Bull. Austral. Math. Soc. Vol. 58 (1998) [387-391]

FINITE GENERATION OF EQUIVARIANT COHOMOLOGY FOR A *p*-COMPACT GROUP *G*

HYANG - SOOK LEE

For a *p*-compact group G and G-space X, we prove the finite generation of the equivariant cohomology $H^*_G(X)$ and give the form of the Poincaré series of $H^*_G(X)$.

0. INTRODUCTION

For a compact Lie group G, the algebra $H_G^* = H^*(BG, \mathbb{F}_p)$ is finitely generated. This result is extended to finite loop spaces and other loop spaces called *p*-compact groups [2]. Dwyer and Wilkerson introduced *p*-compact groups and proved lots of their properties in detail [2]. Their work shows that a *p*-compact group has much of the rich internal structure of a compact Lie group. In [3], Quillen proved finite generation of $H_G^*(X) = H^*(EG \times_G X)$ for the general equivariant cohomology ring of a *G*-space *X*, where *G* is a compact Lie group. In this paper, we generalise theorems on finite generation of $H_G^*(X)$ for a *p*-compact group *G* and *G*-space *X*. We also give the form of the Poincaré series of $H_G^*(X)$. In the first section, we give brief definitions and properties as background. In Section 2, we give the main results.

1. Preliminaries

A graded vector space H^* over a field F is finite dimensional if each H^i is finite dimensional over F and $H^i = 0$ for all but finite number of i. A space X is \mathbb{F}_p -finite if H^*X is finite dimensional over the finite field \mathbb{F}_p . Let $\varepsilon_X : X \to X_p^{\frown}$ be a natural map for any space X where $(_)_p^{\frown}$ is the \mathbb{F}_p -completion functor constructed by Bousfield and Kan [1]. If ε_X is a homotopy equivalence, we say X is \mathbb{F}_p -complete.

DEFINITION 1.1: A *p*-compact group is a loop space G satisfying the following equivalent conditions.

- (1) G is \mathbb{F}_p -finite, \mathbb{F}_p -complete and $\pi_0 G$ is a finite p-group.
- (2) G is \mathbb{F}_p -finite and BG is \mathbb{F}_p -complete.

Received 19th February, 1998

The author was supported by Ministry of Education, BSRI - 96 - 1424, partially supported by KOSEF 97-07-01-02-01-5.

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9729/98 \$A2.00+0.00.

THEOREM 1.2. [2] If G is a p-compact group, then $H^*(BG, \mathbb{F}_p)$ is finitely generated as an algebra.

From classical algebra, if X is connected then H^*X is finitely generated as an algebra if and only if H^*X is Noetherian as a graded ring if and only if every graded ideal in H^*X has a finite number of homogeneous generators if and only if every graded submodule of a graded finitely generated H^*X -module is itself finitely generated. Also a H^*X -module satisfies the ascending chain condition on submodules if and only if every submodule of H^*X -module is finitely generated.

A homomorphism $f: G \to K$ of *p*-compact groups is a pointed map $Bf: BG \to BK$. The homogeneous space K/G is defined to be the homotopy fibre of Bf over the basepoint of BK. The homomorphism f is said to be a monomorphism if K/G is \mathbb{F}_p -finite and an epimorphism if $\Omega(K/G)$ is a *p*-compact group. A short exact sequence $G \xrightarrow{f} H \xrightarrow{g} K$ of *p*-compact groups is a sequence such that $BG \to BH \to BK$ is a fibration sequence where f is a monomorphism and g is an epimorphism.

Let G be a p-compact group and X be a G-space defined to be a fibration $EG \times_G X \rightarrow BG$ with X as the fibre. Here EG is the universal bundle over BG. The equivariant cohomology of the G-space X is defined by the formula

$$H^*_G(X) = H^*(EG \times_G X)$$

where $H^*(.)$ means ordinary cohomology.

