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Regge poles and high energy scattering 

6.1 Introduction 

Having identified, in the previous chapter, some of the leading Regge 
trajectories from the resonance spectrum, we next want to look more 
closely at the other main aspect of Regge theory, the way in which 
Regge poles in the crossed t channel control the high energy behaviour 
of scattering amplitudes in the direct 8 channel. 

For spinless-particle scattering this presents few problems; we 
would simply use the expression (2.8.10) in the region where tis small 
and negative, and 8 is large. However, for real experiments with 
spinning particles it is a bit more difficult because, as we shall find in 
the next section, the t-channel helicity amplitudes contain various 
kinematical factors, and are subject to various constraints, which 
must also be incorporated in the Regge residues. Also we shall need 
to look closely at the behaviour of the residue function when a trajec
tory passes through the nonsense points discussed in section 4.5. 
Only when we have clarified these kinematical requirements can we 
write down correct expressions for the Regge pole contribution to 
a scattering amplitude based on (4.6.15). 

In exploring these kinematical problems we shall discover that 
some of the difficulties at t = 0 may imply the occurrence of additional 
trajectories called 'daughters' and 'conspirators', and we shall 
briefly review the application of group theoretical techniques to such 
problems. Also we examine the way in which the internal SU(2) and 
SU(3) symmetries constrain Regge pole exchange models. 

We are thus led to (6.8.1) below for the parameterization of a 
Reggeon exchange amplitude, and in the extended final section of 
this chapter we discuss the comparison of this expression with the 
experimental data on high energy scattering processes. A reader who 
is mainly interested in the phenomenology could start at section 6.8 
and refer back as necessary. 

[ 153] 
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154 REGGE POLES AND HIGH ENERGY SCATTERING 

6.2 Kinematical singularities of Regge residues* 

We noted in section 4.1 that though helicity amplitudes have many 
advantages for Regge theory they suffer from the defect that they are 
not generally free of kinematical singularities. Since the residue of 
at-channel Regge pole is given by (see (4.6.1) and cf. (3.2.16)) 

fJH(t) = 2~if dJ A'kJ(t) (6.2.1) 

the integration contour being taken round the pole at J = a(t), it is 
clear from our discussion in section 3.2 that fJ H(t) will inherit the 
singularities of A'Ju(t), i.e. the kinematical singularities as well as the 
dynamical right-hand cut beginning at the t-channel threshold. But 
it will not, of course, contain the pole, nor, in view of the argument of 
section 3.2, the left-hand cut of A}u(t). 

Various methods have been devised for obtaining the kinematical 
singularities. One way is to make use of the relationship between 
helicity amplitudes and the invariant amplitudes of (4.1.3) which are 
free of kinematical singularities (Cohen-Tannoudji, Salin and Morel 
1968), but this becomes difficult for high spins. Another technique, 
devised by Hara (1964), and worked out fully by Wang (1966), makes 
use of the fact that the only kinematical t-singularities of an 8-channel 
helicity amplitude occur in the half-angle factors (4.4.12). And in 
view of the crossing relation (4.3.7) it is evident that the only kine
matical singularities in t of the t-channel helicity amplitudes are either 
those of the 8-channel amplitudes, or singularities which are present 
in the crossing matrix ( 4. 3.4), which is known. A very complete account 
of this method is given in Martin and Spearman (1970, chapter 6). 

But with both methods the physical reasons for the occurrence of the 
kinematical factors are rather obscure, and instead we shall employ 
a less rigorous method based on Jackson and Rite (1968) which makes 
the physics clearer. 

The 8-singularities of a t-channel helicity amplitude stem entirely 
from the half-angle factors of (4.4.16), and their occurrence is readily 
explained by the fact that angular-momentum conservation in the 
forward and backward directions requires the vanishing of helicity
flip amplitudes (see section 4.4). Similarly we shall find that the 
t kinematical factors, which for the processes 1 + 3-+ 2 + 4 may occur 
at the thresholds t = (m1 +m3 ) 2 and t = (m2 +m4 ) 2, pseudo-thresholds 

* This section may be omitted at first reading. 
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t = (m1 -ma)2 and t = (m2 -m4) 2, or at t = 0, also have a simple 
physical explanation. We begin by assuming that m1 > ma and 
m2 > m4, but will consider equal masses, for which the pseudo
threshold moves tot= 0, later. 

We have found both in non-relativistic potential scattering, in 
(3.3.24), and for spinless particle scattering, in (2.6.8), that at the 
threshold t = (m1 + ma)2 the partial-wave amplitude has the behaviour 

(6.2.2) 

in the notation of (2.6.6), due to the opening of the partial-wave phase 
space. Since scattering near threshold is non-relativistic we may expect 
that even for particles which have spin the threshold behaviour will 
similarly be 

(6.2.3) 

where Lis the lowest value of l that can occur for the given J. This 
will generally be L = J- cr1 - era (i.e. av aa and l all parallel) unless 
this value of l has the wrong parity, in which case L = J- ( cr 1 + cr a) + 1. 

This may be incorporated in the expression 

L = J -cr1 -cra+H1-rJP1 Pa( -1)<Tl+O'a-v]} 

= J- Yi3 (say) 
(6.2.4) 

where P1, P3 ( = ± 1) are the intrinsic parities of the particles, and vis 
defined in (4.5.6). 

We found in section 2.6 that the behaviour {6.2.2) is guaranteed for 
spinless particle scattering by the Froissart-Gribov projection (2.6.2) 
(where it converges). However, in (4.5.7) e'{J...(zt)"' (Ti3V+l (from 
(1.7.19) and (B.25)), su·(Zt)"' (Tis)-M (from (B.11)) where 

M = max{Ji\J, Ji\'J}, and dzt"' ds(Tis)-1 

giving instead 
{6.2.5) 

So the only way in which (6.2.3) can be obtained from ( 4.5. 7) is if the 
extra factors are already present as kinematical factors in AH1(s,t), 
and hence in ~H(s, t) etc. So we must have 

A H 1(s, t) "' (Tis)M-Y 1a+ as t-+ (m1 + ma) (6.2.6) 

A similar result holds at the 24 threshold. But the pseudo-threshold 
corresponds to the threshold for a process in which the lighter particle 
(say ma) has the rest energy E = - m3 . Such negative energy states (or 
'holes') correspond to anti-particles, and for fermions (but not bosons) 
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the anti-particle has the opposite parity to its particle, so we must 
replace P 3 by P3 ( -1}2us. So we end up with the threshold behaviour 

A n 1(s, t) oc (TJt)M-Y 13+ (Ti3)M-Y 1s- (T:M)M-Y u+ (T:M)M-Y 24-

(6.2.7) 
where 

for mi > m1. Of course if, say, m1 = m3 , the pseudo-threshold moves 
tot = 0, while if m3 = m4 also both pseudo-thresholds will be at t = 0. 
These cases will be considered below. So after the partial-wave pro
jection (4.5.7) has been performed, because of (6.2.5) we find 

A1u(t) oc KAA'(t)(qt1aqt24v-M (6.2.8) 

where Ku-(t) is the kinematical factor defined in table 6.1 on p. 160, 
and so from (6.2.1) (q q )

a(t)-M 

fJ n(t) = KAA'(t) n;o t24 7J n(t) (6.2.9} 

where 7Jn(t) is free of kinematical singularities at the thresholds and 
pseudo-thresholds (but not necessarily at t = 0). We have introduced 
an arbitrary scale factor s0, with the same units as t, so that the units 
in which lln is measured will not vary with a(t). It will be discussed 
further in section 6.8a. 

There is an additional problem at the thresholds, however, that in 
general the various helicity amplitudes for a given process are not all 
independent (see Jackson and Rite 1968, Trueman 1968). This is 
because at threshold, in view of (6.2.2), only the l = 0 state survives, 
and, to keep l = 0, J is restricted to the range 10"1 - 0"31 ::::; J::::; 0"1 + 0"3 , 

so only these values of J appear in the partial-wave series (4.4.14). So 
if we define s = a1 + a3 and expand our partial-wave helicity states 
IJ, it; itv i\.3) (it = i\.1 - i\.3) in terms ofl- s states IJ, it; l, s), at threshold 
we find, since l = 0, s = J, 

IJ, it; itv i\.3) = NJ (O"v Av 0"3 , it3 l J, it) IJ, it; 0, J) (6.2.10) 

where NJ is a normalization factor and (O"v i\.1 , 0"3 , it3 IJ, it) is the 
Clebsch-Gordan coefficient. So at threshold a partial-wave helicity 
amplitude can be written in the form 

(6.2.11) 

where aA2A/J, t) is independent of i\.1 and i\.3. So on summing over 
J, 10"1 - 0"31 ::::; J ::::; 0"1 + 0"3 , the various An1(s, t) with the same values 
of i\.2, i\.4 but different i\.1, i\.3, are all related at the 13 threshold by 
a sum over the Clebsch-Gordan coefficients appearing in (6.2.11). 
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This is best illustrated by an example. Thus if we consider elastic 
1tN scattering for which the t-channel process is 1t1t-+ NN we find that 
at the NN threshold, t = 4m~, the relation between the amplitudes 
of (4.3.11) reads 

(6.2.12) 

the factor (- i) coming from the half-angle factor (see (6.2.15) below). 
Then if we take out all the kinematical factors we have (cf. (4.3.11)) 

A++(8,t) = A++(8,t) (t-4m~)-! } 

A+_(8, t) = .1+_(8, t) t!(t- 4m;)! (1-z~)! (6.2"13) 

where the A's are free of kinematical singularities in both 8 and t. If 
we express each of these amplitudes in terms of a single Regge pole 
a(t), we have (from (6.8.1) below) 

A++(8,t) = r~(t> (t-4m~>-! (tr(t) ) 
( 

8 ) a(t)-1 
A+_(8,t) = y2(t)t!(t-4m;)!(1-zn! So 

(6.2.14) 

(6.2.15) 

where the y's are kinematical-singularity-free residues. The relation 
(6.2.12) then becomes 

y1(4m~) = 2mNy2(4m~) (6.2.16) 

and we can always ensure that this will be satisfied by writing 

2mNYz(t) = Yt(t) + Ya(t) (4~!~ t) (6.2.17) 

where now y1(t) and y3(t) are free of constraints as well as singularities. 
Putting (6.2.14) and (6.2.15) in (4.3.12) gives 

~~ = 641r~q~12 4~~ (t) za<t> { YW)- 4~~ [ 2yt (t) Ya(t) + y~(t) ( 1- 4~~)]}. 
(6.2.18} 

This expression has no singularity at t = 4m~, but had we used (6.2.14) 
and (6.2.15) directly, ignoring the constraint (6.2.16), there would have 
been a spurious pole at this point. 

This is a rather cumbersome procedure, and it is therefore fortunate 
that usually the thresholds are sufficiently far from the 8-channel 
physical region (t < 0) for it not to matter much in practice if we 
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ignore the constraint. It is only really important in cases like 1tN -+1tA 
where the pseudo-threshold at t = (m6 -mN)2 is not so far from t = 0. 

We must next consider the point t = 0. If the masses are unequal, 
i.e. m1 =!= m3, m2 =!= m4, then from (1.7.19) 

Zt~e = ± 1 for (m1-m3) (m2-m4):;: 0 
t-> <:1) 

So the half-angle factor (4.4.12) has the behaviour 

;,u..(zt) ...., t!IA.-eA.'I 
t-->0 

and so from (4.4.16) A (8 t) ...., t-!IA.-eA.'I 
Ht • 

(6.2.19) 

(6.2.20) 

(6.2.21) 

Hence the definite parity amplitudes (4.6.10) have the behaviour 

A" (8 t) ...., t-!IA.-eA.'I a (8 t) + '11t-!IA+eA.'I a (8 t) H 1 , 1 , - ., 2 • (6.2.22) 

where a1 and a2 are regular at t = 0. So Ak1 has a singularity of the 
form 

A a" a" 
A ke(8, t) "' t! max {IA+A.'I,IA.-A.'Il = t!W+N) (6.2.23) 

where a" is one of av a2 and M, N are defined in (4.4.15), (4.5.11). But 
a Regge pole, which has a definite parity, cannot have such a singular 
behaviour as this, because if it did we would find 

An (8, t) = ;,u..(zt) A H1(8, t) ...., t!IA.-eA.'I i(a'lt-l<M+Nl + 'fja-'1 t-!W+Nl) 
t t-->0 

(6.2.24) 

(where -'fj = (-1)'1]) which is singular unless a'l = ±na-'1, except 
when A. = A' = 0. This equality of a" and a-'1 in fact follows directly 
from (6.2.22), (6.2.23), but obviously it cannot be satisfied by a Regge 
pole with a definite parity. So instead of (6.2.23) we must choose 
the less singular behaviour 

A a" a" 
Alz-t(8, t) ...., t!min IIA+A.'J,IA.-A.'I} = tlW-Nl (6.2.25) 

i.e. we multiply (6.2.23) by tN. (However, for channels with odd 
Fermion number N is a half-integer, so this would introduce a spurious 
square-root branch point- see section 6.5 for this case.) 

