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Abstract

Biles (1970) has called a subring A of the ring C(X), of all real valued
continuous functions on a topological space X, a Wallman ring on X
whenever Z(A), the zero sets of functions belonging to A, forms a normal
base on A'in the sense of Frink (1964). Previously, we have related algebraic
properties of a Wallman ring A to topological properties of the Wallman
compactification w(Z(A)) of X determined by the normal base Z{A). Here
we introduce two different generalizations of the concept of "a C*-embedded
subset" and study relationships between these and topological (respectively,
algebraic) properties of w(Z(A)) (respectively, A).

Subject classification (Amer. Math. Soc. (MOS) 1970): 54C45, 54C40,
54 C 50 54 E 05.

1. Introduction

H. Wallman (1938) gave a method for associating a compact Tx space w(F) with
a distributive lattice F; w(F) is the space of all F-ultrafilters and the topology of
w(F) has as a base for closed sets a lattice F* which is isomorphic to the lattice F.

O. Frink (1964) defined the concept of a normal base F on a Tychonoff space X
and he applied Wallman's construction to obtain Hausdorff compactifications w(F)
of X. Throughout this paper X will denote a Tychonoff space (completely regular+
Hausdorff).

1.1. DEFINITION. A collection F of closed subsets of Zis called a lattice of closed
subsets of Xprovided that:

(1) 0 ,ZeF;and
(2) if A,BeFthen AnBeFand AuBeF.

1.2. DEFINITION. A base F for the closed subsets of X is called a normal base
on X provided:

(1) F is a lattice of closed subsets of X.
(2) Fis disjunctive (that is, if A eF and xeX—A, then there exists B eF with

xei?and AnB = 0).
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(3) F is normal (that is, if A,BeF with AnB = 0, then there exist C,DeF
with AnD = 0, BnC = 0 and CuD = X).

If F is a normal base on X, then w(F) is the set of all F-ultrafilters which becomes
a space as follows: If AeF, let A* be the set of all F-ultrafilters having A as a
member. .F* then denotes the set of all A* with AeF. F* is a. base for the closed
sets of a topology on w(F). w(F) with this topology is always a Hausdorff
compactification of X. Here X is embedded into w(.F) by the map which sends
each point x e X to the F-ultrafilter {̂  e F\ x e ^ } .

Frink observed that the family Z(X) of all zero sets of continuous real valued
functions on X is a normal base on X which gives rise to a compactification
w(Z(X)) equivalent to the Stone-Cech compactification jSZof X. He also observed
that if Y is any given compactification (all spaces are Hausdorff) of X, and if
E(X, Y) denotes the subset of C(X) consisting of those real-valued continuous
functions on X which are continuously extendible to all of Y, then Z{E(X, Y)),
the zero sets of such functions, is a normal base on X. Biles (1970) later called a
subring A of C{X) a Wallman ring on X provided Z{A), the zero sets of functions in
A, is a normal base on X. Bentley and Taylor (1975) studied relationships between
algebraic properties of a Wallman ring A and topological properties of the
compactification w(Z(A)) of X.

We adopt our notation and terminology from our earner paper (1975); these are
mostly consistent with that of Gillman and Jerison (1960).

2. Generalizations of C*-embedding

A well-known example of a Wallman ring is C*(X) whose Wallman compacti-
fication is equivalent to the Stone-Cech compactification. Since considerable work
has been done with C*(X), it is natural to investigate which properties of C*(X)
carry over to arbitrary Wallman rings.

In this paper we shall study two concepts which are related to a generalization
of the question of when is a subset of a space C*-embedded in the space.

Gillman and Jerison (1960), p. 89 proved that if S is a subspace of X, then S
is C *-embedded in X if and only if C l ^ S1^ pS. We begin with the investigation of
a generalization of this property. If we replace Stone-Cech compactifications with
Wallman compactifications induced by arbitrary Wallman rings on X and S,
then ClpX S^pS leads us to the following definition.

2.1. DEFINITION. If S<= X, A is a Wallman ring on X, and B is a Wallman ring
on S, then S is (B, A)-embedded in X if and only if C\W{Z{A)) S^ w(Z(B)).

