?2(m))

rad(d2)

(
B

d2

)θ2(m)(B
d1

)δ(G(m))/2

. (34)

We need to consider four distinct situations. Suppose G(m) = Q?2(m) = 0 then the sum boils
down to

B3/4+ε
∑∑
d1�B

d2�B1/2

d2|d∞1
d1|d∞2

1
√
d1d

1/4
2

� B1+ε.

If G(m) = 0 and Q?2(m) 6= 0 then the sum in (34) is bounded by

Bθ2(m)+1/2+ε
∑∑
d1�B

d2�B1/2

d2|d∞1
d1|d∞2

(rad(d2), Q?2(m))

rad(d2)
� Bθ2(m)+1/2+ε � B1+ε.

On the other hand if G(m) 6= 0 and Q?2(m) = 0 then we get

B1/4+ε
∑∑
d1�B

d2�B1/2

d2|d∞1
d1|d∞2

1

d
1/4
2

� B1/4+3/8+ε � B1+ε.
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Finally if G(m)Q?2(m) 6= 0 then the sum in (34) is bounded by

Bθ2(m)+ε
∑∑
d1�B

d2�B1/2

d2|d∞1
d1|d∞2

(rad(d2), Q?2(m))

rad(d2)
� Bθ2(m)+ε.

It follows that

E(B)� HnBn/2−3/2+ε
∑
· · ·
∑

0<|m|�HB1/2+ε

|m|θ1(m)−n/2Bψ(m),

where ψ(m) = 1 if G(m)Q?2(m) = 0 and ψ(m) = θ2(m) otherwise.
First consider the case where Q?2(m)G(m) = 0. The contribution of this part to E(B) is

bounded by

Hn+7/16Bn/2−1/2+7/32+ε
∑
· · ·
∑

0<|m|�HB1/2+ε

Q?
2(m)G(m)=0

|m|−n/2,

which is dominated by

Hn+7/16Bn/2−1/2+7/32+ε max
1/2<M�HB1/2+ε

M−n/2
∑
· · ·
∑

0<|m|�M
Q?

2(m)G(m)=0

1� H2nB3n/4−3/2+7/32+ε.

(To estimate the last sum we use [BM13, Equation (7.1)].) We are little wasteful in the matter of
the power of H, but this is of little consequence. Next consider the case where Q?2(m)G(m) 6= 0,
but (−1)(n−1)/2Q?2(m) = 2. The contribution of this part to E(B) is dominated by

HnBn/2−5/4+ε
∑
· · ·
∑

0<|m|�HB1/2+ε

(−1)(n−1)/2Q?
2(m)=2

|m|−n/2,

which is dominated by (see [BM13, Equation (7.2)])

H2nB3n/4−7/4+ε.

Finally the contribution of the generic case, where G(m) 6= 0 and (−1)(n−1)/2Q?2(m) 6= 2, to
E(B) is dominated by

Hn+7/16Bn/2−1/2+7/32+ε
∑
· · ·
∑

0<|m|�HB1/2+ε

|m|−n/2 � H2nB3n/4−3/2+7/32+ε.

This completes the proof of the proposition. 2

6. The main term

In this section we will compute the contribution of the zero frequency which is given by

M(B) = Bn−3
∑
q1�B

∑
q2�B1/2

1

(q1q2)n
Cq1,q2(0)Iq1,q2(0).
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First we note that from Lemmas 4, 7 and 9, it follows that Cq1,q2(0) � (q1q2)n/2+1+ε. Also a
trivial estimation yields Iq1,q2(0)� B3/2(q1q2)−1. Consequently we get

Bn−3
∑
q1�B

∑
q2>B1/2−1/4n

1

(q1q2)n
Cq1,q2(0)Iq1,q2(0)� B3n/4−3/2+1/8+ε.

For q2 < B1/2−1/4n it follows from (26) that

h

(
q2√
B
,
BQ2(y)

q1

)
is negligibly small if B|Q2(y)|q−1

1 > 1/2. Consequently we get

Iq1,q2(0) = Ĩq1,q2(0) +O(B−2013)

if q2 < B1/2−1/4n, where

Ĩq1,q2(0) =

∫
Rn

h

(
q1

B
,Q1(y)

)
h

(
q2√
B
,
BQ2(y)

q1

)
W (y) dy. (35)

This is precisely the point where, using the properties of the h function, we are able to remove
the extra weight U that was introduced in § 2. Hence we get

M(B) = Bn−3
∑
q1�B

∑
q2<B1/2−1/4n

1

(q1q2)n
Cq1,q2(0)Ĩq1,q2(0) +O(B3n/4−3/2+1/8+ε).