To obtain the t = 0 behaviour of the residue from (6.2.25) we note 
that (6.2.9) has a singularity of the form t-<a<tl-Ml from (1.7.15). The 
t-a will cancel with the corresponding singularity in the asymptotic 
behaviour of the rotation function in (4.6.4), 

(6.2.26} 
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from (B.25), but the tM remains, so we end up with 

(q q )
a(t)-M 

fln(t) = t-i<M+N>Ku· (t) n:ot24 Yn(t) (6.2.27) 

where Yn(t) is free of kinematical singularities. Unfortunately this will 
not do either, because its behaviour for t-+0, fln(t) ""'ti<M-NJ-a, is not 
factorizable between the initial and final states. We must be able to 
write (6.2.28) 

which is possible only if we change the t = 0 behaviour to ti<M+NJ-a, 
so we finally obtain (q q )

a(t)-M 
fln(t) = t-i<M-N>Ku:(t) n;o t24 Yn(t) (6.2.29) 

where the Yn(t) are free of kinematical singularities, but may have to 
satisfy threshold constraints like (6.2.16). 

If one pair of masses is equal, say m1 = m3, then Zt""' ti, while if 
m2 = m4 also then Zt is finite at t = 0, and in both cases the pseudo
thresholds move tot = 0. The minimum kinematical behaviour can be 
deduced by repeating the above argument. It is also necessary to 
ensure factorization like (6.2.28) for amplitudes which have equal 
masses in one state but not the other, and we find 

(q q )
a(t)-M 

fJ n(t) = t6 Ku· (t) n;o t24 y n(t) 

(q q )
a(t)-M = Ku· (t) n;o t24 Yn(t) (6.2.30) 

where Ku.(t) is given in table 6.1 (for evasion- see section 6.5). 
When (6.2.30) is substituted in (4.6.4) and we use the asymptotic 

form (B.25), (6.2.26), for the rotation function, the Regge pole con
tribution to a scattering amplitude becomes 

AJl/s, t) = -161T( -1)A K,u:(t) Yn(t) (e-i1ra +9') 

{ 1 (2a)!(2a+1) } 
x 2sin1T(a-v) [(a+M)! (a-M)! (a+N)! (a-N)!]! 

(
S _ u)a(t)-M 

x 8so g..l..dzt) 

(where A is defined in (B.10)) after some use of the relation 

1T 

(-a)!= sin?Ta(a-1)! 

(6.2.31) 

(6.2.32) 

The same result is obtained from (4.6.2) using (B.12) for Re{a} > - !· 
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Table 6.1 Kinematical factors for at-channel helicity amplitude 

The factors introduced in (6.2.9) and (6.2.30) are: 

K,u:(t) = t6l(u:(t) 

K;\;\'(t) =: (Ti's)M-Yu + (TiS)M-Yu- (Tzt&)M-Yu + (T,U)M-Yu-
where 

M::: max {lA!. !A'!}. N::: min{IAI.!"-'1}, A::: A1 -A8, A'::: A1 -A, 
Tt}::: [t-(m,±m1)•]l 

Yfj::: u1+u1-t[1-?JP1P 1(-1)0'1:!:0'J-w] 

v = 0/l for evenlodd fermion number 

Evasion 

UU 8 = -t(M -N) 
EU 8= ·UIA'I-MJ+H1-?J(-1)A] 
EE 8=![1-?J(-1)A]+![1-?J(-1)A'] 

Conspiracy of Toller number A (see (6.5.10)) 

uu 8 = t{IA-MI + IA-N!}-M 
EU 8 = t{IA-1"-'11 -M}+1{1-?J1j'( -1)A+e(A-2u1)} 

EE 8 = }{2 + 1J1j'(- 1)A + 1J1j'( -1);\' + e(A- 2u1) + e(A- 2u3)} 

where 1j = ( -1)A+l or ( -1) 80'+1 for 2u;; A 

e(A-2u) = A-2u for A -2u ;;iio 0 

= 0 for A-2u :!E; 0 

U ::: unequal-mass vertex, E ::: equal-mass vertex. For EU we take m1 = m3, 

m1 :j: m, so that A::: A1 -A3 is the helicity change at the equal-mass end. In 
this section we have discussed the evasive case- see section 6.5 for conspiracies. 

6.3 Nonsense factors 
Equation ( 6.2.31) is still not satisfactory, however, because the various 
factorials which appear would introduce singularities at the nonsense 
values of a (see section 4.5) which cannot be present in the scattering 
amplitude. So 'Yn(t) must contain suitable factors to cancel them. 

Since (Magnus and Oberhettinger 1949, p. 1) 

1 _ 22«+1(a)!(a+!)! 
(2a).- 111(2a+ 1) (6.3.1) 

we can re-express the factor in braces { } in (6.2.31) in the form 
- 22«+1 (a)!(a+!)! 1 
fn(a) = 1Tl [(a+M)! (a-M)! (a+N)! (a-N)!]! sin11(a-v) 

(6.3.2) 

Now (a+!)! has simple poles at a= - !. -f, ... ,while a! has poles 
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at a= -1, -2, .... But one of these sets of singularities will be can
celled by the denominator, depending on whether M, N are integers 
of half-integers (i.e. on whether the channel has even or odd fermion 
number). So we require that YH(t) ,.., [(a+-!- v) !]-1 to cancel the 
others (vis defined in (4.5.6)). In fact such a behaviour of the residue 
is guaranteed by the Froissart-Gribov projection (4.5.7) because of 
(B.24). 

The remainder has the form 
(a+v)! 

[(a+M)! (a-M)! (a+N)! (a-N)!]hin11(a-v) 
(6.3.3) 

which when a~J0, where J0 - vis an integer, has the behaviour 

(a-J0)-1 for J0 ~ M and v > J0 > -N 

(a-J0)-l for M > J0 ~ N and -N > J0 ~ -M 

Finite for N > J0 ~ v and J0 < -M 

We remember that only the points J0 ~ M make any physical sense, 
i.e. are sense-sense (ss) points in the terminology of section 4.5, and so 
the poles in this region correspond to physical particles. (Note that they 
are cancelled for alternate J0 by the signature factor.) At the sense
nonsense (sn) points (6.3.3) behaves like (a-J0)-l(a+J0 +1)-l, but 
these branch points (which since a is a function oft give branch points 
in t) cannot be present in the scattering amplitude, so either 

YH(t),.., (a-J0)-l (a+J0 + 1)-l or YH(t),.., (a-J0)l (a+J0 + 1)1. 

The Froissart-Gribov projection (4.5.7) gives the former behaviour, 
but, as discussed in section 4.8, we expect that SCR will hold, in 
which case the latter behaviour will occur (except perhaps at wrong
signature points where Gribov-Pomeranchuk fixed poles may be 
expected). Now factorization of the form (6.2.8) requires that 

fJBBfinn = (fisn)2 OC (a-Jo) (a+Jo+ 1) (6.3.4) 

where sand n are sense and nonsense values of i\, i\' for the given J0• So 
since the ss residue is expected to be finite to give the physical pole 
there must be a vanishing of the nn residue. If this behaviour holds 
at every nonsense point we have 

_ (t)"" ((a+M)! (a+N)!)l ( ) 
YH (a-M)! (a-N)! 6.3.5 

Combining this with the previous requirements we can write 

_ 2M-1 1 ((a+M)! (a+N)!)l 
YH(t) = YA(t)y;v(t)?Tf" (a+-!-v)! (a-M)!(a-N)! (6.3.6) 
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where 'YA(t) 'Y.t·(t) is a factorized residue free of any special requirements 
at the nonsense points; and in (6.2.31) this gives 

AJ}1(s,t) = -167T( -1)AK,w(t)yA(t)yA.(t) 

X (e-itr(a-v)+9')jk(a) e~;r-M gAA' (zt) (6.3.7) 

where f a ( ) _ (a+v)! 1 
H a =(a-M)! (a-N)! 2sin7T(a-v) 

(6.3.8) 

(where s =sense-choosing; see below). 
At right-signature points, where the signature factor is finite, 

(6.3.7) has the behaviour 

(i) (a-J0)-1 for J0 ~ M 

(ii) Finite for M > J0 ~ N and J0 < 0 

(iii) (a-J0) for N > J0 ~ v 

At wrong-signature points the signature factor behaves like i(a-J0) 

giving a finite behaviour for (i), zero for (ii) and double zero for (iii). 
However, there are various further considerations which may cause 

us tomodifytheseconclusionsfor o-T ~ J0 (o-T = max {o-1 + o-3, o-2 + o-4}). 

a. Ghost-killing factors 

If the trajectory passes through a right-signature point fort< 0 the 
ss residue must vanish, otherwise there would be a 'ghost' particle of 
negative m2, i.e. a 'tachyon'. Since the Froissart bound restricts 
trajectories to a < 1 for t < 0 this difficulty only occurs for even
signature trajectories at J- v = 0, which we see from figs. 5.4--5.6 
applies in practice only to the f, A2 and K**(1400) trajectories (and 
perhaps the P- see section 6.8b) at a= 0. If such a zero is inserted 
in the ss residue it must also appear in the sn and nn residues because 
of (6.3.4). This is sometimes called the 'Chew mechanism' (Chew 
1966). 

b. Choosing nonsense 

At a given nonsense J0 a trajectory may 'choose' to satisfy (6.3.4) by 
having flnn finite and f388 = 0 instead. This gives 

YH(t)"' [(a-J0) (a+J0 + 1)]! 
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for M > J0 ~ N as before, but YH(t) ~ (a-J0)(a+J0 + 1) for some 
sense points J0 ~ M. If this happens say for p > J0 > M, where p-v 
is some integer > M, then we have 

- t (a+p)l ((a-M)! (a-N)!)i 
'YH()"" (a-p)! (a+M)! (a+N)! (6.3.9) 

instead of (6.3.5). The resulting pole in the nn amplitudes cannot 
correspond to a physical particle of course,and so it must be cancelled 
(or compensated for). Since the asymptotic behaviour of eif.-1 (zt) 
at ann point is z-ox-t, not z"', the compensating trajectory must pass 
through - J0 - 1. This is sometimes called the 'Gell-Mann mechanism' 
(Gell-Mann and Goldberger 1962, Gell-Mann et al. 1964). 

However, the need for such a compensating trajectory can be 
avoided by putting a zero in the nn residue, in which case extra zeros 
will also appear in the sn and ss residues through (6.3.4). This is called 
the 'no compensation mechanism'. 

c. W rang-signature fixed poles 

The arguments of section 4.8 have led us to expect fixed poles (or 
infinite square-root branch points) at wrong-signature nonsense points. 
They will not contribute to the asymptotic behaviour of the scattering 
amplitude because of the signature factor. However, if they are present 
in the residue of a Regge pole they will cancel the zero from the 
signature factor. 

The fixed poles, which stem from the presence of the third double 
spectral function Psu• could be additional to the Regge poles, and not 
present in the Regge residues. Or, even if fixed poles are present in the 
residue, since at the point where a= J0 (J0 being a wrong-signature 
nonsense point) the residue obtains a contribution only from Psu• 
while at all other values of a it receives contributions from all three 
double spectral functions, the residue might well behave like 

a(t) + b(t) (a(t)- J0 ) 

for example. So with b ~ a there would still be a zero near a(t) = J0 , 

but with a ~ b there would not. 
Table 6.2 summarizes the above possibilities for the behaviour of 

the residue, and the corresponding behaviour of the Regge pole 
amplitude. 

The chief importance of these results is that in some cases the Regge 
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Table 6.2 The behaviour of the residue and amplitude as a 
trajectory passes through a nonsense point, J0 

Residue Amplitude 

nn sn ss Mechanism nn sn ss 

cx,-Jo (cx-J0)l 1 Sense- cx,-Jo 1 (cx-Jo)-1 
choosing 

1 (cx-J0)l cx,-Jo Nonsense- 1 1 1 
Right- choosing-

signature (cx-Jo)2 (cx-J0)f cx,-Jo Chew me- (cx-Jo)2 cx,-Jo 1 
chanism 

cx,-Jo (cx-Jo)! (cx-Jo)2 No com- cx-Jo cx-Jo cx-Jo 
pensation 

Wrong- (cx-J0)-1 (cx-J0)-l 1 Fixed pole 1 1 1 
signature 

In the above we have assumed the presence of a fixed pole in the residue at the wrong
signature point. If this is absent the residue behaves in the same way as at the corre
sponding right-signature point, and the amplitude is the same except for an extra 
cx-J0 from the signature factor. 

pole amplitude is predicted to have a zero in t. A good example of this is 
the process rt-p--+rt0n which in the t channel (rt-rt0 --+pn) contains only 
the p trajectory from our list in table 6.5. From fig. 5.5 (and see also 
fig. 6.6a below) this trajectory is approximately a(t) = 0.5 + 0.9t, 
and so a(t) = 0 fort~ -0.55 GeV2• The t-channel helicity amplitudes 
for this process are A++ and A+- (defined in (4.3.11)) and a= 0 is a 
ss point for A++ (A= A' = 0) but a sn point for A+- (A= 0, A'= 1), 
and is a wrong-signature point for the p trajectory since the p resonance 
has spin = 1. So from table 6.2 we see that if there is no fixed pole 
and the trajectory chooses sense then A++ will be finite but A+- will 
vanish at t = - 0.55, while both amplitudes will vanish if it chooses 
nonsense, or both will be finite if there is a strong fixed-pole contribu
tion. (The nonsense-nonsense amplitude occurs in pn--+pn and does 
not have to be considered here.) The data on this process (fig. 6.1) 
show a dip but not a zero of dU'fdt at this point, suggesting that the 
p chooses sense. But the conclusion depends on what other singularities 
may be present, such as a lower lying p' trajectory, Regge cuts etc. 
We shall return to this problem in section 6.8k, and an alternative 
explanation of the structure involving cuts will be presented in 
section 8. 7 c. 
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1 o-' o.__ ____ o.L..5------Lt.-o ---_-'1.5 
-0.1 -0.2 

t (GeV') t (GeY') 

FIG. 6.1 Data for d(J"/dt(1t-p -71tlln) at various laboratory momenta PL· The 
lines are a fit with p and p' trajectories, from Barger and Phillips (1974). 