2.2. THEOREM. IfSc. X, then S is (C*(S), C *{X))-embedded in X if and only ifS
is C*-embedded in X.
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The proof of this theorem, which shows (B, ̂ -embedding is in fact a generali-
zation of C*-embedding, is an immediate consequence of the aforementioned
property from Gillman and Jerison (1960) and the property shown by Frink
(1964) that for any Tychonoff space X, w(Z(X))^pX.

Many of the results in Gillman and Jerison (1960) involving C*(X) and
C*-embedded subsets of X have generalizations involving (B, ,4)-embedding. We
give a sample of these. The results from Gillman and Jerison (1960) which motivated
the theorems are given as corollaries.

2.3. THEOREM. If Y is a compactification of X and A is a Wallman ring on X,
then Y^ w(Z(A)) if and only if X is (A, C*(F))-embedded in Y.

PROOF. Y^W(Z(A)) is equivalent to Clw{Z(Y))X^w(Z(A)) which is equivalent
to Zis (,4,C*(r))-embedded in Y.

2.4. COROLLARY (Gillman and Jerison (I960), Theorem 2.5 (II)). If Y is a
compactification of X, then Y~fiX if and only if X is C*'-embedded in Y.

2.5. THEOREM. IfS^X,A is a Wallman ring on X and B is a Wallman ring on S,
then S is (B,A)-embedded in X if and only if S is (B,C*(w(Z(A))))-embedded in
w(Z(A)).

PROOF. Since w(Z(C*(Y)))^ Y for any compact space Y, we have that the
following are equivalent:

(a) Clw(ZU))S^
(b) C\MZ(

(c) S is (B, C*(w(Z(^))))-embedded in w(Z(A)).

2.6. COROLLARY (Gillman and Jerison (1960), Theorem 6.9). IfS^X, then S is
C*-embedded in X if and only if it is C*-embedded in fix.

2.7. THEOREM. If S<=X, S is compact, A is a Wallman ring on X and B is a
Wallman ring on S, then S is (B, A)-embedded in X.

PROOF. Since S is compact and S<=w(Z[A]), we have w(Z(B))^S and
=S- Therefore Clu,(zu)) S^ w(Z(B)).

2.8. COROLLARY (Gillman and Jerison (1960), Theorem 6.9b). Every compact
set S in X is C*-embedded in X.

2.9. THEOREM. IfS<^X,A is a Wallman ring on X and B is a Wallman ring on S,
then S is (B, A)-embedded in X if and only if S is (B, C *(Clw(Z(A)) S))-embedded in
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PROOF. The following are equivalent:
(a) S is OB,/l)-embedded in %l
(b)

(A)
(e) S is (B, C'CCl^zu,, S))-embedded in C1W(ZU)) S.

2.10. COROLLARY (Gillman and Jerison (1960), Theorem 6.9). S is C*-embedded
in X if and only ifS is C*-embedded in C\fiX S.

Proximities are a useful tool in the investigation of Wallman rings since they
simplify the notation and help isolate critical ideas. So we now introduce a proximity
induced by a Wallman ring. For basic information on proximities we refer the
reader to Naimpally and Warrack (1970).

2.11. DEFINITION. If A is a Wallman ring on Zthen a binary relation 8A on the
power set of X is defined by: if E,F<= X, then E8AF{E and F are v4-near) if and
only if whenever f,geA with E<=Z(f) and F<=Z(g) then Z(f)nZ(g)^0. E8AF
means not (E 8A F) and is read as E and F are ,4-far.

The following theorem gives an equivalent definition for this proximity for
inverse closed Wallman rings (Hager, 1960).

2.12. THEOREM. If A is an inverse closed Wallman ring on X, then for Hx and H2

subsets of X, Hx 8A H2 if and only if there is a function feA such that /(Hx) = 0
andf(H.i) = l.

PROOF. If H^^H^, then there are functions fx and f2sA such that H
and Z(/1)nZ(/2) = 0. Let/=/f/(/!+/i). Then feA, since

Z(fl +/!) = Z(/i)nZGQ = 0;
also

^O and

If there is a function feA such that/(Hx) = 0 and/(Hjj) = 1, then H
and Z(f)nZ(f— 1) = 0. f-leA since the constant function 1 belongs to every
inverse closed Wallman ring. Therefore Hx 8^ H2.

2.13. DEFINITION. Let G and H be sets and let A be a collection of real valued
functions, then G and H are completely A-separated if there are disjoint zero sets
Zx and ZzeZ(A) such that G<^Zt and H<=Z2.
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2.14. DEFINITION. Let S be a set. Let A and B be two sets of real valued functions,
whose domains may vary from function to function. Then we write:

(1) A ̂  8B if and only if any two subsets of S which are completely ^-separated
are also completely /^-separated.