Using the above estimate for the character sum, and the bound Ĩq1,q2(0)� B3/2(q1q2)−1, we can
now complete the sums over q1 and q2 without worsening the error term.

Lemma 13. We have
M(B) = M?(B) +O(B3n/4−3/2+1/8+ε)

where

M?(B) = Bn−3
∞∑
q1=1

∞∑
q2=1

1

(q1q2)n
Cq1,q2(0)Ĩq1,q2(0)

with Ĩq1,q2 as given in (35).

Next consider the double Dirichlet series

D(s1, s2) =
∞∑
q1=1

∞∑
q2=1

Cq1,q2(0)

qs11 q
s2
2

. (36)

This is given by an Euler product where the factor corresponding to the prime p is given by

Dp(s1, s2) =

∞∑
r=0

∞∑
`=0

Cpr,p`(0)

prs1+`s2
.

The following lemma follows from the bound Cq1,q2(0)� (q1q2)n/2+1+ε we noted above.

Lemma 14. The Dirichlet series D(s1, s2), as defined in (36), converges absolutely in the domain

σ1 > n/2 + 2 + ε and σ2 > n/2 + 2 + ε.

Moreover in this region we have D(s1, s2)� 1.
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Theorem 1 will follow from Proposition 1 and the following asymptotic, which will be proved
in the rest of this section.

Proposition 2. Suppose n > 6 and H > 1, then we have

M(B) = Bn−4D(n− 1, n)J0(W ) +O(H2Bn−5+ε +HB3n/4−3/2+1/8+ε), (37)

where J0(W ) is as defined in (42).

Proof. Let W : Rn → R be as in Theorem 1. We want to analyze the integral

W (s1, s2) =

∫
Rn

|Q1(y)|s1−1|Q2(y)|s2−1W (y) dy, (38)

which we consider as a function of two complex variables. A priori, the integral is defined in
the tube domain σ1 > 1 and σ2 > 1, where it is a holomorphic function in two variables. Now
we will show that the function has a meromorphic extension to C2. Recall that V ? denotes the
singular locus, which is the union of the eigenspaces of M−1

2 M1. Since we are assuming that
V ? ∩ Supp(W ) = ∅, for every z ∈ Supp(W ) the matrix

(M1zM2z)

is of rank two. For any 1 6 i < j 6 n we define yi,j to be the vector which is obtained from y
by deleting the ith and the jth entry. Let

φi,j : Rn 7→ Rn, φi,j(y) = (Q1(y), Q2(y),yi,j), (39)

and let Jφi,j be the associated Jacobian. Consider the map

y 7→ (Jφi,j (y))16i<j6n.

This map takes the set Supp(W ) to a compact set which does not contain 0. Consequently there
is a θ > 0, depending only on W , such that

max
i,j
|Jφi,j (y)| > θ

for all y ∈ Supp(W ). So it follows that we have a collection of smooth functions

{W ξ
i,j(y) : 1 6 i < j 6 n, ξ ∈ Ξ(i, j)}

(with some collection of indexing sets Ξ(i, j)) such that Supp(W ξ
i,j) is connected and for any y

in this set we have |Jφi,j (y)| > θ/2, and

W (y) =
∑∑
16i<j6n

∑
ξ∈Ξ(i,j)

W ξ
i,j(y).

In particular in Supp(W ξ
i,j) the map φi,j is one-to-one. Let ψξi,j be its inverse and let Jξi,j be the

Jacobian of this map. By the smooth version of the inverse function theorem we have that ψξi,j
is smooth.

We have
W (s1, s2) =

∑∑
16i<j6n

∑
ξ∈Ξ(i,j)

W ξ
i,j(s1, s2)
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where

W ξ
i,j(s1, s2) =

∫
Rn

|Q1(y)|s1−1|Q2(y)|s2−1W ξ
i,j(y) dy

=

∫
R2

|u1|s1−1|u2|s2−1Wξ
i,j(u1, u2) du

and

Wξ
i,j(u1, u2) =

∫
Rn−2

W ξ
i,j(ψ

ξ
i,j(u1, u2,yi,j))|Jξi,j(u1, u2,yi,j)| dyi,j

=

∫
Rn−2

W ξ
i,j(ψ

ξ
i,j(u1, u2,yi,j))|Jφi,j (ψ

ξ
i,j(u1, u2,yi,j))|−1 dyi,j . (40)

Since the Jacobian Jφi,j is bounded away from zero in the support of W ξ
i,j and ψξi,j is smooth, it

follows that Wξ
i,j(u1, u2) is smooth. Furthermore

∂m1+m2

∂um1
1 ∂um2

2

Wξ
i,j(u1, u2)� Hm1+m2 .