6.4 Regge poles and 8-channel amplitudes 

In section 6.2 we went to a good deal of trouble to ensure that we in
corporated the correct kinematical t factors into the Regge residues in 
the t-channel helicity amplitudei. However, many of these factors 
cancel out when we construct measurable quantities such as dufdt, 
density matrices etc., and the only essential t-singularities are those 
in the 8-channel half-angle factors gpp'(z8 ). It is obvious therefore that 
there would be many advantages to working directly with t-channel 
Regge poles in 8-channel helicity amplitudes. But if we wish to do this 
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we have to be rather careful about the extra t factors which were 
introduced because the Reggeon has a definite parity in the t channel, 
and because its residue must factorize in terms oft-channel helicities, 
and we must include the various nonsense factors discussed in the 
previous section. 

The expression (Cohen-Tannoudji, Morel and Navelet 1968, 
Le Bellac 1968) 

A}i (s t) = - - --8 --8 ( s 1-z )!lp-p'l (1 +z )!IJL+p'l 
• ' s0 2 2 

X (e-in(ct-v)+.9') t (8-U)"(t) 
2 sin 11(a- v) fJ H,( ) 2s0 

(6.4.1) 

contains the half-angle factor and signature factor. And since, from 
(1.7.17), 

(6.4.2) 

is independent of s (where 

n = ll.a1- .U21-I.ua- .U411 (6.4.3) 

is the net helicity-flip in the s channel) (6.4.1) has the Regge behaviour 
"' (sfs0)"<t>. But it does not satisfy t-channel factorization. 

For unequal masses we have found that the Regge residue must 
behave like t!<M-N)-" fort-+ 0, and so the t-channel helicity amplitudes 
(6.2.31) have the behaviour 

A1}1(s, t) "' (- t)!<M+NJ = (- t)!<l-'c-\al+l-'•--'•1) 

Now as t-+ 0 crossing angles (4.3.5) all have the behaviour 

Xi"' sinxi"' ( -t)l, and so dr:p;(Xi),...., ( -t)!l-';-p;l 

fori= 1, ... , 4. Hence the helicity crossing matrix (4.3.7) 

M(H8 , Ht) "' (- t)!<l-'cl'll+l-'•-1'•1+1-'a-Pal+l-'cP4 1) 

(6.4.4) 

(6.4.5) 

is diagonal to first order in t at t = 0. Substituting (6.4.4) and (6.4.5) 
in (6.3.7) we deduce 

AJ},(s, t) ,...., ~ (- t)!<l-'cPll+l-\.-p.l+l-'a-Pal+lft.,-p,l+l-'c-'al+l-'•-"•1) (6.4.6) 
H, 

and the minimal kinematical behaviour is obtained from those terms 
in the sum over the'\ where .t\ = fti• i = 1, ... , 4, and so 

(6.4.7) 
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To ensure this behaviour we write instead of (6.4.1) 

( - t)i<l.ul-.Ual+l.u2-.u,l-l.u'-,ul) ( s 1-z )!l.u'-.ul 
A.fi.(s,t) =- - _ __ s 

s0 s0 2 

( 1 + z8)!1.u+.u'l e-i1r(ct-v) +9' (S _ u)a(t) 
X -2- 2 . ( ) YH,(t) -2- (6.4.8) s1n1r a-v s0 

(- t) !m e-hr(a-v) +. 9' ( s) ct(t) 
----+ - - y (t) -
8 __. oo s0 2 sin 1r(a- v) Hs s0 

where m = l.a1-Pal + l.a2- .U41 
and YH.(t) is factorizable in terms of s-channel helicities 

Y Hs(t) = Y .Ut#a (t) Y .Uo.Ui (t) 
and is free of kinematical singularities. 

(6.4.9) 

(6.4.10) 

(6.4.11) 

Though this deduction has been made for unequal masses, it is in 
fact valid for any mass combination because AH.(s,t) has no t-singu
larities which depend on the masses except for those in the half-angle 
factor. 

The only difficulty with this method is that one cannot easily 
incorporate the nonsense mechanisms. There is no problem with the 
nonsense-choosing, no-compensation or fixed-pole mechanisms 
which give the same behaviour for all the t-channel amplitudes (see 
table 6.2), and hence for all the s-channel amplitudes. But the sense
choosing and Chew mechanisms give zeros in some t-channel ampli
tudes but not others, and if a given A He vanishes there will be 
constraints like J:.M(H8 ,Ht)-1 AH (s,t),.., a(t)-J0 (6.4.12) 

H, s 

(where M-1 is the inverse matrix of M) which are difficult to para
meterize. But apart from these cases (6.4.8) has much to recommend it. 

6.5 Daughters and conspirators* 

In obtaining {6.3. 7) for the contribution of a Regge pole to a scattering 
amplitude we made use of (6.2.26) for the asymptotic behaviour of 
the rotation function. However, it is evident from (1.7.15), (1.7.19) 
that for unequal masses, for t-+ 0, qt ,.., t-! and Zt-+ e ( = ± 1, see 
(6.2.19)) for all s. This might seem to imply that the unequal-mass 
scattering amplitude will not have Regge asymptotic behaviour at 
t = 0. But in fact this cannot be true, because t = 0 is not a singular 

point of the reduced scattering amplitude A Hr 

* This section may be ommitted at first reading. 
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It is easier to see what has gone wrong if we rewrite (1.7.19) as 

Zt = 8 (1 +Ll(t)) 2 (6.5.1) 
qt13qt24 8 

1 
where Ll(t) = 2t[t2 -tL'+(mi-m~)(m~-mm (6.5.2) 

is singular at t = 0 for unequal masses, and then make the expansion 

e:\r1(Zt) = £u,(zt)f(a) [ (~r-M + J1(a) (~r-M-2 + ... ] 

where f(a:) is given by (B.25) and f 1(a:) can be deduced from (B.24). 
Substituted in (4.6.4) with (6.5.1) and (6.2.30), this gives 

A}t(s, t)oc { (4:J cx-M +Ll(t) (a:- M) 4so (4:J Gt-M-
1 

+[(a:- M) (~-M -1) (4soL1(t))2 + a1(a:) (qn;:t24rJ (4:J cx-M-2 + ... } 

(6.5.3) 

So each term in the expansion of order (sf 4s0)cx-M-n has a t-n singularity 
at t = 0. It is these singularities which cause the problem. 

However, the amplitude must be analytic at t = 0, since it is 
supposed to obey the Mandelstam representation, so there must be 
some other contributions which cancel them. These could be contained 
in the background integral (see Collins and Squires (1968), chapter 3), 
but a more popular suggestion (Freedman and Wang 1967) is that 
there are further trajectories known as 'daughters' which have 
singular residues which precisely cancel the singularities of the 
original 'parent' trajectory. So the first daughter will have 

0:1 (t) ~ a:(t)- 1 (6.5.4) 
t~o 

and residue 
(m2- m2) (m2- m2) (a:(O)- M) 2s 

f31(t)~- (3(0) 1 3 2 4 0 +non-singular terms 
t~o t 

(6.5.5) 

to cancel the second term in (6.5.3). In fact an infinite sequence of 
daughters is needed with 

ak(O) = a:(O)- k, k = 1, 2, 3, ... , flk(O) "' t-k (6.5.6} 
t__,.oo 

The odd-numbered daughters must have opposite signature to the 
parent, i.e. !/'k = !/'( -1)k, so that their signature factors are identical 
to those of the parent at t = 0. 
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FIG. 6.2 Regge trajectories obtained by Cutkosky and Deo (1967) from the 
Bethe-Salpeter equation using a potential with a repulsive core. The con
tinuous and dashed curves represent different coupling strengths. The strange 
behaviour of the daughters is evident. 

There is not a great deal of evidence for the existence of such 
daughters in figs. 5.4-5.6. Indeed, calculations of trajectories using 
unequal-mass kinematics in the Bethe-Salpeter equation (Cutkosky 
and Deo 1967) produce a rather peculiar behaviour for the daughters 
(fig. 6.2) which do not manifest themselves as particles. Unless the 
non-singular terms in (6.5.5) are important, the daughters need not 
be visible in the s-channel energy dependence either, since their main 
purpose is to ensure the s"<t> behaviour for all t, and they may be 
masked by other singularities (cuts etc.). But we shall discuss in the 
next chapter further reasons why such trajectories should exist 
parallel to the parent (see fig. 7.5 below). 

Another problem for Regge poles at t = 0 is that the residues cannot 
have the kinematically expected behaviour (6.2.23) but only (6.2.25) 
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(neglecting factor-ization for the moment). This is because, as can be 
deduced from (6.2.22}, the definite-parity amplitudes must satisfy 

the constraint Ajft(s, t)+ 11.1 .Hi (s, t) ,...., tN (6.5. 7) 
t-->-0 

In using (6.2.25) we make the Regge pole 'evade' this constraint by 
including an extra factor tN in its residue. This is necessary because 
a Reggeon can occur in only one parity amplitude. 

However, if there were two trajectories of opposite parity they 
could 'conspire' together to satisfy (6.5. 7) (Leader 1968, Capella, 
Tran Thanh Van and Contogouris 1969, Wang and Wang 1970). This 
would require 

cx+(O) = cx_(O} and fl}i(t) ± flii(t) ,...., tl<M+N>-.x (6.5.8} 
t-->-0 

where ± refers to the parity 1J = ± 1. Such a conspiracy would give 

flft(t) ,...., t!<M-N>-.x, 1J = ± 1 (6.5.9} 
t ...... <:tJ 

instead of (6.2.29) which behaves like ,...., t!<M+N}-.x, 
This behaviour clearly does not factorize between i\. and i\.', but we 

are none the less free to choose that a particular amplitude with 
i\. = i\.' =A say, where A is a given number called the 'Toller number', 
has this most singular permissible behaviour. Factorization then 
demands that the other helicity amplitudes have 

fJAA.•(t),...., t!(IA-IAI!-t-IA-IA'IIl-.x (6.5.10} 

and for a conspiring trajectory the parameter 8 is replaced by the 
values in table 6.1 (p. 160). Applying the crossing relation (4.3. 7) with 

(6.4.5) we find A}},(s,t)"' ( -t)!<IA-Ipcp8li+IA-lp.-p411) (6.5.11} 

so unlike (6.4.7) an amplitude with l,u1 -,u3 l = l,u2 -,u41 =A will not 
vanish at t = 0. 

A simple example is provided by the process 'YP-+ 1t+n which should 
be dominated by 7t-exchange near the forward direction (t ~ 0}. Since 
for the photon ,u1 = ± 1 only, and the spinless pion has ,u3 = 0 only, 
we see from (6.4.10} that m =!= 0 and so with the behaviour (6.4.7) all 
the amplitudes will vanish at t = 0, and hence a dip must occur in 
d(J'fdt at t = 0. In fact the data show a sharp forward spike of width 
L1t ~ m~ which could be explained by a A = 1 conspiracy between the 
1t and a similar natural-parity trajectory giving the behaviour (6.5.11) 
instead (Ball, Frazer and Jacob 1968). However, a scalar particle 
similar to the pion does not occur, and it has been shown (Le Bellac 
1967} that such a conspiracy is incompatible with factorization in 
other 7t-exchange process, so it now seems more likely that the presence 
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FIG. 6.3 The scattering amplitude for 'YP -+n+n showing the contributions of 
an evasive pion pole and a Regge cut. Cut+pole gives the sharp forward peak 
seen in the data. 

of Regge cuts accounts for the forward peak (see fig. 6.3 and section 
8.7/). There does not seem to be any evidence for conspiracies of 
meson trajectories. 