(2) A ^SB if and only if A^8B and B^s A.
In terms of the notation of Bentley and Taylor (1975) we have the following.

2.15. THEOREM. If X is a space and A and B are subsets of C(X), then
if and only ifA^B, and A^XB if and only i

In our study of subspaces which may be (B, ,4)-embedded in a space, we shall
want to be able to consider the proximity 8A restricted to the subspace and so we
have the following theorem.

2.16. THEOREM. If S<=-X, A is a Wallman ring on X, 8' is the proximity on S
induced by 8A and B is a Wallman ring on S, then A^SB if and only if 8' = SB.

Given two proximities on the same space, as we had in the previous theorem,
we have the following standard partial order relation.

2.17. DEFINITION. If 8X and 82 are proximities on a space X, then S1<S2 if
and only if, for any two subsets G and H of X, G 8X H implies G S2 H. Thus 8X = S2

if and only if 81 < S2 and S2 < S^

2.18. THEOREM. If A and B are Wallman rings on X, then A^B if and only if
84 < 8B.

A proximity on a space induces a compactification of that space called the
Smirnov compactification. The following theorem, due to Njastad (1966), states
that the Wallman compactification induced by a Wallman ring and the Smirnov
compactification induced by 8A are equivalent.

2.19. THEOREM. Let A be a Wallman ring on X, then the Smirnov compactification
of the proximity space (X, 8A) and the Wallman compactification w(Z(A)) are
equivalent compactifications of X.

The next theorem gives a convenient method for establishing which sets are far
with respect to a proximity associated with a Wallman ring.

2.20. THEOREM. IfG and H are subsets ofX, and A is a Wallman ring on X, then
G 8 AH if and only if

H = 0.
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PROOF. If G8AH, then there are disjoint zero sets F1 and F2eZ(A) such that
G c f i and H<=F2. Since

ClW(Z(A)) pin C\wiZ(A)) F2 — 0> C1W(Z(^)) G n ClwlZ(A)) H=0.

If Clw(ZU))GnClwiZlA))H= 0, then there are disjoint closed sets in w(Z(A))
of the form ClwiZU))F1 and C L ^ ^ j F a where F1}F2eZ(A) such that

ClW(2u))G<=Clw(ZU))F1 and ClwiZ(A))H<=Clwlzu))F2.

Therefore G<^FX, /r<=F2 and FxnF2 = 0 .

In the work which follows, we will use a theorem due to Taimanov (1952), the
proof of which is implicit in Engelking (1968, p. 127). Smirnov (1952) also proved
the same result using proximity space theory.

2.21. THEOREM (Taimanov, 1952). IfY1 and 72 are compactifications of X, then
a necessary and sufficient condition that Y2^Y1 is the following: For any two closed
subsets Bx andB2 of X, ClF 251nClF a .B2 = 0 implies Cly1.B1nClFl.B2 = 0 .

We are now in a position to prove a series of theorems which establish a
relationship between the proximities we have just defined and (B, .^-embedding.

2.22. THEOREM. IfS is a subspace ofX, A is a Wallman ring on X, B is a Wallman
ring on S and S' is the proximity on S induced by 8A, then the following are equivalent:

(1)
(2)
(3)

PROOF. That (1) and (2) are equivalent is clear.
(2)->-(3): Let Bx and B2 be disjoint closed subsets of S such that

dW(Z(B)) ^inClwiZlB)) B2 = 0 .

Then B1S]3B2 which implies by (2) that B18'*B2. Thus ^ S^ B2 and so
Clwlz(A))BinClw{Z{A))B2 = 0 and C l a ^ ^ n C l c ^ , , ^ = 0 . Therefore by
the Taimanov Theorem H < Z [ J B ] X C 1 W ( Z U ) ) S ' .