Using integration by parts we can now analytically continue W (s1, s2) to the whole of C2.
Next we want to compute the double residue

Res
s1=0
s2=0

W (s1, s2).

There is a box [−θ, θ]2 where we have the Taylor expansion

Wξ
i,j(u1, u2) =Wξ

i,j(0, 0) + u1
∂

∂u1
Wξ
i,j(0, 0) + u2

∂

∂u2
Wξ
i,j(0, 0) + · · · .

Now splitting the integral as

W ξ
i,j(s1, s2) =

∫
[−θ,θ]2

+

∫
R2\[−θ,θ]2

|u1|s1−1|u2|s2−1Wξ
i,j(u1, u2) du,

we see that the double residue of the second integral vanishes, and using the Taylor expansion
we find that the double residue of the first integral is 4Wξ

i,j(0, 0). Hence

Res
s1=0
s2=0

W ξ
i,j(s1, s2) = 4Wξ

i,j(0, 0). (41)

Also we have

Wξ
i,j(0, 0) = lim lim

ε1,ε2→0

1

4ε1ε2

∫
|u1|<ε1
|u2|<ε2

Wξ
i,j(u1, u2) du

= lim lim
ε1,ε2→0

1

4ε1ε2

∫
|Q1(y)|<ε1
|Q2(y)|<ε2

W ξ
i,j(y) dy.

Summing over ξ and i, j, we get

Res
s1=0
s2=0

W (s1, s2) = 4
∑∑
16i<j6n

∑
ξ∈Ξ(i,j)

Wξ
i,j(0, 0)

= 4 lim lim
ε1,ε2→0

1

4ε1ε2

∫
|Q1(y)|<ε1
|Q2(y)|<ε2

W (y) dy.

One may compare this with Heath-Brown’s computation of the singular integral in [Hea96].
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Lemma 15. The function W (s1, s2) has a meromorphic continuation to all of C2 with possible
polar divisors at s1, s2 = 0,−1, . . . . Moreover we have

W (s1, s2)� Hm1+m2

‖s1‖m1‖s2‖m2
,

where ‖si‖ = min{|si − n| : n = 0,−1, . . . } and mi > max{0, 1− σi}. Also

J0(W ) = Res
s1=0
s2=0

W (s1, s2)

4
= lim lim

ε1,ε2→0

1

4ε1ε2

∫
|Q1(y)|<ε1
|Q2(y)|<ε2

W (y) dy. (42)

We will now analyze the integral Ĩq1,q2(0) using the Mellin transform. We start by looking
at the Mellin transform of h(x, y) for any given y 6= 0. Using the definition (23) we get∫ ∞

0
h(x, y)xs−1 dx = ζ(s)[w̃(s− 1)− |y|s−1w̃(1− s)]

for σ > 1, where w̃ is the Mellin transform of w. The right-hand side, which we denote by H(s, y),
extends to an entire function and is of rapid decay in any vertical strip.

Applying Mellin inversion we get

Ĩq1,q2(0) =
1

(2πi)2

∫∫
(σi)

(
B

q1

)s1(√B
q2

)s2 ∫
Rn

H(s1, Q1(y))H

(
s2,

BQ2(y)

q1

)
W (y) dy ds,

where for the convergence of the last integral we need to take σ1, σ2 > 1. (Note that the set
Qi(y) = 0 has measure zero.) Using the above explicit expression for the Mellin transform we
get

Ĩq1,q2(0) =
∑∑
δ1,δ2=0,1

(−1)δ1+δ2Iδ1,δ2q1,q2 ,

where

Iδ1,δ2q1,q2 =
1

(2πi)2

∫∫
(σi)

(
B

q1

)s1+δ2(s2−1)(√B
q2

)s2
ζ(s1)ζ(s2)

× w̃((−1)δ1(s1 − 1))w̃((−1)δ2(s2 − 1))W (sδ11 , s
δ2
2 ) ds.

Accordingly we get

M?(B) =
∑∑
δ1,δ2=0,1

(−1)δ1+δ2M δ1,δ2(B),

where

M δ1,δ2(B) =
Bn−3

(2πi)2

∫∫
(σi)

Bs1+s2/2+δ2(s2−1)ζ(s1)ζ(s2)D(n+ s1 + δ2(s2 − 1), n+ s2)

× w̃((−1)δ1(s1 − 1))w̃((−1)δ2(s2 − 1))W (sδ11 , s
δ2
2 ) ds.