A conspiracy is essential, however, if the fermion number of the 
exchange is odd. We mentioned after (6.2.25) that in this situation 
multiplying the residue by tN would introduce a spurious square-root 
branch point at t = 0. In fact making the replacement ..jt-+-..jt in 
(6.2.24) we find that for half-integer i\., ,\' 

A'JJ)s,..jt) = A.Hi(s, -..jt)( -1)11l-61l'l (6.5.12) 

This is called the generalized MacDowell symmetry (after MacDowell 
1959), and it means that for baryons there must be a conspiracy 
between opposite parity trajectories of Toller number A = !, so 

a.+(..jt) =a.-( -..jt) and fJfr(..jt) = ( -1)11l-ell'lfJ.H( -..jt) (6.5.13) 

If such trajectories are even in ..jt, like the linear form (5.3.2), then 
the two trajectories should coincide, and one would expect baryons 
to occur in degenerate doublets of opposite parity. The inclusion of 
terms which are odd in ..jt, such as 

a.±(..jt) = a.0 ±a.1..jt+a.2t+... (6.5.14) 

splits the degeneracy, but makes the trajectories curved. However, we 
found in section 5.3 that baryon trajectories appear to be linear in t, 
but not parity doubled. It is possible to put zeros into the residues to 
make the unwanted states vanish (see for example Storrow (1972, 
1975)),ortointroducea branch pointatJ = a.0 , and place the unwanted 
states on the unphysical side of the cut (see for example Carlitz and 
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Kisslinger ( 1970) and section 8. 7 i), but the correct explanation for this 
prob1em is still unclear. 

6.6 Group theoretical methods* 

These daughter and conspiracy problems arise from the fact that the 
rotation functions dfA.(zt) are not an appropriate way of representing 
the scattering amplitude at t = 0 because of (6.5.2). The work of 
Toller (1965, 1967) and others has given a somewhat more general 
view of these difficulties. 

In writing the partial-wave series (4.4.14) we decomposed the 
scattering amplitude in terms of representation functions of the three
dimensional rotation group 0(3), or more strictly, since half-integer 
spins may be included, its covering group SU(2). The rotation group is 
the so-called 'little group' of the inhomogeneous Lorentz group, or 
Poincare group tJJ, i.e. it is the group of transformations which leaves 
invariant the total four-momentum of the incoming or outgoing 
particles (in the t channel) 

P,. = (Pt,.+Pa,.) = (p2,.+P4,.), p. = 1, ... ,4 (6.6.1) 

(see for example Martin and Spearman (1970) chapter 3, and Britten 
and Barut (1964)). The angular momentum J 2 is of course a Casimir 
operator of this little group, and L P~ = t is also a Casimir invariant 

p 
of tJJ. 

However, Wigner (1939) showed that although 0(3) is the little 
group for t > 0, there are in fact four different classes of representa
tions of tJJ characterized by different values oft. These are 

(i) Timelike, t > 0, little group 0(3) 
(ii) Spacelike, t < 0, little group 0(2, 1) 
(iii) Lightlike, t = 0, P,. =1= 0, little group E(2) 
(iv) Null, t = 0, P,. = 0, little group 0(3, 1) 

Here 0(3) is the rotation group in a space with three real dimensions, 
with x2 + y2 + z2 = R2 invariant; 0(2, 1) is the rotation group in a space 
with two real dimensions and one imaginary, withx2 + y2- z2 invariant; 
E(2) is the group of Euclidian transformations in two dimensions; 
while 0(3, 1) is the rotation group in a space with three real dimen
sions and one imaginary, with x2 +y2+z2-t2 invariant, which is 
isomorphic to the Lorentz group itself. 

The representation functions of 0(3) are the dfA.(zt), - 1 :;;; Zt :;;; 1. 

* This section may be omitted on first reading. 
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The representations of 0(2, 1) are again d{A.(zt}, but with Zt taking the 
unphysical values appropriate tot< 0. Bargmann (1947) has shown 
that a function which is square-integrable on this group manifold can 
be expanded in terms of the principle and discrete series of representa
tions, so that a scattering amplitude expanded in this basis takes the 
form (Joos 1964, Boyce 1967) 

16JTJ-!+ioo 2J + 1 
AH(s,t) = --2. dJ . (J .A')AHJ(t)d{?t"(zt) 

t 1 -!-ioo sm 1T + 

+nonsense terms (6.6.2} 

i.e. ( 4.6.2} without any Regge poles or cuts in Re {J} > - !· This is 
because the square-integrability condition requires A H 1(s, t) = O(s-!). 

So the Sommerfeld-Watson representation can be regarded as a 
representation on an 0(2, 1) basis. However, the equivalence is 
incomplete in that the Sommerfeld-Watson representation is valid for 
all t, not just t < 0. Also it is valid for non-relativistic potential 
scattering which has E(2) rather than 0(2, 1) as its little group for 
t < 0, and the E(2) representations are quite different (Inonu and 
Wigner 1952, Levy-Leblond 1966). And of course with Regge singu
laritiesinRe{J} >-!the Sommerfeld-Watson representation is an 
analytic continuation in J of (6.6.2). But if these differences are kept 
in mind it is possible to rephrase Regge theory as an 0(2, 1) de
composition. 

Because of the mass-shell conditions Pi = mi etc., 

implies that the individual components of PI' are zero in (6.6.1) only 
if m1 = m3 and m2 = m4, so the little group at t = 0 will be 0(3, 1) or 
E(2) depending on whether or not the masses are equal. 

If the masses are equal then the amplitude can be decomposed in 
terms of representation functions of 0(3, 1) which may be denoted by 
d~~·(zt). They have been derived by Sciarrino and Toller (1967) and 
depend upon two Casimir operators, of which one is the Toller number, 
A, introduced in (6.5.10}, which can take on the values 0, 1, 2, ... or 
!, !, !, ... depending on the fermion number, and the other, o-, is pure 
imaginary, - oo < io- < oo. This extra Casimir operator appears be
cause there are two degrees of freedom in satisfying ~ P; = 0 with 

I' 

equal masses. The other degree of freedom corresponds to variation 
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of s. On this basis the amplitude can be expanded 

TM fico 
Ae1(s,t = 0) = 8J..J..' ~ ~ du(A2 -u2)A~~T·(t = O)d~~T·(Zt) 

T,T' A=-TM -leo 
(6.6.3) 

where A~~T·(t) are 0(3, 1) partial-wave amplitudes, TM = min{T, T'} 
and in the summations 

lul-ual ~ T ~ 0'1 +ua, lu2-u,l ~ T' ~ O"z+u,. 

At t = 0 only the non-flip A = A' amplitudes survive. 
If we suppose that there is a Toller pole at u = a say (just as there 

may be a Regge pole at J = a in (6.6.2)) then analytic continuation 
in u gives 

Ae1(s,O) = [(6.6.3)]+8u, ~ A~~T·(A2 -a2)d~~T' (6.6.4) 
T,T' 

where [(6.6.3)] represents the right-hand side of (6.6.3) and A is the 
Toller number of the pole. Since it is found that 

d~~T·(Zt) ,.._ (zt)u-1-IA-J..I (6.6.5) 
Ill"'+ CO 

we deduce from (6.6.4) that 

Ae,(B, 0) ...- 8J..J..'(zt)a-1-IA-J..I (6.6.6) 

If this is compared with (6.3.7) (remembering (6.5.11)) it will be seen 
that this behaviour corresponds to a Regge pole with a(O) = a-1 
and Toller number A. Indeed if these 0(3, 1) representation functions 
are decomposed in terms of d{;,.(zt) it is found (Sciarrino and Toller 
1967) that the single Toller pole in the u plane at u = a (6.6.4), 
corresponds to an infinite sequence of Regge poles in the J plane at 

J = ak(O) with ak(O) = a- k- 1, k = 0, 1, 2,... (6.6. 7) 

i.e. a conspiring daughter sequence of Toller number A. As we move 
away from t = 0 the 0(3, 1) symmetry is broken so the daughter 
trajectories do not have to remain integrally spaced from the parent 
as in (6.6.7). 

This argument clearly does not work for unequal masses because the 
E(2) representations are quite different from those of 0(3, 1), so con
tinuation in the masses is needed to justify the use.of Toller poles in 
this case (Domokos and Tindle 1968, Bitar and Tindle 1968, Kuo and 
Suranyi 1970). Indeed the apparent absence of conspiracies noted in 
the previous section leads one to suspect that nature has not in fact 
made use of the extra degree of freedom at t = 0 represented by 
variation of u in (6.6.3). A single Regge pole at t = 0 corresponds to 
a counter-conspiracy consisting of an infinite sequence of Toller poles 
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in the u plane (just like the many-to-one relation between poles in 
the land n planes in section 2.10) so the lack of conspiracies presumably 
reflects the primacy of the J plane over the u plane. If so, these 
group-theory techniques do not appear to possess any significant 
advantage over the conventional Sommerfeld-Watson method which 
we use in this book. 

6.7 Internal symmetry and crossing 

a. 1sospin 

As we mentioned in section 5.2, the approximate in variance of strong 
interactions under the internal symmetries SU(2) and SU(3) leads to 
important relations between scattering amplitudes. We begin with 
the isospin group SU(2) which appears to be broken by at most a few 
per cent, which is often well within the errors to which scattering 
amplitudes can be determined. Hence it is frequently more useful to 
refer to scattering amplitudes for the various possible isospin states, 
rather than to the amplitudes for the different charge states of the 
particles involved. 

It is convenient to consider first a particle decay such as a-+ 1 + 2. 
The final state may be expressed in terms of the isospins of the 
particles (see (5.2.1)) as 

J1, 2) = Jlv 11z) $ J12, 12z) (6.7.1) 

The total isospin is the sum of the isospin vectors of the particles 

1=11+12 (6.7.2) 

and its possible eigenvalues are 

1 = 11 +12, 11 +12-1, ... , J11 -121 (6.7.3) 

while 1z = 11z+12z =I, I -1, ... , -I (6.7.4) 

so the state (6.7.1) can be written as a superposition of the various 
possible total isospin states as 

(6.7.5) 

where (I1,12, I~z, 12zJ1 ,Iz) are the Clebsch-Gordan coefficients (see for 
example Edmonds (1960) chapter 3). Since the particle a has a definite 
isospin, Ia, only one term in the sum (6. 7 .5) occurs in the decay process, 
and so the decay amplitude can be expressed in the form 

A(a-+1+2) = (11,12,I1z,I2zJia,Iaz)A(a-+1+2) (6.7.6) 
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where A is a 'reduced' amplitude which is independent of Iarr Thus 
isospin invariance implies that the different charge states of particle a, 
with their different values of Iaz (see (5.2.1)), will have decay rates 
which are related to each other by the Clebsch-Gordan coefficients 
ofSU(2). 

Forexampleinthedecayp-+1t1tbothpand1thavei = 1,andiz = 1, 
0, -1 for the charge states +, 0 and -.So the various decay ampli
tudes are related according to (6.7.6) by 

1 -
A(p+-+1t+1to) = A(p--+7to1t-) = A(po-+1t+1t-) = .J2A(p-+7t1t) 

(6.7.7) 

where A(p-+ 1t1t) is the reduced amplitude. Such relations appear to be 
well satisfied in hadronic decays. 

Similarly for the scattering process 1 + 2-+ 3 + 4, both the initial 
and final states can be expressed as isospin states, like (6.7.5), and if 
the process is isospin invariant the scattering amplitude may be 
decomposed as 

where A(I) is independent of Iz. In general the number of different 
isospin amplitudes is smaller than the number of charged particle 
processes which can occur and so (6.7.8) inter-relates the amplitudes 
for the different processes. 

For example in 1tN scattering the state l1t+p) has Iz = 1 + l = ! 
and so I = ! only. Likewise 17t-n) has Iz = - !, I = !· Hence from 
(6.7.8) 

(6.7.9) 

Similarly on looking up the Clebsch-Gordan coefficients we find 

(1t-pl A 11t-p) = (7t+nl A 11t+n) = jA(J) + iA(l) } 
(1t0pl A l1t0p) = (1t0ni A l1t0n) = iA(!)+iA(l) (6.7.10) 

(1t0nl A 11t-p) = (1t0pl A 11t+n) = (.J2/3)A(j)- (.J2/3)A(!) 

So the eight different 1tN scattering processes are given by just two 
independent isospin amplitudes, A(!) and A(!). 

There is at present no convincing explanation as to why nature 
should have chosen such a complicated symmetry structure for 
hadronic interactions, but it certainly works at least to a few per cent, 
at which level it is presumably broken by electromagnetic interactions. 
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We shall be particularly concerned with relations between s-channel 
amplitudes which arise from the exchange of particles having a 
definite isospin in the t channel. The t-channel process 1 + 3 -+ 2 + 4 
can be decomposed as 

(241 A 113) = ~ (I1, I3, I1z, Iaziit, Itz)(I2, I4 ,f2z, I4z1It,Itz)* A(It) (6. 7.11) 
I, 

while (6.7.8) holds for s-channel isospin. The crossing relation (4.3.1) 
becomes for isospin amplitudes 

A(I8 ) = ~ M(I8 ,/t)A(It) (6.7.12) 
l, 

where the isospin crossing matrix M(I8 , It) can be obtained from the 
Clebsch-Gordan coefficients in (6.7.8) and (6.7.11). However some 
care is needed with the phase conventions for isospin states and their 
behaviour under charge conjugation. These are discussed in some 
detail in Carruthers (1966). Some useful examples are quoted in table 
6.3. 