(3)->(2): Let Ax and A2 be subsets of S such that AX&BA2. Let Bx = C\SAX,
B2 = CISA2. Then Ax 8BA2 and so Bx 8BB2. Therefore

ln

which is equivalent to ClcliiKZU))S51nClCi)(,(zu))lS£2 = 0 and

This means that Bx 8AB2. Therefore B18'^B2 and Ax 8'*A2.

https://doi.org/10.1017/S1446788700038805 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700038805


[7] C*-embedding for Wallman rings 221

2.23. THEOREM. IfS is a subspace ofX, A is a Wallman ring on X, B is a Wallman
ring on S and 8' is the proximity on S induced by 8A, then the following are equivalent:

(1)
(2)
(3)

PROOF. That (1) and (2) are equivalent is clear.
(2)-»(3): Let Bx and B2 be disjoint closed subsets of S such that

Then C\w{ZU))B1nClw{zlA))B2 = 0 which means that B18ABa. Thus
and by (2) B18^BB2 which implies that ClwiZ(B)) Bx n CL^z^o B2 = 0 . Therefore
by the Taimanov Theorem we have Clw ( Z U» S^w(Z(B)).

(3) -K2): Let Ax and A% be subsets of S such that ^ S ' t ^ j . Let Br = C\sAr

and 5 2 = Cls^(2. Then we have Bx 8' t52 and so Bx SA B2.
This means Clwiz{A)) 5xn C\W{Z{A)) B2 = 0 which is equivalent to

2 = 0 a I l d C1«>(Z(B)) 5 1 n C1W(2(B)) ^2 = 0 -

This means ^ S^52 and so ^x S^/42.
As a corollary to these two theorems we have the following theorem.

2.24. THEOREM. IfS<=X, A is a Wallman ring on X, B is a Wallman ring on S
and 8' is the proximity on S induced by 8A, then the following are equivalent:

(1) A^8B;
(2) 8' = 8B;
(3) S is (B, A)-embedded in X.

In the special case when A = C*(X), and B = C*(S), Theorem 2.24 yields the
following.

2.25. THEOREM. If S is a subspace of X, then the following are equivalent:
(1) S is C*-embedded in X;
(2)
(3)
(4)
(5) any two completely separated sets in S are completely separated in X.

PROOF. By Theorem 2.2, S is C*-embedded in X if and only if S is (C*(S),
C*(AO)-embedded in X. Therefore (1) and (2) are equivalent. The restriction to
S of any function in C*(X) is a function in C*(S), so (3), (4), and (5) are
equivalent to (2).

The next corollary to Theorem 2.24 gives a sufficient condition for (B, A)-
embedding.
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2.26. COROLLARY. If S is a subspace of X, A is a Wallman ring on X, B is a
Wallman ring on S, Z(B)<^Z(A), and for each FeZ[A], FnSeZ(B), then S is
(B,A)-embeddedinX.

PROOF. Z(B)<=Z(A) implies B^SA and FnSeZ(B) for each FeZ(A) implies

Problem IF (2) from Gillman and Jerison (1960) is a corollary to Corollary 2.26.

2.27. COROLLARY. IfS is a subspace of X andZ(S)<^Z(X), then S is C*-embedded
in X.

PROOF. By hypothesis Z(C*(S))cZ(C*(J)). If FeZ(C*(X)), there is a func-
tion feC*(X) such that F = Z(f). FnS = Z(/[S)eZ(C*(S)). Therefore S is
(C*(S), C*(JSf))-embedded in X. By Theorem 2.2 S is C*-embedded in X.

A second concept which is related to C*-embedding will be introduced in the
next theorem and then generalized to arbitrary normal bases.

2.28. THEOREM. IfS is C*-embedded in X, then the following condition is satisfied:
For each pair of sets Fx, F2 eZ(X) such that F1nF2nS = 0 there are sets Elt E2 eZ(X)
such that FxnS = E^S, FinS = E^nSandE^nE^ = 0 .

PROOF. Let F1 = Z(fi) and F2 = Z(f2) for/ l s/2eC*(Z). Since F1nFsnS = 0,
Z(f1\S)nZ(f2\S) = 0 . By Theorem 2.25 there are functions f'^eC^X) such
thatZ(/1 |5)cZ(/0,Z(/2 |5)c:Z(/DandZ(/0nZ(/;) = 0. L e t ^ = Z(fl)nZ(f'i)
for 1 = 1,2.

2.29. DEFINITION. If F is a normal base on X and S is a subspace of X, then S
is F-embedded in X if and only if the following condition is satisfied: For each
pair of sets FlyF2eF such that FxnF2nS = 0, there are sets Ex,E2eF such that
F1nS = E^S, F2nS = E2nS and E1nEi = </>.