Here σ1, σ2 = 1 + ε. Now we want to move the contours to the left. The residues at the poles of
the zeta functions cancel pairwise. So we can first move to σ1, σ2 = ε. For the terms with δ2 = 0,
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we can shift the contour (σ2) further to the left, up to σ2 = −n/2+2+ε. Then using the bounds
from Lemmas 14 and 15 we get

M δ1,0(B)� HB3n/4−2+ε.

For the term with (δ1, δ2) = (0, 1), we can shift the contour (σ1) to σ1 = −n/2 + 3 + ε. Using
the bounds from Lemmas 14 and 15 we get

M0,1(B)� HBn/2−1+ε.

This is dominated by the previous bound as n > 4. We conclude that

M?(B) = M1,1(B) +O(HB3n/4−2+ε).

We move σ1 to −1+ε, collecting the residue at the polar divisor s1 = 0, and using the bounds
from Lemmas 14 and 15 we obtain

M1,1(B) =
−1

4πi

∫
(σ2)

Bn+3s2/2−4ζ(s2)D(n+ s2 − 1, n+ s2)

× w̃(1− s2) Res
s1=0

W (s1, s2) ds +O(H2Bn−5+ε),

as ζ(0) = −1/2 and w̃(1) = 1. Next we shift σ2 to −1 + ε, passing through a pole at s2 = 0, and
obtain

M1,1(B) =
1

4
Bn−4D(n− 1, n) Res

s1=0
s2=0

W (s1, s2) +O(H2Bn−5+ε).

This completes the proof of Proposition 2. 2

7. Sharp cuts

In this section we will prove Theorem 2. Recall that P =
∏n
i=1[ci, di] is a box in Rn, which does

not intersect the singular locus. We can slightly thicken the box P, say by a parameter δ = 1/H,
to get P ′ so that the condition on the support still holds. Now there is a non-negative smooth
function W supported in P ′, such that W (y) = 1 for y ∈ P, and such that W (j) � Hj . We
can also find a smooth function V supported in P such that V (x) = 1 for any x ∈ P which is
a distance of 1/H away from the set P ′ − P. We may also have such a V with 0 6 V 6 1 and
V (j) � Hj .

Let U = W − V , which is a non-negative smooth function with

Supp(U) ⊂
∏

16i6n

{[ci −H−1, ci +H−1] ∪ [di −H−1, di +H−1]}.

Then we have∑
· · ·
∑

m∈BP
Q1(m)=Q2(m)=0

1 =
∑
· · ·
∑

Q1(m)=Q2(m)=0

W

(
m

B

)
+O

( ∑
· · ·
∑

Q1(m)=Q2(m)=0

U

(
m

B

))
.

Applying Theorem 1 to both the main term and the error term we get

SJ0(W )Bn−4 +O(J0(U)Bn−4 +H2Bn−5+ε +H2nB3n/4−41/32+ε).
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We will obtain an upper bound for J0(U). We return to the expression (40), where U now takes
the place of W . Since

Supp(U ξi,j) ⊂ Supp(U),

from (40) we deduce that

Uξ1,2(0, 0)�
∫
· · ·
∫

∏
36i6n{[ci−H−1,ci+H−1]∪[di−H−1,di+H−1]}

y1,2 � H−n+2.

The same bound holds for all Uξi,j(0, 0), and consequently we have

J0(U)� H−n+2.

We conclude that∑
· · ·
∑

m∈BP
Q1(m)=Q2(m)=0

1 = SJ0(W )Bn−4 +O(H−n+2Bn−4 +H2Bn−5+ε +H2nB3n/4−41/32+ε).

The error term is satisfactory, of the size O(Bn−4−δ) for some positive δ, if we pick H = B1/100n

and n > 11.
In the main term the singular integral J0(W ) depends on W . But from (42) we get

J0(W ) = lim lim
ε1,ε2→0

1

4ε1ε2

∫
|Q1(y)|<ε1
|Q2(y)|<ε2

W (y) dy

= lim lim
ε1,ε2→0

1

4ε1ε2

∫
|Q1(y)|<ε1
|Q2(y)|<ε2

y∈P

dy + lim lim
ε1,ε2→0

1

4ε1ε2

∫
|Q1(y)|<ε1
|Q2(y)|<ε2

y/∈P

dy.

The first integral is just J0(P), the singular integral for the indicator function of the box P, and
the second integral is dominated by

lim lim
ε1,ε2→0

1

4ε1ε2

∫
|Q1(y)|<ε1
|Q2(y)|<ε2

U(y) dy = J0(U)� H−n+2.

So it follows that
J0(W ) = J0(P) +O(H−n+2).

This completes the proof of Theorem 2.
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