To illustrate how these matrices arise we consider 1t1t scattering. In 
terms of isospin states I I, Iz) we can write 

11t+1t+) = 12, 2) 

11t+1t-) = ()8 1o, o) + ) 2 11, o) + ) 6 12, o)) (6.7.13) 

( 1 1 1 ) 11t-1t+) = .j3 IO,O)-.j2 11,0)+ .j6 12,0) 

etc. so for example 

(1t+1t+l A !1t+1t+) = A(2) } 

(1t-1t+! A 11t+1t-) = iA(O) -!A(1) + }A(2) 
(6.7.14) 

Now under crossing the s-channel process 7t+7t+-+ 7t+7t+ becomes 
7t+7t--+7t-7t+ in the t channel, and so 

(6.7.15) 

which gives the bottom row of the 1t1t crossing matrix in table 6.3. 
The remaining elements can be deduced similarly. 

b. SU(3) symmetry 
As with isospin, we expect that different scattering processes will be 
related by SU(3) Clebsch-Gordan coefficients if strong interactions are 
invariant under this symmetry (see Carruthers 1966, Gourdin 1967). 
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Table 6.3 I sospin crossing matrices 

a-Channel t-Channel M(I,I1) 

1t1t ~ 1t1t 1t1t ~ 1t1t 

(i 
1 !) l -: -t 

1tN ~1tN NN ~1tit ("t -t) /1 
KN~KN NN~KK (-l -:) -l 

a-Channel u-Channel M(I.,I,.) 

1tN ~1tN itN ~iN (-t i) 
KN~KN KN~KN (-t t) 

The particle label matters only for the isospin so 1t can be replaced by any 
I = 1 particle, and K, N by any I = ! particles. 

If we label the multiplet to which a particle belongs, i.e. {1}, {8}, 
{10} etc., by p, and its quantum numbers I, Iz, Y by v, then the state 
j1, 2) can be decomposed into irreducible representations of SU(3) by 

(cf. (6.7.5)) ( ) 
IPv ~'1) ® IP2• ~'2) = ~ ~1 ~2 ~ jp, v) 

p,v 1 2 
(6.7.16) 

where the bracket ( ) denotes a Clebsch-Gordan coefficient. 
The cases of greatest practical importance in view of the multiplets 

discussed in section 5.2 are (Carruthers 1966, Gourdin 1967) 

{1}®{8}={8} ) 
{1}@ {10} = {10} 

{8} ® {8} = {1} EB {88} EB {8a} ® {10} EB {10} EB {27} 

{8} ® {10} = {8} EB {10} EB {27} EB {35} 

(6.7.17) 

(where the subscripts s and a denote symmetric 'd-type' and anti
symmetric '/-type' {8}- {8}-{8} couplings respectively). 

Now the SU(3) Clebsch-Gordan coefficients factorize into SU(2) 
Clebsch-Gordan coefficients and an iso-scalar factor in the form 
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These are tabulated in, for example, Particle Data Group (1974). Thus 
for an {8} vector meson, V, decaying into a pair of {8} pseudo-scalars, 
PS, we have, in the limit of exact SU(3) symmetry, 

1 2 - 2 
.J2 A(p-+nn) =- .J2 A(p-+KK) =- .JaA(K*-+Kn) 

2 
=- .Ja A(K*-+Kll) 

J2 1 - J2 1 -
=- 3cosOA(<j>-+KK) =- 3sinOA(ro-+KK) 

= A(V -+PS+PS) 

(6.7.19) 

(where 0 is the mixing angle of (5.2.17)). However, to test such rela
tions it is essential to take account of the very different amounts of 
phase space available in the different decays because of the large mass 
splittings due to symmetry breaking. In particular K*-+Kll and 
ro-+KK are forbidden because the resonance mass is below the 
threshold of the decay channel. Within the considerable uncertainties 
as to how best to correct for this (see for example Gourdin (1967)) the 
relations seem to hold reasonably well. 

But it is easier to test such relations for pole exchanges in scattering 
amplitudes. The SU(3) invariance of hadronic scattering implies that 
the amplitudes may depend on p, but not on v (cf. (6.7.11)) and so for 
1 +2-+3 +4 we have 

(34J A J12) = ~ (f£1 f£2 p) (Pa f£4 p)* A(p,) (6.7.20) 
"'" v1 v2 v v3 v4 v 

Thus for example in processes of the type M+B-+M' +B' where 
M, M' and B, B' are any members of the meson and baryon octets, 
respectively, there are just seven independent reduced amplitudes 

A(1), A(888 ) A(88a}, A(8aa), A(10), A(10), A(27) (6.7.21) 

from (6.7.17) (A(8a8 ) = A(88a) by time reversal invariance), and all the 
many processes of this class are related to just these seven amplitudes 
by the Clebsch-Gordan coefficients of (6. 7 .20} (analogously to (6. 7 .10)). 

Of course the large mass splittings invalidate these relations at low 
energies, but at high energies, where the external particle masses 
become unimportant, we can expect such relations to hold provided 
that care is taken in dealing with the splitting of the trajectories which 
are exchanged- see section 6.8i below. If a decomposition similar 

7 CIT 
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Table 6.4 The octet crossing matrix (8@ 8--+ 8 ® 8) 
(from de Swart 1964) 

1 8" 8,. 8., 8 •• 10 10 27 

1 1/8 1 0 0 ±1 ±5/4 ±5/4 27/8 
8 •• 1/8 -3/10 0 0 ± 1/2 + 1/2 + 1/2 27/40 
8 •• 0 0 ± 1/2 1/2 0 .J5/4 -.J5f4 0 
8 •• 0 0 1/2 ± 1/2 0 + .J5/4 ± .J5f4 0 
8 •• ± 1/8 ± 1/2 0 0 1/2 0 0 +9/8 

10 ± 1/8 +2/5 1f.J5 + 1/.J5 0 1/4 1/4 + 9/40 
10 ± 1/8 + 2/5 -1f.J5 ± 1f.J5 0 1/4 1/4 + 9/40 
27 1/8 1/5 0 0 + 1/3 + 1/12 + 1/12 7/40 

The upper and lower signs refer to the 8-t and 8-u crossing matrices, respec
tively. We have changed the signs of the sa and as elements in the 8-t crossing 
matrix to conform to the usual convention for thej-type coupling for IJ- meson 
to baryon-antibaryon. 

to (6.7.20) is made for the t-channel process 1+3--+2+4 as well, the 
crossing relation may be written (cf. (6.7.12)) 

A(,us) = L.M(,us,.Ut)A(,ut) (6.7.22) 
Pt 

where M(,u8 ,,Ut) is the SU(3) crossing matrix. A useful example of such 
a matrix is given in table 6.4. We shall make use of these results below. 

6.8 Regge pole phenomenology 

We have found that the Regge pole contribution to at-channel helicity 
amplitude is given by (6.3. 7), i.e. 

A}f,(s,t) = -167T( -1)AKu.(t)yA(t)yA.(t) 

X (e-i1r(a-v)+/7)fH(a) e~:r-M Su·(Zt) (6.8.1) 

Here Ku.(t) given in table 6.1 depends on whether or not there is 
a conspiracy, and fH(a) depends on whether the trajectory chooses 
sense, nonsense etc., as discussed in section 6.3. A is defined in (B.10), 
and Su·(Zt) in (B.11). Alternatively one can work with s-channel 
helicity amplitudes and use (6.4.9) instead. And since Reggepoles have 
definite values of I, S etc., there should be SU(2) or SU(3) relations 
between their contributions to the various processes connected by 
these internal symmetries, as discussed in the previous section. This 
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section contains a brief survey of how well these predictions compare 
with experiment. A bibliography of the large amount of detailed work 
on Regge predictions for individual process may be found in Collins 
and Gault (1975). 

a. Regge behaviour 

Equation (6.8.1) predicts that with a single Regge pole exchange 
all the helicity amplitudes for a process will have the asymptotic 
behaviour 

AH(s, t)"' (s-u)a(t)"' (~)a(t) (6.8.2) 
2s0 s0 

for S-7-00, t fixed, and so from (4.2.5) or (4.3.12) 

dO" ( S) 2a(t)-2 
--7-F(t) -
dt s0 

(6.8.3) 

where F(t) is some function oft, and from ( 4.2.6) 

(
s)a(0)-1 

O"I~t(s)"' s;; (6.8.4) 

so both the differential and total cross-sections should have simple 
power behaviours. 

These expressions are valid to leading order in sfs0 and corrections 
of order (sfs0 )a<tl-1 may be anticipated due to other terms in the 
expansion of e_\,f-1(zt), daughter trajectories, threshold corrections 
etc. So this prediction of Regge theory should hold for s ~ s0, where 
s0 is the scale factor which was introduced in (6.2.9). Obviously if s0 

were very large these predictions would be untestable. We cannot 
really deduce what s0 should be (see however section 7.4 below) but 
empirically it seems to be about 1 GeV2, consistent with the hadronic 
mass scale, and so Regge theory usually works quite well for 
s > 10GeV2, or (from (1.7.30)) PL > 5GeV for a proton target, i.e. 
for all energies above the resonance region. Taking s0 = 1 Ge V2 has 
the advantage that it can be omitted from the equations, but if so its 
implicit occurrence should be kept in mind. 

b. The Pomeron 

The total cross-sections for various states are plotted in fig. 6.4 and 
it will be observed that though in several cases there is a fall at low 
energies, and a slow rise at high energies, taken over all they are 
remarkably constant over a large range of s. From (6.8.4), constancy 

7·2 
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FIG. 6.4 The total cross-sections for various states as a function of s, 
from Barger (1974). (Note that the s scale is logarithmic.) 

of utot(s) requires a(O} ;::;; 1, but all the trajectories of figs. 5.4, 5.5 
have a(O} .$ l· In elastic scattering 1 + 2-+ 1 + 2 the t channel consists 
of a particle and its anti-particle ( 1 +I-+ 2 + 2) and so the exchanged 
trajectories must obviously have the quantum numbers of the 
vacuum (i.e. B = Q = S =I= 0, P = G = On = !/' = + 1). The f 
meson has these quantum numbers, but, at least asdrawninfig. 5.5(a}, 
its trajectory is much too low at t = 0 to explain the behaviour of the 
total cross-sections. 

This difficulty was realised rather early in the history of Regge 
phenomenology, and a new trajectory called the Pomeron (or Pomer
anchon or Pomeranchukon by some authors}, P, with ap(O) ;::;; 1 was 
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invented (Chew and Frautschi 1961) to account for the asymptotic 
behaviour of the utot,s. Since it has even signature there is no pole 
near t = 0 because ap(O) = 1 is a wrong-signature point. Even signa
ture means that its contribution is symmetric under the interchange 
zt- -zt, i.e. 8+4U at fixed t (see (2.5.3), (2.5.6)). Now the u-channel 
process is I+ 2-+ I+ 2, and so the P-exchange hypothesis demands 
that u1gt(8)-+<Tf0;(8) as 8-+00, and in fig. 6.4 we see that it is quite 
likely that utot-+u!i.ot utot -+O"tot utot -+O"tot as 8-+"" Such an PP pp' K+p K--p, ~t+p !t-p v..~. 

equality was predicted on more general grounds by Pomeranchuk 
(1958) which accounts for the name now given to this trajectory. 
(See Eden (1971) for a discussion of the status of Pomeranchuk's 
theorem.) 

Of course ap(O) = 1 is the maximum value permitted by the 
Froissart bound (2.4.10), so to have a trajectory as high as this implies 
that the strong interaction is as strong as it can be under crossing- i.e. 
unitarity is 'saturated'. It is clearly rather unsatisfactory that we 
have been forced to invent a trajectory which does not seem to have 
any particles lying on it. However, we shall find below (fig. 6.6f) that 
its slope appears to be rather small, a~ :::::: 0.2 GeV-2, so that a particle 
at a(t) = 2 would have a rather high mass (m2 :::::: 5 Ge V2). In any case 
the fact that the observed utot,s are still rising at CERN-ISR energies 
(which would naively imply ap(O) > 1) and the complications of 
Pomeron cuts (see section 8.6) make one wonder if the Pomeron may 
not be a more complicated singularity than a pole. 

The Pomeron can be exchanged not only in elastic scattering pro
cesses but also in so-called quasi-elastic processes 1 + 2-+ 3 + 4 where 3 
has the same internal quantum numbers as 1, and 4 has the same as 2-
for example 1tN -+7tN*(t) where N*(t) is an I= t baryon resonance
and so all such processes should have essentially constant high energy 
cross-sections. There are however, some empirical rules which restrict 
P-couplings. 