Later it will be shown that if X is a metric space, then S is Z(A>embedded in X
if and only if S is C*-embedded in X; but, in general Z(Z)-embedding does not
imply C*-embedding.

The next theorem gives a necessary and sufficient condition for F-embedding,
one which is frequently easier to exhibit than the condition in the definition.
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2.30. THEOREM. If F is a normal base on X and S<= X, then S is F-embedded in X
if and only if the following condition is satisfied; For each pair of sets FvFzeF such
that F1nF2nS = 0, there are sets EltE2eF such that F^S^E^, F2nS<=E%, and
F.1nF,2 = 0.

PROOF. The sufficiency of the condition follows from the fact that Fx n S<= Elt

F 2 nSc£ 2 and Exc\E2 = 0 implies Fxc\S = ( ^ n F J n S , F2nS = (F,2nF2)nS and
(Ex nFj)n (E2 n F2) = 0. The necessity is obvious.

If we had defined F-embedding by considering any finite number of sets F1 Fn

instead of two sets we would have had an equivalent definition.

2.31. THEOREM. If S is a subspace of X and F is a normal base on X, then S is
F-embedded in X if and only if the following condition is satisfied: For each finite
collection of sets Fx, ...,FneF such that

S n ( r j ) F i = 0

there are sets E1,...,EneFsuch that FinS = EinSand f]?=1 Et = 0.

PROOF. Obviously this condition implies .F-embedding. To prove the other
direction let S be F-embedded in A'and let Fv..., Fn 6Fsuch that

Then there exist Ex and PeFsuch that

SnE1, SnI [}FA = SnP and
\i=2 I

So for m = 1 we have shown the following property: There exist Ex,...,EmeF
(where m<n) such that SnEt = SnFiy i=l,...,m; and there exists PeF such
that

f l£ ' iW = 0 and SnP=l f\ Ft)nS.
t=l / \i=m+l 1

Now assume this property holds for some me{1,2, ...,n—2} and show it holds
for m + l. Since by assumption the property holds for m, we have Ex,...,Em and
P e F such that

n)EtnP = 0.

So by the normality of F, there are J,LeF such that

I m \
\C\Et nJ = 0, PnL = 0 and

t=i '
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Also by assumption

f| Ft) = SnF m + 1 n( (\ Ft).
=m+l / \i=ro+l /

So 5'n(Fm+1)n(n?=m+2i;i)n-z:' = SnPnL = 0 since PnL = 0.
We now have two elements of F, Fm+1 and (DZ^m+i^nL disjoint on S. So

by the hypothesis that S is F-embedded in X, we obtain T and R eF such that

SnFm+1 = SnT, Sni fl FAnL = SnR and RnT = 0.
\i=m+2 J

Now let Em+1 = T and Q = (^ui?)n(flg=m+2Ff). So Em+1 and (?eF are such
that:

$n Em+i = SnT=Sn Fm+1;

/m+l \ I n \

= f l ^ n(/uJ?)n( f l i=i
\i=l / \i=m+2 /

i=l / \t=m+2 /J L\i=l / \i

n f( u n^nm/in n *
t=m+2 /J L\i==l / \i=m+Z

= 0

since (f)?Li -Ej) n / = 0 and Rn 71 = 0, and

i=m+2

[ \i=m+2 / J L\ \i=mi=m+2

( 0 F^luf^n/ R Ft)nL)n( 0 F
\»=m+2 / J L\ \i=m+2 I 1 \i=m+2

( n
\i=m+2
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So we havq shown that the property stated above holds for m +1. We know
there exists sets Eu ...,En_1 from F such that SnEi = SnF^ i= 1,...,«— 1 and
for these sets there is a set PeF such that (C\i=i£i)nP = 0 a n d PnS = FnnS.
We set En = P and our proof is complete.

We now look at a couple of examples of types of sets which are F-embedded.
Every member of a normal base is F-embedded.

2.32. THEOREM. IfF is a normal base on X and SeF, then S is F-embedded in X.

PROOF. If F^F^eF such that F1nF2nS = 0, then J^nS and F^nSeF, and

In terms of Wallman rings, this theorem tells us that the zero sets of a Wallman
ring A are Z[v4]-embedded.

Hamburger (1971) gave the following definition.