A morphism $(f, u) : (G, X) \to (G', X')$ is a homomorphism of *p*-compact groups $f : G \to G'$ and for a *G*-space *X* and *G'*-space *X'*, a map $u : X \to X'$ which is *f*-equivariant, that is, u(gx) = f(g)u(x). Let $EG \to BG$ and $EG' \to BG'$ be the principal *G* and *G'*-bundle respectively, and consider the following diagram

where p_1 and p_2 are induced by the projections of $EG \times EG'$ onto its factors, \overline{u} is induced by u and $v : EG \to EG'$ is an *f*-equivariant map, $\overline{v \times u}$ is the map on orbit spaces induced by $v \times u$. This diagram yields a canonical homomorphism

$$(p_1^*)^{-1}p_2^*\overline{u}^*: H^*(EG' \times_{G'} X') \to H^*(EG \times_G X).$$

This homomorphism will be denoted by

$$(f, u)^* : H^*_{G'}(X') \to H^*_G(X).$$

If X is a point, we write $H^*_G(pt) = H^*(BG) = H^*_G$.

Finite generation

2. The finiteness theorem

Let G be a p-compact group and X be a G-space. In this section we study the finite generation of $H^*_G(X)$. The coefficient ring is assumed to be a finite field \mathbb{F}_p .

LEMMA 2.1. [2] If G is a p-compact group and M is a \mathbb{F}_p -vector space which is a module over $\pi_1 BG$, then $H^*(BG, M)$ is finitely generated as a module over H^*BG .

THEOREM 2.2. [2] A homomorphism $f : G \to K$ of p-compact groups is a monomorphism if and only if the ring H_G^* is a finitely generated module over H_K^* .

Let $f: G \to K$ be a monomorphism of *p*-compact groups. We consider $H^*_G(X)$ as an algebra over H^*_K by means of the homomorphism $(f, \rho)^*$ where ρ is the map from X to a point. Then we have the following theorem.

THEOREM 2.3. If X is \mathbb{F}_p -finite, then $H^*_G(X)$ is a finitely generated H^*_K -module. PROOF: We consider the Serre spectral sequence for the E_2 -term of the fibre space $EG \times_G X \to BG$

$$E_2^{s,t} = H^s(BG, H^t(X)) \Longrightarrow H_G^{s+t}(X).$$

Now X is \mathbb{F}_p -finite, hence the E_2 -term is finitely generated as a module over H_G^* by Lemma 2.1. Since H_G^* is a Noetherian ring, E_r is also a finitely generated H_G^* -module by induction on r. $E_r = E_{\infty}$ for sufficiently large r, and hence $H_G^*(X)$ is a finitely generated module over H_G^* . But H_G^* is a finitely generated H_K^* -module (Theorem 2.2). Therefore $H_G^*(X)$ is a finitely generated module over H_K^* .

COROLLARY 2.4. $H^*_G(X)$ is a finitely generated algebra over \mathbb{F}_p .

A homomorphism $\zeta : R \to S$ of graded commutative rings is finite if S is a finitely generated module over R via ζ .

COROLLARY 2.5. If $(f, u) : (G, X) \to (G', X')$ is a morphism such that f is a monomorphism and X is \mathbb{F}_p -finite, then $(f, u)^* : H^*_{G'}(X') \to H^*_G(X)$ is finite.

PROOF: If we choose a monomorphism $G' \to K$, then $H^*_G(X)$ is a finitely generated module over H^*_K , hence also a finitely generated module over $H^*_{G'}(X)$.

Now we recall the Euler-Poincaré function φ which maps certain modules to elements of an Abelian group and satisfies the following condition;

If $0 \to M' \to M \to M'' \to 0$ is exact, then $\varphi(M)$ is defined if and only if $\varphi(M')$ and $\varphi(M'')$ are defined, and $\varphi(M) = \varphi(M') + \varphi(M'')$.

REMARK. Assume φ is defined on finite dimensional vector spaces over \mathbb{F}_p , and is equal to the dimension. Then the values of φ are in the additive group of integers.

If X is \mathbb{F}_p -finite, the Poincaré series of $H^*_G(X)$ is defined by

$$P_t\Big(H_G^*(X)\Big) = \sum_{i=0}^{\infty} \Big(\dim_{\mathbf{F}_p} H_G^i(X)\Big)t^i.$$

If $H^*_G(X)$ is finite dimensional over \mathbb{F}_p , then $P_t(H^*_G(X))$ is a polynomial.

H-S. Lee

If X is \mathbb{F}_p -finite, we showed $H^*_G(X)$ is a finitely generated H^*_K -module in Theorem 2.3. Let m be the number of generators of H^*_K as an algebra over \mathbb{F}_p . Then we give the following type of Poincaré series of $H^*_G(X)$.