In elastic scattering processes the P appears to couple only to the 
8-channel helicity-non-flip baryon vertex, and hence for example to 
A++ but not A+- in 1tN -+1tN (see (4.3.10)). It is also found that in 
quasi -elastic processes such as y N-+ p0N, y N-+ roN, y N-+ lj>N, 
1tN -+1tN*( t) and NN-+ NN*( t) there is at least approximate 8-channel 
helicity conservation (i.e. p 1 = p 3, p 2 = p 4). It is of course rather odd 
that at-channel exchange should have such simples-channel helicity 
couplings. But the rule seems to be violated in 1tN -+A1 N, 1tN -+A3 N 
and KN -+QN (see for example Leith (1973) for a review). 
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Another empirical rule is the so-called Gribov-Morrison rule 
(Gribov 1967, Morrison 1967) that the Pomeron couples to a vertex, 
13, only if (6.8.5) 

i.e. the change of spin at the vertex must be related to the change of 
intrinsic parity. For spinless particles (o-1 = o-3 = 0) this rule follows 
from parity conservation and (4.6.8), i.e. P = Y'1J. Since the Pomeron 
hasP=!/'= 1J = + 1 the 13 state must have 

p = ( + 1) = 1JI1Ja( -1)1 = 1JI1Ja( -1V = 1J11Ja!/' = 1J11Ja (6.8.6) 

However, for particles with spin, J is not necessarily equal to l, so there 
will always exist helicity states having the signature and parity of 
the Pomeron. But if (6.8.5) is to be violated there must be a change of 
helicity, and so, from (6.4.2), the Pomeron-exchange amplitudes will 
vanish in the forward direction. 

In fact the rule often seems to apply for particles with spin (see for 
example Leith 1973). Thus in nN --+nN*--+nnN, it is found that the 
N*'s produced have L 21• 2s(I = isospin, S = spin) = Pw D13, F15 , with 
no sign of D15 which would violate (6.8.5). Similarly, while nN --+A1N, 
KN--+ QN, yN--+ p0N all seem to exhibit a Pomeron-like constant high 
energy cross-section, nN --+A2 N, KN --+K*N, yN --+BN, which violate 
the rule, decrease with energy. However, the difficulty of making a 
clean separation of the resonances from background events, and the fact 
that secondary trajectories may produce a decrease of o-(s) at lows any
way, make the rule hard to test decisively, and its status is still unclear. 

c. The leading trajectories 

If several trajectories can be exchanged in a given process then the 
trajectory with the highest Re {a(t)} will dominate asymptotically at 
any given t. How high in s one has to go before a single trajectory 
exchange gives a satisfactory approximation to the amplitude clearly 
depends on the separation of the trajectories, the relative strengths of 
their residues, and of course on s0 • 

So for a given process all one has to do is work out the possible 
quantum numbers which can occur in the t channel, and look up the 
leading trajectory with those quantum numbers in figs. 5.4-5.6. 
Table 6.5 lists the leading trajectories for most of the experimentally 
accessible processes. 

For processes where the t-channel quantum numbers are B = S = 0, 
if charge is exchanged, or if there is a change of isospin at one of the 
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Table 6.5 Regge trajectory exchanges for various processes 

Exchanged 
quantum numbers 

Exchanges B s (I)G 1J c,. Processes 

n± beams 
p 0 0 (1)+ + n-p -+1t0n 

n+p -+n°.6.++ 
A2 0 0 (1)- + 1t-p-+ 7Jn 

n+p-+ 7].6.++ 
p,B 0 0 (1)+ ± n-p -+ron 

n+p -+~.6.++ 
n+p -+ro.6.++ 

n, At 0 0 (1)- n-p -+En 
A2, 1t, At 0 0 (1)- ± n-p-+ p0n 

n-p -+fn 
n+p-+ p0,6.++ 
n+p -+fA.++ 

p,f 0 0 (0, 1)+ + np -+np 
np -+nN* 

p, B, f, n, D 0 0 (0, 1)+ ± np -+A2p 
np -+A1p 

A2, 1t, A1, ro, H 0 0 (0, 1)- ± 1tp -+pp 
np -+Bp 
1tp -+gp 

K*, K** 0 1 (t) + n-p-+K0A 
np -+KL 

K*, K**, K, Q 0 1 (t) ± np -+K*A 
np -+K*L 

N 1 0 m ± n-p -+nll 
A 1 0 m ± n-p -+pn-

n-p -+pp-
N,A 1 0 (·hi) ± 1tp -+1tp 

np -+pp 
np -+A1t 

L 1 -1 (1) ± 1t-p -+AK0 

Exotic n-p -+K+L-

K± beams 
p, A2 0 0 ( 1) + K-p-+K0n 

Kp-+KA 
p, A2, B, n, A1 0 0 (1) ± K-p-+K*0n 

K-p-+K**0n 
Kp-+K*A 

p, A2, f, ro 0 0 (0, 1) + Kp-+Kp 
p, A2, B, n, A1, f, ro, 11. H, D 0 0 (0, 1) ± Kp-+K*p 

Kp-+K**p 
Kp-+Qp 

K*, K** 0 1 m + Kp-+nA 
Kp -+1tL 
K-p -+11A 
Kp -+TIL 
K-p -+11'A 
K-p -+n-L*+ 
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Exchanged 
quantum numbers 

Exchanges B s (J)G 1] a .. Processes 

K*,K**, K, Q 0 1 (t) + Kp-+pA 
K-p -+roA 
K-p -+<PA 
Kp -+p:E 
K-p -+ro:E0 
K-p -+<P:EO 

N 1 0 m ± Kp -+A1t 
K-p-+An 

N,A 1 0 (t,j) ± K -n-+ :E01t-
A, :E 1 -1 (0, 1) ± Kp-+pK 
Exotic Kp-+KS 

pbeam 
p, A2, B, 1t, A1 0 0 ( 1) ± pn-+np 

pp-+pA 
pp-+AA 

p, A2, B, 1t, Auf, ro, 11. H, d 0 0 (0, 1) ± pp -+pp 
N,A 1 0 (t.!) ± pp -+1tD 

pp-+pD 
p beam 

p, A2, B, 1t, A1 0 0 (1) ± ~p-+~n 
pn-+A++p 
pp-+AA 

p, A2, B, 1t, A1 , f, ro, 11. H, D 0 0 (0, 1) ± PP -+pp 
K*, K**, K, Q 0 1 (t) ± pp-+AA 

pp -+A:Eo 
pp -+f:E 

N,A 1 0 (t,!) ± pp -+1t-1t+ 
A, :E 1 -1 (0, 1) ± pp-+K+K-
Exotic PP -+1:-:E-

Abeam 
f, ro, 11. H, D 0 0 (0) ± Ap -+Ap 

y beam 
p, A2, B, 1t, A1 0 0 (1) ± yp -+1t+n 

yp-+Atn 
yp -+7t-A++ 

p, B, ro, H 0 0 (0, 1) ± yp -+7t0p 
yp-+ l1P 

A2, 1t, A1 , f, Tl• D 0 0 (0, 1) ± + yp-+ pOp 
yp -+rop 
yp-+ <I>P 

A2, 1t, A1 , f, 11• D 0 0 (0,1) ± + 1'P -+')'p 
K*,K**,K, Q 0 1 m ± yp-+K+A 

yp-+K*+A 
N 1 0 (t) ± yp -+All 
N,A 1 0 (t,J) ± yp -+n1t+ 

yp -+p1t0 
yp -+A++1t-

K 0 beam 
p, 0) 0 0 (0, 1) + - K~p -+Kgp 
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vertices (such as N -+a) then It= 1 only. But if there is no exchange 
of charge, or change of isospin at a vertex, then It = 0 or 1. If the 
process has been initiated by a pion beam ( G" = - 1) then the t channel 
will have a definite G-parity ( ± 1) depending on the G-parity of the 
final-state meson. But with K, y or baryon beams (on a baryon target) 
G-parity will not be a good t-channel quantum number, and so is not 
restricted. If the initial state contains a pseudo-scalar particle (n: or K), 
and the final state a pseudo-scalar, then the t channel can only contain 
normal parity exchanges, 7J = + 1 (see (6.8.6)). Or more rarely if the 
final state contains a scalar such as e then we must have abnormal 
parity, 7J = -1, exchanges. But for other spin combinations the 
normality is not restricted. With the neutral y or Kt beams the 
G-parity is not restricted, and It = 0 or 1, but if the final state contains 
a neutral meson then the t channel has a definite value of On(= ± 1). 
Otherwise, On is not restricted. 

With S and/or B =!= 0 exchanges, G and On are not restricted, so the 
rules are much easier to apply. 

The simplest set of processes are meson-baryon charge-exchange 
scattering such as n:-p-+ n:0n Since the t-channel n:-n:0 -+ pn has 
charge, only I= 1 non-strange mesons can contribute, and the n:-n: 
vertex is restricted to even G-parity and normal parity. Only the p 
satisfies all these requirements. Similar remarks apply to n:-p-+11n 
except that 11 has even G-parity and so only A2 can be exchanged. 
However, in most processes the exchanges are not so simple. Thus 
in K-p-+K0n the K mesons are not eigenstates of G-parity so both 
p and A2 can be exchanged, and if the mesons have non-zero spin, as 
in n:-p-+p0n, the normality is not restricted son: exchange is allowed 
as well as A2• 

Bearing the above rules in mind the reader should have no difficulty 
in checking table 6.5. However, these are only the leading trajectories 
with the given quantum numbers, and secondary or daughter p', A~ 
may also occur, as well as Regge cuts. (For f read f and P.) 

The appearance of a Regge pole in the t (or u channel) should result 
in a peak of the differential cross-section near the forward (or back
ward) direction. An example shown in fig. 6.5 is the data for K+p 
elastic scattering. Near the forward direction we see the effect of the 
t-channel poles, P, f, ro, p and A2, while the u channel of K +p has the 
quantum numbers of the A and :!: baryons and so there is a smaller 
backward peak. However, the u channel ofK -p-+ K -pis K +p-+ K +p, 
which has exotic quantum numbers, and so there are no Reggeons 
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Fw. 6.5 The differential cross-sections for various elastic 
scattering processes at 5 GeVfC. 

which can be exchanged (unless the conjectured Z particle exists- see 
Particle Data Group (1974)), and as expected the backward peak is 
strongly suppressed. 

This sort of correlation between the occurrence of forward or 
backward peaks of d(J"fdt, and the presence of non-exotic quantum 
numbers (and hence known trajectories) in the crossed channel, 
provides an excellent confirmation that particle exchange is the 
mediator of the strong interaction. 

d. The effective trajectory 

From (6·8·3) log(~~)= (2a(t)-2)log (t) +log(F(t)) (6.8.7) 

and so by plotting log (d(J"fdt) for a given process against logs, at 
fixed t, we can determine the 'effective trajectory' for that process. 
At sufficiently high energy this effective trajectory should correspond 
to the leading trajectory for the process (apart from any complications 
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FIG. 6.6 (a)-(j) The effective trajectories for a variety of processes obtained 
using (6.8.7). The trajectories are: (a) p exchange, (b) A2 exchange, (c) p+A2 

exchange, (d) K* + K** exchange, (e) 1t exchange, (j) P exchange. 

https://doi.org/10.1017/9781009403269.007 Published online by Cambridge University Press

https://doi.org/10.1017/9781009403269.007


192 REGGE POLES AND HIGH ENERGY SCATTERING 

due to Regge cuts etc., see chapter 8 below). In fig. 6.6 we show the 
effective trajectory obtained from (6.8.7) for some of the processes for 
which there is good high energy data, and where there is reason to 
believe that a single trajectory may suffice. 

Evidently within the experimental errors these effective trajectories 
are consistent with straight lines, and agree quite well with those 
obtained from the resonance masses in figs. 5.4: and 5.5. This is a 
remarkable success for Regge theory. Indeed it seems almost too good 
given that one might have expected curved trajectories and inter
ference from cuts! 

We noted in section 2.8 that an elementary-particle exchange would 
give rise to a fixed power behaviour, A "'s(J', where 0' is the spin of the 
particle, independent oft. Such fixed powers are not seen, even for the 
exchange of stable particles such as the pion and nucleon which once 
seemed the best candidates for this elementary status. It thus seems 
safe to conclude that all hadrons are Reggeons, i.e. lie on Regge 
trajectories. 

Also shown in fig. 6.6 (f) is the effective trajectory of the P obtained 
from high energy pp elastic scattering. It is found that 

ai!f(t) ~ 1.08 + 0.2t (6.8.8) 

for it! < 1.4GeV2, i.e. the trajectory has a small slope but an intercept 
above 1, apparently in violation of the Froissart bound. We shall dis
cuss this problem further in section 8. 7 a. 

e. Shrinkage 

Since dO'fdt seems to fall roughly exponentially for small it! in many 
processes (see for example fig. 6.5) we can approximate the residue by 
an exponential, so that (6.8.1) becomes 

( s)"'(t) 
A(s,t)~Geat So 

and with an approximately linear trajectory 
a(t) = a0 + a't 

this gives A(s, t) ~ G (~)"'" e<a+a'log(s/sollt 

So if we define the 'width' of forward peak in t by 

L1t = (~t (~~) ~~~) -1 

we find L1t = [2(a+a'logsfs0 )]-1 

(6.8.9) 

(6.8.10) 

(6.8.11) 

(6.8.12) 
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(from (6.8.11) in (4.3.12)). So Llt decreases as log 8 increases, i.e. Regge 
theory predicts that the width ofthe forward peak will 'shrink' as 8 

increases. This effect can be detected by a close examination of 
fig. 6.1 in which the low energy data has a somewhat broader peak 
than the high energy (at small t). It is this shrinkage which produces 
the slopes of the effective trajectories in figs. 6.6. 