2.33. DEFINITION. Let F be a closed base in X. We say that S is F-dense in X
if C\x(SnA) = A for each AeF.

Being F-dense is a sufficient but not necessary condition for a subset to be
F-embedded.

2.34. THEOREM. If S is a subspace of X, F is a normal base on X and S is F-dense
in X, then S is F-embedded in X.

PROOF. Let F1,F2eF such that F1nF2nS = 0, then Cl^FjnF2nS) = 0. So if
S is F-dense in X, Fx n F2 = 0.

An example of a set which is F-embedded but not F-dense is S = N which is
Z(Z)-embedded in X= flN, since it is C*-embedded in X. S is dense in X; but it
is not Z(X)-dense in X since Clx(SnZ(g))^Z(g) where g is the continuous
extension to jSiVof the function/: iV->R defined by/(n) = l/«. Clearly SnZ(g) = 0

The principal use of the concept of F-embedding is indicated in the following
theorem.

2.35. THEOREM. If F is a normal base on X and S is F-embedded in X, then
{EnS: EeF} is a normal base on X.

PROOF. Let G = {En S: EeF}. If it can be shown that G is normal on S, then it
will be clear that G is a normal base on S.
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Let Gx,G2eG such that GxnG2 = 0. By definition of G, there are sets Fx,F2eF
such that G1 = F1nS and G2 = F2n S. Then Sri F1 nF2 = Gxn G2 = 0. So there
are sets F,l5E2eFsuch that S'nF! = SnEx, SnF2 = SnF2 and E1nE2 = 0. Since
F is a normal base on X, there are sets Plf P2 e F such that f̂  n Px = 0, E2 n P2 = 0

LetQx = PxnS, Q2 = P2nS. ThenGfngf = FinS = EinPinS = 0,for/ = 1,2,
and QxuQ2 = & Therefore G is normal on £.

This theorem shows us that the restriction of a Wallman ring A to a Z(/4)-
embedded subspace is again a Wallman ring.

2.36. COROLLARY. If A is a Wallman ring on X and S is Z(A)-embedded in X,
then {/| S:feA} is a Wallman ring on S.

The next theorem gives a necessary and sufficient condition for F-embedding
involving the restrictions of F-sets.

2.37. THEOREM. If F is a normal base on X and S is a subspace of X, then S is
F-embedded in X if and only if

PROOF. If {EnS: EeF}^sF, then for each pair of sets Fx,F2eF such that
F1nF2nS = 0, there exist E^E^eF such that F^nS^E^ F2nS<=E2 and
E1nEz = 0 . Therefore, by Theorem 2.30, S is F-embedded in X.

Suppose S is F-embedded in X. Then if F^F^F such that F1nF2n,S = 0,
there are sets Ex,E2sFsuch that FxnS<= Ex, F2n 5<= E2 and ElnE2 = 0 . Therefore

{EnS:EeF}^sF.

2.38. COROLLARY. If A is a Wallman ring on X and S<= X, then the following are
equivalent:

(1) S is Z(A)-embedded in X;
(2) {f\S:feA}^8A;
(3) {f\S:feA}^sA.

2.39. COROLLARY. If A is an inverse closed Wallman ring on X and S<^X, then
S is Z(A)-embedded in X if and only if for each pair Fx and F2 eZ(A) such that
F1nFznS = 0, there exists geA such that g[SnFj] = 0 andg[SnF2] = 1.

PROOF. By Theorem 2.12 two subsets G and H of X are completely ^-separated
if and only if there is a function feA such that g[G] = 0 and g[H] = 1. Therefore,
for FX,F%<=Z(A) such that F1nF2nS = 0, there are sets Ex,E2eZ(A) such that
Fx n S<= Ex, F2 n S^ E2 and Ex n E2 — 0 if and only if there is a function g e A such
that gLSnFJ = 0 and g[SnF2] = 1.
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Continuing in our investigation of conditions under which a subspace is Z(A)-
embedded for a Wallman ring A we present the following theorem.

2.40. THEOREM. If S^X, A is an inverse closed Wallman ring on X and
B = {f\S:feA} is an inverse closed Wallman ring on S, then S isZ(A)-embedded
in X.

PROOF. Let fx,f2eA such that Z(/1)nZ(/2)n5 = 0. Let g1=f1\S, g2=f2\S
and g = g\l{g\+g®. Then Z(g\+g§ = 0 so geB. Also g[Z(fi)nS] = 0 and
g[Z(fz) n S] = 1. Since there is a function feA such that/| S = g there is a function
in A which is zero on Z(fj)nS and one on Zif^nS. Therefore by the previous
theorem S is Z(4)-embedded in X.

