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Abstract
A relatively novel approach of autonomous navigation employing platform dynamics as the primary process model
raises new implementational challenges. These are related to: (i) potential numerical instabilities during longer
flights; (ii) the quality of model self-calibration and its applicability to different flights; (iii) the establishment
of a global estimation methodology when handling different initialisation flight phases; and (iv) the possibility of
reducing computational load through model simplification. We propose a unified strategy for handling different flight
phases with a combination of factorisation and a partial Schmidt–Kalman approach. We then investigate the stability
of the in-air initialisation and the suitability of reusing pre-calibrated model parameters with their correlations.
Without GNSS updates, we suggest setting a subset of the state vector as ‘considered’ states within the filter to
remove their estimation from the remaining observations. We support all propositions with new empirical evidence:
first in model-parameter self-calibration via optimal smoothing and second through applying our methods on three
test flights with dissimilar durations and geometries. Our experiments demonstrate a significant improvement in
autonomous navigation quality for twelve different scenarios.

1. Introduction

1.1. Motivation

For small, lightweight drones, inertial-based dead-reckoning remains the default fall-back navigation
solution when radio-frequency ranging is perturbed and optical or line-of-sight navigation is absent or
becomes unavailable. Due to factors related to size, weight and cost, many such drones are equipped
with inertial sensors that have considerably lower quality than those of navigation or tactical-grade
systems. However, as proposed by Cork (2014) for a large aircraft, or by Khaghani and Skaloud (2016)
for small fixed-wing drones, the drift of inertial dead-reckoning can potentially be mitigated without
the use of additional sensor(s) by constraining the drone-motion through additional modelling. This
particular realisation of the so-called vehicle dynamic model (VDM) approach is attractive for its
potential to improve dead-reckoning precision as well as for the capacity to perform model-parameter
self-calibration with nominal satellite positioning. Nevertheless, the real-time implementation of the
VDM raises new challenges related to the numerical stability of the relatively large filter (≈50 states). For
instance, the need to re-adapt some model coefficients due to small changes in the physical properties of
the drone (e.g. changes in the payload) between subsequent flights is possibly causing large fluctuations
in the estimated corrections to navigation states during the in-air initialisation (cf. Section 6.4, Figure 6),
which is undesirable for drone guidance. Furthermore, the estimation strategy during dead-reckoning
must be re-adapted from the nominal scenario with satellite positioning as a large part of the state-vector
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containing auxiliary parameters related to model coefficients becomes non-observable. This contribution
addresses the aforementioned concerns first conceptually and then by verifying their suitability with a
large amount of new empirical evidence.

1.2. Estimation issues

An important factor in the forthcoming real-time implementation is the general stability of the estimation
of filter states. Divergence or failure to correctly estimate some states can result in false positioning
and/or confidence levels, which may hamper the safety and reliability of a drone’s operation.

The stability of the filter is especially important in the case where the system is used in autonomous
navigation, i.e. when satellite positioning is not available.

Numerical instability of Kalman filters is a common challenge and has been observed in filters with
as few as six states, as shown by Grewal and Andrews (2002). Although the double-precision used on
small on-board processors considerably reduces the accumulation of round-off errors that lead to filter
divergence, the finite precision of variables, the large ratio of their relative magnitude, and the large
number of numerical operations performed in the filter are all potential sources which can lead to a
significant loss of precision and subsequent deterioration in the performance of a filter over time (Martel,
2006). From this perspective, a direct inclusion of all model parameters within the state estimation as
auxiliary variables increases the likelihood of numerical instability due to significant non-homogeneity
of their magnitudes. Investigation of this matter is therefore important to better understand its root
causes and to identify and test effective remedies.

A drone using the VDM-based navigation system is prone to two potentially problematic stages
occurring: (i) during filter initialisation; (ii) during a loss of GNSS signal reception occurring for longer
than a period of a few seconds. VDM-based navigation requires in-air state initialisation as it models
aerodynamic forces and not those acting on the drone through contact with the ground. The initial
conditions of the navigation states can be provided by another system, such as that based on conventional
INS/GNSS. However, obtaining reliable initial values of model parameters (part of auxiliary states) is
challenging due to VDM complexity, the interdependence of the same parameters and their possible
change once the drone is assembled after transport (e.g. wings are attached, battery secured, camera type
or other payload selected and installed, etc.). The state initialisation thus poses an additional challenge
due to the high dimensionality of state space and correlations that, in conditions of limited observability,
may lead to filter divergence.