PROPOSITION 2.6. The Poincaré series of $H^*_G(X)$ is a rational function of the form

$$P_t\left(H_G^*(X)\right) = \frac{f(t)}{\prod\limits_{i=0}^m \left(1 - t^{d_i}\right)}$$

where d_i 's are the corresponding degrees of generators of H_K^* and f(t) is a polynomial with integer coefficients.

PROOF: We use induction on m. For m = 0, $H_G^*(X)$ is a finitely generated \mathbb{F}_{p^*} module, and hence $P_t(H_G^*(X)) = f(t)$ is a polynomial in $\mathbb{Z}[t]$. Assume $m \ge 1$. Since H_K^* is a finitely generated algebra over \mathbb{F}_p , we set $H_K^* = \mathbb{F}_p(x_1, x_2, \dots, x_m)$ where deg $x_i = d_i \ge 1$. We consider the following exact sequence by multiplying x_m on $H_G^*(X)$

$$0 \to C_n \to H^n_G(X) \xrightarrow{x_m} H^{n+d_m}_G(X) \to L_{n+d_m} \to 0.$$

Let $C = \bigoplus_n C_n$ and $L = \bigoplus_n L_n$. Then C and L are finitely generated H_K^* -modules (as a submodule and factor module respectively) and annihilated by x_m , hence are graded $\mathbb{F}_p(x_1, x_2, \dots, x_{m-1})$ -modules. By the Remark,

$$\dim C_n - \dim H^n_G(X) + \dim H^{n+d_m}_G(X) - \dim L_{n+d_m} = 0.$$

Multiplying by t^{n+d_m} and summing over n,

$$\sum_{n=0}^{\infty} t^{n+d_m} \dim C_n - \sum_{n=0}^{\infty} t^{n+d_m} \dim H^n_G(X) + \sum_{n=0}^{\infty} t^{n+d_m} \dim H^{n+d_m}_G(X) - \sum_{n=0}^{\infty} t^{n+d_m} \dim L_{n+d_m}$$
$$= 0.$$

Hence

$$t^{d_m} \cdot \left(\sum_{n=0} \dim C_n \cdot t^n\right) - t^{d_m} \cdot \left(\sum_{n=0} \dim H^n_G(X) \cdot t^n\right)$$
$$+ \sum_{n=0} \dim H^{n+d_m}_G(X) \cdot t^{n+d_m} - \sum_{n=0} \dim L_{n+d_m} \cdot t^{n+d_m}$$
$$= t^{d_m} \cdot P_t(C) - t^{d_m} \cdot P_t\left(H^*_G(X)\right) + P_t\left(H^*_G(X)\right) - P_t(L) - g(t)$$
$$= 0$$

where

$$g(t) = \sum_{i=0}^{d_m-1} \dim H^i_G(X) \cdot t^i - \sum_{i=0}^{d_m-1} \dim L_i \cdot t^i \in \mathbb{Z}[t].$$

Then

$$(1 - t^{d_m}) P_t (H^*_G(X)) = P_t(L) - t^{d_m} P_t(C) + g(t)$$

= $\frac{f_1(t)}{\prod_{i=1}^{m-1} (1 - t^{d_i})} - \frac{t^{d_m} \cdot f_2(t)}{\prod_{i=1}^{m-1} (1 - t^{d_i})} + g(t)$

by induction. Therefore

$$P_t(H_G^*(X)) = \frac{f_1(t) - t^{d_m} \cdot f_2(t) + g(t) \prod_{i=1}^{m-1} (1 - t^{d_i})}{\prod_{i=1}^m (1 - t^{d_i})}$$
$$= \frac{f(t)}{\prod_{i=1}^m (1 - t^{d_i})}$$

where $f(t) \in \mathbb{Z}[t]$.

References

- [1] A.K. Bousfield and D.K. Kan, *Homotopy limits, completions and localizations*, Lecture Notes in Math. **304** (Springer-Verlag, Berlin, 1972).
- [2] W.G. Dwyer and C.W. Wilkerson, 'Homotopy fixed point methods for Lie groups and finite loop spaces', Ann. of Math. 139 (1994), 395-442.
- [3] D. Quillen, 'The spectrum of an equivariant cohomology ring I', Ann. of Math. 94 (1991), 549-572.

Department of Mathematics Ewha Women's University Seoul 120-750 Korea e-mail: hsl@mm.ewha.ac.kr 0

[5]