From our discussion in section 2.4, one can interpret this shrinkage 
as an increase in the effective size of the target, but as the cross
section does not increase the target is evidently becoming more 
'transparent' as the energy increases. Though these predictions of 
Regge theory once seemed rather surprising from an 'optical' point 
of view they are now well verified in a great variety of processes. 

With ap(O) = 1 we obtain for the elastic differential cross-section 
from (6.8.11) and (1.8.16) 

- -+- Q2 e2[a+ap' log(s/so)tl (du)el 1 
dt 161T p 

and so uei(8)- fo (du) dt-+-1- G~ 
12 - _ 00 dt 161T2[a+aJ.log(8/80 )t] 

(6.8.13) 

while from (1.9.6) ul~t(8)-+Gp, and hence u~~fui~t"' (log8)-1 . So 
because of the shrinkage the elastic cross-section becomes a decreasing 
fraction of the total cross-section as log 8-+ oo. 

f. The phase-energy relation 

As the trajectory and residue functions are expected to be real below 
threshold (except where trajectories collide- see section 3.2) the 
phase of the Regge pole amplitude (6.8.1) is given entirely by the 
signature factor (e-i"(a(tl-v) +Y') and so the phase angle, ¢, is related 
to the energy dependence a(8) by 

cot"-= Re{A} = = _ cos1T(a(t)-v)+Y' 
'I'- Im{A}- p sin1T(a(t)-v) (6.8.14) 

It is often convenient to rewrite the signature factor as (for v = 0) 

e-i11a +Y' = e-i7Ta/2 ( e-imx/2 +Y' ei7Ta/2) 

= e-i,a/2 2 cos (7T;) for 9" = + 1 

. . /2 . (7Ta) = -Ie-171"' 2sin 2 for 9" = -1 (6.8.15) 

which exhibits this phase directly. 
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It is possible to determine the phase of helicity-non-flip elastic 
scattering amplitudes at t = 0, either by measuring 

u~~t(8) oc Im{A~~(8, 0)} 

and dufdt (12-712) oc Re{At~}2+lm{Am2 

(but dufdt has to be extrapolated to t = 0 from the finite negative 
values at which it can be measured), or by observing the interference 
between the hadronic scattering amplitude and the known Coulomb 
scattering amplitude (see for example Eden (1967)). In fig. 6.7 we 
show the data on the ratio pat t = 0 for pp elastic scattering compared 
with the predictions of a Regge pole fit (Collins, Gault and Martin 
1974) to O"tot(pp) and O"tot(pp) using just the dominant P, f and ro 
trajectories (with ap(O) > 1) and evidently the agreement is quite 
good. 

However, this is not really a test ofRegge theory so much as of the 
power behaviour of Im {Am and dispersion relations. Thus, for 
example, if we write a once-subtracted dispersion relation for the 
amplitude for 8 above threshold (from (1.10.7)) 

Re{A(8, t)}= ~ PJoo Im{A(8', t)} d8' +~J-oo Im{A(8', t)} d8' 
1T sT (8' -8)8' 1T uT (8' -8)8' 

(6.8.16) 

(whereP =principal value) andiflm{A(8,t)}""" 8"<t>and """ (-8)"<t> 

then since (Erdelyi et al. 1953) 

pfoo d8' } - -,-8'a-1 = -8"-1 cot(1Ta) 
1T 0 8 -8 

1 oo d8' - r --8'<>-1 = -8"-1 cosec(n(a-1)) 
1T J 0 8' +8 

(6.8.16) gives for 8-700 

Re{A(8, t)} 
Im{A(8,t)}""" -(cot(7ra)+9'cosec(7ra)) 

(6.8.17) 

(6.8.18) 

in agreement with (6.8.14) (for v = 0). This result holds for any 
number of subtractions. It is clear from (6.8.17) that where aerr < 1 
we can expect p < 0, but where the cross-section rises, so aerr > 1, 
p should become positive which is indeed the case in fig. 6.7. 

In general the absolute phases of scattering amplitudes cannot 
be determined experimentally, but the relative phases of different 
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FIG. 6. 7 Data on Re {A(s, 0)}/lm {A(s, 0)} for pp scattering compared with 
the Regge pole fit of Collins et al. ( 197 4). 

amplitudes can be obtained. For example in 1t-p -?-1t0n the polarization 
is given by (4.2.22), and so depends on the phase difference between 
the helicity-flip and non-flip amplitudes. A single p pole gives the 
same phase (6.8.14) (with v = 0, !/' = -1) to both amplitudes and 
sop exchange predicts that the polarization will vanish. In fact it is 
observed to be small but not zero ( ~ 10-20 per cent) at low energies 
( < 10 Ge V) indicating the need for some other contribution in addition 
to the p pole, perhaps a cut or a secondary p' trajectory. 

We shall discuss further examples ofRegge phase predictions below. 

g. Factorization and line reversal 

The disconnectedness of the S-matrix leads us to expect that Regge 
pole residues will factorize into a contribution to each vertex (see 
(4.7.15)) so that for at-channel Regge pole (fig. 6.8) 

fJll--+ 34(t) = fJ~(t) fJil(t) (6.8.19) 

We have found in sections 6.2 and 6.3 that this relation puts important 
constraints on the residues of helicity amplitudes, and it is built into 
(6.8.1). 
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FIG. 6.8 Processes connected by line reversal. 

Also in processes where a single Regge trajectory dominates it leads 
to relations such as 

(d~)2 (d~) (d~) 
dt 12~34 = dt 11~33 dt 22~44 

(6.8.20) 

but unfortunately it is not easy to test such relations directly because 
all hadronic scattering processes rely on a nucleon target. But one such 
relation which does seem to work quite well (Freund 1968, Bari and 
Razmi 1970), within the modest accuracy of the data, is 

d~ (NN--?- NN) 
dt 
d~ 
dt (1tN -71tN) 

d~ (NN -7NN*) 
dt 
d~ 
dt (1tN -71tN*) 

where N* is any I = ! baryon resonance so that P can be exchanged. 
The best direct tests of factorization can be made in inclusive reactions 
(chapter 10) where a greater variety of vertices is available. 

Another important consequence of factorization is line reversal 
symmetry. Clearly if one end of the exchange diagram for 1 + 2--?- 3 + 4 
is rotated as in fig. 6.8 then 8 <--> u and the process 1 + 4--?- 3 + 2 is 
obtained, which will thus have exactly the same Regge pole exchanges, 
with the same couplings, except that the sign will be changed for 
negative signature exchanges which are odd under 8 <--> u (see section 
2.5). 

For example the processes K-p-71t-I:+ and 1t+p-7K+I:+ differ only 
by the rotation of the K-1t vertex. The only possible pole exchanges 
are (see table 6.5) the natural-parity strange mesons K*(890) and 
K**(1400), of which the first has spin= 1 and hence odd signature, 
while the second has spin= 2 and even signature. So the Regge 
exchanges for these processes can be written asK** ± K *respectively. 
Of course only the relative signs of the contributions are determined in 
this way, and the individual termshavephasesgiven by (6.8.14). Simi
larlytheelasticscatteringprocess1t-p-71t-p differs from 1t+p-71t+p only 
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by line reversal, so these processes have P + f ± p exchanges, respec
tively, with the same couplings. The equality of these processes as s-+oo 
and P dominates is just the Pomeranchuk theorem of section 6.8b. 

There are, however, some serious failures of factorization. For 
example, the zero of the p-exchange amplitude A+_(1t-p-+7t0n) at 
iti c::: 0.55GeV2, which, as we discussed in section 6.3, could be due 
to a nonsense factor, should also appear in YP-+TIP which is similarly 
dominated by p exchange. But there is no sign of a zero in the latter 
process, which makes one feel that the 1t-p-+7t0n dip may not be a 
property of the p pole alone, but could involve cuts as well (see 
section 8. 7 c). Cuts do not generally have this factorization property, 
so the success of factorization gives some indication of the extent to 
which poles dominate. But of course sums of poles do not factorize 
either, so it is essential to isolate a single Regge exchange in making 
such tests. 

h. Exchange degeneracy 

We remarked in section 5.3 that trajectories often occur in approxi
mately exchange-degenerate pairs, so that for example the p and A2 

trajectories of fig. 5.4 and fig. 6.6 look rather like a single B = S = 0, 
I= 1, "'= + 1 trajectory, with particles having P = ( -1V, 
On= ( -1V, G = ( -1)H1 at every positive integer value of J. This 
so-called 'weak exchange degeneracy' seems to hold quite well for 
the leading meson exchanges (excluding the Pomeron) and for strange 
baryons, though it is less good for non-strange baryons. From (4.5.7) 
it is evident that if amplitudes of both signature contain the same 
trajectory then the position of the trajectory does not depend on the 
u-channel (or 'exchange force') discontinuity. 

If the u-channel forces do not contribute to the residues of the 
trajectories either then they will have degenerate residues too. This is 
called 'strong exchange degeneracy'. The absence of the u-channel 
contribution seems rather surprising, but we shall find in the next 
chapter theoretical reasons why this may happen. In this case the 
trajectories must 'choose nonsense', i.e. decouple from all amplitudes 
at nonsense points. This may be seen by considering for example the 
A2 and f trajectories which need ghost-killing factors (see section 6.3) 
in all their residues at a = 0 to avoid negative m2 particles. And if they 
are exchange degenerate with the p and ro trajectories, respectively, 
the latter will have zeros in their residues too, even though for them 
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a = 0 is a wrong signature-point, and so they choose nonsense (see 
table 6.2). 

This strong exchange degeneracy has the rather important conse
quence that if a given process is controlled by the sum of two such 
degenerate trajectories the amplitudes will be proportional to 

,6'H[(e-i1r(<>-11)+9')+(e-hr(<>-v)_9')] = 2,6'He-i1r(<>-11) (6.8.21) 

while if the process depends on the difference we get 

(6.8.22) 

The magnitudes in (6.8.21) and (6.8.22) are the same, but the latter is 
purely real, while the former has a phase which 'rotates' as a(t) 
changes. 

This relation should obtain for pairs of trajectories connected by 
line reversal. Thus for example (K+n-+K0p, K-p-+K0n) are con
trolled by A2 ± p, respectively, as are (K+p-+K0.A++, K-n-+K0.A-), 
while (K-p-+1t0A, 1t-p-+K0A) and (K-p-+1t-I:+, 1t+p-+K+I:+) are 
given by K** + K*. So if strong exchange degeneracy holds we expect 
in each case that the first reaction of the pair will have real phase, and 
the second rotating phase, and that their magnitudes will be identical. 
The first pair seem to achieve equality above about 5GeV, but the 
situation is less clear for the others (see for example Irving, Martin 
and Michael (1971)), partly because of uncertainties in the normaliza
tion of the data. But these relations are not expected to be exact 
because there must be other contributions besides these leading 
trajectories to explain the non-zero polarization which is observed. 
According to (6.8.21) and (6.8.22) all the helicity amplitudes for 
a given process would have the same phase, giving zero polarization. 

i. Internal symmetry relations 
Since we assume that the isospin SU(2) invariance of strong inter
actions is exact there are a large number of relations between ampli
tudes involving different charge states. Thus for a process such as 
1tN -+1tA all the different charge combinations such as 1t+p-+1t+.A+, 
1t+p-+1to,a++, 1t-p-+1to_ao, etc., share the same It= 1 p-exchange 
amplitude and are equal apart from Clebsch-Gordan coefficients. It 
is thus useful to analyse them all together, which is why the charges 
are not specified in many cases in table 6.5. 
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Also from (6.7.9) and (6.7.10) we find 

1 
(1t0nj A j7t-p) = ,.)2 ((7t+pj A j1t+p)- (1t-pj A J7t-p)) (6.8.23) 

which means that the p exchange, which dominates the charge
exchange process, should also, via the optical theorem (4.2.6), give 
the energy dependence of the difference of the total cross-sections of 
fig. 6.4, i.e. 

(6.8.24) 

which is quite well satisfied, and gives a value for ap(O) which is 
consistent with fig. 6.6. Similar relations, such as 

can be deduced for many processes, which means that before trying 
to fit the elastic scattering data it is useful to obtain information 
about the It= 1 exchanges by analysing the charge-exchange data. 