We naturally wonder how Z(>0-embedding is related to (B, /4)-embedding, for
some appropriate B. The next theorem tells us for which Wallman rings B, a
Z[/4]-embedded subset is (B, j4)-embedded.

2.41. THEOREM. IfS is a subspace ofX, A is a Wallman ring on X, B is a Wallman
ring on S, and S is Z(A)-embedded in X, then S is (B, A)-embedded in X if and only
ifB^{f\S:feA}.

PROOF. By Corollary 2.36, {f\S:feA} is a Wallman ring on S. Clearly
^ = sif\S:feA}. Theorem 2.24 established that Sis {B, /4)-embedded if and only
if A^SB. Therefore S is (5,^-embedded in X if and only if B^s{f\S:feA}.
So, since B and {f\S:feA}<=C(S), S is (B,^-embedded in X if and only if
Bz{f\S:feA}.

2.42. COROLLARY. If S is a subspace of X, A is an inverse closed Wallman ring
on X and B = {f\S: feA} is an inverse closed Wallman ring on S, then S is
(B,A)-embeddedin X.

The next theorem is the converse to part of Theorem 2.41.

2.43. THEOREM. If A is a Wallman ring on X, £<= X, B is a Wallman ring on
S,Bz{f\S:feA} and S is (B,A)-embedded in X, then S is Z{A)-embedded in X.

PROOF. By Theorem 2.24 S is (B,,4)-embedded in X if and only if A^SB.
Therefore S is (B,^-embedded in Ximplies A <s{f\ S:feA}. Then by Corollary
2.38 S is Z(/4>embedded in X.

For an arbitrary Wallman ring B on S, (B, ̂ )-embedding may not imply
Z(,4>embedding, as is illustrated by this example.
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2.44. EXAMPLE. Let X = [0,1], S = [0, \) u (£, 1], A = C(X) and

B = {f\S:feC(X) and is constant on a neighborhood of \).

Then by Bentley and Taylor (1975, Corollary 4.10), B is a Wallman ring and
w(Z(B))^X^C]w(ZU))S so S is (B, ̂ -embedded in X Now let fi = [0,£],
^2 = [£> !]• These are zero sets of .4 since every closed subset of a metric space is
a zero set.

i ^ n i ^ n S = 0 , but the zero sets of A are the closed sets of [0,1], so there are
no disjoint zero sets of A which separate [0,£) and (£, 1]. Therefore S is not
Z(^)-embedded in X.

In the case of a metric space X with subspace S1 and Wallman rings A = C*(X)
and B = C*(S), Z(/4)-embedding and (B, ̂ 4)-embedding are equivalent.

2.45. THEOREM. If X is a metric space and S<^X, then the following are
equivalent:

(1) S is C*-embedded in X;
(2) S is (C*(S), C*(X))-embedded in X;
(3) S is Z(X)-embedded in X.

PROOF. That (1) and (2) are equivalent was shown in 2.2 for all spaces. That (1)
implies (3) was shown in 2.28 for all spaces.

(3)->(l). Since Xis a metric space, the zero sets of X are precisely the closed
subsets of X and the zero sets of S are the intersections with S of closed subsets
of X. Since, by the Z(y4)-embedded hypothesis, disjoint sets of this type are
completely C*(Z)-separated, we have Z(S)^Z(X). Therefore by Theorem 2.25,
SisC*-embeddedin X.

The only part of the previous theorem which depended on X being a metric
space was the proof that Z(Ar)-embedding implies C*-embedding. If X were not
a metric space, this conclusion would not necessarily be valid as is illustrated by
the following example of a space which is not a metric space. (The example of the
non-metric space is from Gillman and Jerison (1960), Problem 3K, p. 50.)

2.46. EXAMPLE. Let X denote the subset {(x,y): y>0} of RxR provided with
the following enlargement of the product topology: for r>0, the sets

Vr(x,0) = fe0)}u{(«,i;)6l: (u-x)2+(v_r)2<r2}

are also neighborhoods of the point (x, 0).
S = {(x,0): xeR} is Z(Ar)-embedded in X since it is a zero set of X; however,

it is not C*-embedded in X.
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