Further interesting relations stem from the approximate SU(3) 
invariance. Since this symmetry is badly broken for particle masses, 
the splitting of the exchanged trajectories often implies quite different 
energy dependences for SU(3) related processes. However, in some 
cases the trajectories are the same because of exchange degeneracy. 
Thus the set of charge-exchange reactions 7t-p-+7t0n (p exchange), 
7tf>-+11n (A2 exchange), K-p-+K0n (A2 + p exchange), K+n-+K0p 
(A2 - p) all share the same degenerate p-A2 trajectory, with a common 
residue if strong exchange degeneracy holds. The external mesons, 
1t, 11 and K, all belong to the same SU(3) octet, and so if SU(3) is exact 
for the residues we obtain the relation 

dO" dO" dO" - dO" 
dt (7t-p-+7ton) + 3 dt (7t-p-+11n) = dt (K-p-+KOn) + dt (K+n-+Kop) 

(6.8.26) 

(assuming 11 ~ 11s) which is quite well satisfied experimentally (fig. 6. 9). 
If higher spin particles are produced it is necessary to project out 
particular spin density matrices to test such equalities, and for example 
the relation 

dO" dO" dO" 
p dt (7t-p-+pon)+p dt (7t-p-+roon) = pdt(K-p-+K*On) 

dO" 
+p dt (K+n-+K*0p) (6.8.27) 
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SU(3) sum rule 

0.01 

0.5 1.0 
-t(GeV2 ) 

FIG. 6.9 Test of the relation (6.8.26) at 6 GeV (Barger 1974). 

should work for any density matrix p if we assume SU(3) couplings 
for the vector-meson octet with ideal ro, <!> mixing, and strong ex
change degeneracy of p and A2, and again it is successful experi
mentally (Barger 1974). 

These SU(3) predictions seem to work to about 10 per cent accuracy 
for all helicity amplitudes and for the differences of total cross-sections 
(even though one expects substantial additional contributions from 
Regge cuts in many processes). So SU(3) appears to be a much better 
symmetry for Regge couplings than it is for particle masses. 

j. Forward dips and peaks 

In section 6.4 we found that though an s-channel helicity amplitude 
has the kinematical behaviour (6.4.2) at t = 0, i.e. 

A Hs(s, t) "' (- t)nl2 where n = ll,u1 - ,u2l-l,u3 - ,u4 ll (6.8.28) 

a non-conspiring t-channel Regge pole, because of factorization and 
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Table 6.6 Processes with dips and spikes 
near t = 0 due to rr exchange 

Process 

7t-p -+pon 
1t+n-+ pop 
1t±p-+p±p 
1t+p-+ pO~++ 
1t+p -+fO~++ 
1t+n -+f 0p 

'YP -+7t+n 
rn -+7t-p 
'YP -+1t-~++ 
rn-+1t+~-

K±p-+K*±p 
K-p-+K*n 
K±p -+K*~ 

parity requirements, gives (6.4.7) 

Structure 

Dip 
Dip 
Dip 
Spike 
Spike 
Dip 
Spike 
Spike 
Dip 
Dip 
Dip 
Dip 
Spike 

201 

An.(s,t),...,(-t)mf2 where m=(l,u1 -,u3 l+l,u2 -,u4!) (6.8.29) 

So if we consider for example the process yp-+ rr+n, in which, inter 
alia, the 1t trajectory can be exchanged, since ,Uy = ± 1, ,u, = 0, all the 
helicity amplitudes must vanish according to (6.8.29}, but according 
to (6.8.28} the non-flip amplitudes with l,u3 - ,u41 = l,u1 - ,u2 l will not. 
In fact, as table 6.6 indicates, the differential cross-section has a spike 
in the forward direction which is of width Lit ~ m;. 

One explanation for this, which we discussed in section 6.5, is that 
the pion engages in a A= 1 conspiracy with a natural-parity trajec
tory. But as no such particle is observed, and as such conspiracies 
run into difficulties with factorization, it is generally assumed that 
the forward peak is due to the presence of a cut which does not have 
a definite t-channel parity and so is not constrained to (6.8.29) (see 
fig. 6.3 and section 8.7Jbelow). Table 6.6 implies that the minimum 
possible helicity-flip is favoured at each vertex, i.e. at the baryon 
vertex Ll,u == ,u2 - ,u4 = 0 dominates, except for the rrNN coupling 
where parity conservation demands Ll,u = 1, while for meson vertices 
Ll,u == ,u1 - ,u3 = 0 dominates, except that obviously for yrr we can only 
have Ll,u = ± 1. If these rules do not allow n = 0 there is a forward dip, 
but if n = 0 is permitted there is a forward spike despite (6.8.29). 
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Table 6.7 Processes controlled by p, ro and A2 exchange 

Dip seen at 
Process t~-0.55? Trajectories n 

1t-p -+1t0n Yes p 1 
1t-p-+~n No Az 1 

K-p -+K0n No p+Az 1 
K+n-+K0p No p-Az 1 
1t+p -+1tOd++ Yes? p 1 
1t+p -+TJd++ No Az 1 

K+p-+K0d++ No p-Az 1 
K-n-+K0d- No p+Az 1 
1t0p-+ pOp Yes ro 1 
1t±p -+p±p Yes ro+A2 1 
1t-p -+ron No p 0,2 
1t+n -+rop No p 0,2 

'YP -+1top Yes ro( + p) 1 
yn -+1t0n Yes ro( +p) 1 
'YP -+TJP No p(+ro) 0,2 
yN -+1t±N No p+Az 0,2 

1t+p -+ pOd++ No Az 0,2 
K+p -+K*0d++ No? p-Az 0,2 
K--n -+K*0d- ? p+Az 0,2 
1t+p -+rod++ No? p 0,2 

Note: (i) We have ignored 1t exchange which may dominate near t = 0 in some 
of these processes. The n ( = jp1 - Pal ± jp2 - p 4 j) given is relevant only to the 
natural-parity p, ro and A2 exchanges. 

(ii) We have assumed that p and A 2 have dominantly flip NN and NA 
couplings, while ro is dominantly non-flip. 

(iii) From SU(3), l'ronr > /'pny and /'pnr > l'roTIY· 
(iv) The p, ro couplings to 1t'Y and 1tV are flip. 

k. Nonsense dips 

Exchange-degeneracy arguments favour nonsense-choosing couplings 
for Reggeons, which implies that there should be dips in various 
differential cross-sections where trajectories pass through wrong
signature nonsense points (see table 6.2). 

The trajectories of fig. 6.6 show that the wrong-signature point 
a(t) = 0 occurs for the p and ro trajectories at JtJ ~ 0.55GeV2• How
ever, this point is right-signature for A2 and f, which will give a finite 
contribution (but not a pole) at a(t) = 0. Similarly a(t) = -1, which 
with linear trajectories is at JtJ ~ -1.6GeV2, is right-signature for 
p, ro and wrong-signature for A2, f. Table 6.7lists some of the processes 
which should be dominated by these trajectories (except that f is 
always overshadowed by P) and it is evident that many of the expected 

https://doi.org/10.1017/9781009403269.007 Published online by Cambridge University Press

https://doi.org/10.1017/9781009403269.007


REGGE POLE PHENOMENOLOGY 203 

dips occur, but by no means all. Hence either the poles do not always 
choose nonsense, or there are other important contributions, probably 
cuts, in addition to these leading trajectories, or both. Given that 
factorization relates the behaviour in various processes it seems to 
be rather hard to salvage this nonsense decoupling idea despite its 
apparent success in many cases. 

Similar conclusions apply to other exchanges. Some of the zeros 
expected from other bosons, such as K* exchange at cx(t) = 0 (i.e. 
ltl ~ 0.2GeV2), and from baryons, like N exchange at cx(u) = -l 
(i.e. lui ~ 0.2 Ge V2), are seen, but not all. It seems clear that cuts 
must play an important role, and we shall discuss this problem further 
in section 8. 7 c. 

l. The cross-over problem 
One rather unexpected feature of elastic differential cross-sections is 
that for example, do-fdt(7t-p-+7t-p) > do-fdt(1t+p-+1t+p) for t near 
zero, but they become equal for ltl ~ 0.15GeV2 and at larger ltl the 
sign of the inequality is reversed (Ambats et al. 1974). From (6.8.3) 
and table 6.5 we see that the difference between these cross-sections 
is due to p exchange. So we can write 

do- - -
dt (1t±p) = I(P+f+ p)++l2+ I<P+f+ p)+-12 (6.8.30) 

where we have dropped the kinematical factors in (4.2.5), the sub
scripts refer to the s-channel helicity amplitudes (4.3.10), and the 
Regge pole amplitudes are represented by their symbols. 

It is found that the largest contribution is that of the P, which near 
t = 0 is almost purely imaginary (from cxp(O) ~ 1, g' = + 1 in (6.8.14)), 
and that P and f have at most a very small coupling to the helicity-flip 
amplitude, so we have 

(6.8.31) 

so that 

L1 [~~ (7t±p)J = ~~ (1T-p-+1T--p)- ~~ (7t+p-+7t+p) oc lm{(p)++} 

(6.8.32) 

and hence the imaginary part of the p non-flip amplitude must have 
the 'cross-over zero' at ltl ~ 0.15GeV2. 
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Similar cross-overs occur at about the same value of t in other 
elastic processes such as Ll[d<Tfdt(K±p)], and d<Tfdt(pp)-d<Tfdt(pp), 
as well as in some quasi-elastic processes like Ll[d<T/dt(K±p_,. Q±p)], 
and for these processes the difference depends on Im{(p+ro)++}, the 
ro contribution being much the larger. 

It is possible to fit these differential cross-sections with poles by 
inserting arbitrary zeros in the p and ro non-flip residues (see for 
example Barger and Phillips (1969)), but there are two difficulties. 
First, in other processes such as 1cp_,.ron (p exchange), 1t±p_,.p±p 
(ro and.A2 exchange) or yp_,.1t0p:_(p and ro), where p and ro are also 
coupled to the p-p vertex, no corresponding zero is seen. In other 
words, the residue does not factorize. Secondly, a zero of the pole 
residue would imply that the real and imaginary parts of the 
amplitude have coincident zeros. We shall find in the next section 
that this is not the case. It seems clear therefore that there must be 
some other explanation for these zeros, and again cuts seem likely to 
take the blame (see section 8.7b). 

m. The phases of amplitudes and polarization 

Since a Regge pole gives the same phase to all helicity amplitudes, 
processes in which only a single Regge trajectory (or an exchange
degeneratepairoftrajectories) is exchanged are predicted to have zero 
polarization (from, for example, (4.2.22)). 

In fact polarization in LIS= 0 meson-baryon scattering processes 
is generally quite small, usually < 20 per cent (although at present 
the crucial1t-p_,.1t0n data is contradictory on this point, cf. Bonamy 
et al. ( 1973) and Hill et al. ( 1973) ), but the fact that it is non-zero means 
that there must certainly be other contributions, either lower-lying 
poles or cuts. 

It has proved possible, by judiciously combining and interpolating 
data on 1t±p elastic scattering and 1t-p _,.1t0n, including polarization 
and spin-correlation measurements, completely to determine the 
structure of the 1tN _,.1tN, lt = 0, 1, A++ and A+- amplitudes up to 
a common over-all phase (Halzen and Michael1971). Since the It= 0 
A++ amplitude should have the almost pure-imaginary phase of the 
Pomeron for small ltl this amounts almost to a complete phase 
determination. 

The results for It= 1 are shown in fig. 6.10. Looking first at A+_, 
we see the forward zero required by kinematics, and the nonsense-
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Fw. 6.10 The s-channel helicity amplitudes for 11 = inN scattering at 6 Ge V, 
from Halzen and Michael (1971). • Halzen-Michael amplitude analysis; 
-- Barger-Phillips FESR Regge analysis. 

choosing phase given by 

i e--fitra(tla(t), a(t) ;:::! 0.5 + 0.9t (6.8.33) 

(from (6.8.15) with!/'= -1), so that the imaginary part has a single 
zero, and the real part a double zero at a(t) = 0, i.e. at it! ;:::! 0.55 GeV2• 

This double zero can be seen directly in the elastic polarization since, 
from (4.2.22), using the same notation and approximations as led to 
(6.8.32), 

do-
dtP(7t±p--+7t±p) = + Im{(P+f)++(P)L};:::! + !(P)++i Re{(p)+_} 

(6.8.34) 

since the Pomeron is nearly pure imaginary. The elastic polarization 
(fig. 6.11) does indeed have the mirror symmetry and double zero at 
iti ;:::! 0.55GeV2 predicted by (6.8.33). So the~= 1, A+- amplitude 
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FIG. 6.11 Polarization in elastic n±p scattering, 
form Borghini et al. (1971, 1971). 
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can readily be parameterized by a nonsense-choosing p pole. The A++ 
amplitude has the cross-over zero in Im{A++} at JtJ ::: 0.15GeV2, but 
the real part has what looks like a double zero at JtJ::: 0.55GeV2• So 
it seems that only Im {A++} is significantly different from what one 
would expect from a p pole. 

Although at present we lack sufficient spin-dependent measure
ments to make similar complete amplitude decompositions for other 
processes, a careful use of the assumption that Regge pole phases hold 
good in some amplitudes has permitted quite a lot of information to 
be obtained about amplitude structures. Many amplitudes do seem 
to have approximate Regge phases, but certainly not all, and there is 
as yet no proper understanding of the successes and failures. 
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