In the event of a GNSS signal outage, the uncertainty of the position estimation increases rapidly.
As a consequence, after a certain time, some states may get adjusted aggressively by the remaining
inertial/baro observations. This may cause somewhat erratic movements in navigation states and poten-
tially destabilise the autopilot. To address both issues, the combination of a partial-Schmidt (Grewal
and Andrews, 2002) and Bierman–Thornton (Bierman and Thornton, 1977) Kalman filter is proposed
with empirically tuned parameters that optimise filter performance. The Schmidt–Kalman filter allows
the selection of a subset of states that in the update phase can be partially or completely set aside, also
called ‘considered’ states (Grewal and Andrews, 2002). The Bierman–Thornton filter, also known as
the ‘UDU factorisation filter’, decomposes the state covariance matrix 𝑷 into orthogonal triangular 𝑼
and diagonal 𝑫 matrices, such that 𝑷 = 𝑼𝑫𝑼𝑇 . This factorisation improves the computational stability
and guarantees the symmetry of the covariance matrix (Bierman and Thornton, 1977).

Similar concerns are related to the elevated number of states and their inter-relations. Indeed, within
the polynomial structure of the model for aerodynamic forces and moments, some model-related states
manifest strong correlation (Laupré and Skaloud, 2020) with one another. Combining such states would
reduce the total number of states in the system and consequently decrease the processing load in the filter.
It is therefore interesting to investigate whether such an approach can be taken without an appreciable
reduction of the navigation performance.
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Table 1. Overview of investigations performed on flights with different geometrical form as shown in
Figure 2.

Calibration Application

Flight name
(shape)

CF_i8
(block)

AP_i7 (block), AP_i6x (long corridor), AP_i6u
(‘U’-corridor)

Flight phases In-flight
calibration

Initialisation Nominal GNSS Autonomous

Investigations – Coef.
estimation

– Numerical
stability

– Reduced
model

– Estimation
stability

– Reduced versus
full model

– Estimation
stability

– Reduced versus
full model

– INS versus
VDM

1.3. Experimental flights

Most of the reported results employing VDM-based navigation are still performed with simulated
data. Hence, there is a need to validate the proposed methodologies with new and dissimilar empir-
ical scenarios to establish convincing, practical evidence for their applicability in complex real-time
implementation scenarios. The proposed modifications of the navigation system are therefore validated
with a real, small, fixed-wing drone on four flights of diverse shapes. The longest of the four experi-
mental trajectories is used as a calibration/training flight to estimate a set of aerodynamic coefficients
using the augmented system-state estimation with the new implementation of an optimal smoother.
These coefficients are then applied as prior initial values for the other three ‘application’ flights.
There, different aspects of the filter stability are examined and the proposed solutions are evaluated
for each of the aforementioned challenges. The investigations made during this study are summarised
in Table 1.

The remaining sections of the paper are organised as follows. A brief review of the VDM-based
navigation principles is provided in Section 2 with a proposition of lumping some of the aerodynamic
parameters during estimation (in-flight calibration) and using their previously determined relationship
(e.g. by linear regression) in trajectory prediction. Section 3 describes how the computation stability of
the filter can be improved by addressing the round-off errors that occur in the estimator as a result of large
differences in the magnitude of some state variables. Section 4 details how the stability of some estimated
states is assessed and reinforced. The combined Schmidt–Kalman filter with UDU factorisation proves
to successfully achieve this with particular settings tuned during testing. A brief description of the
drone and its payload and the four experimental flights conducted to investigate the proposed strategies
is presented in Section 5. Section 6 presents the results of the proposed modifications on the filter
stability and navigation performance during: (i) self-calibration; (ii) initialisation; (iii) nominal and (iv)
autonomous navigation flight scenarios. The final Section 7 summarises these findings.

2. Vehicle dynamic model navigation

2.1. Model definition

Despite the general idea being known for some time (Koifman and Bar-Itzhack, 1999), the practical
confirmation of VDM-based navigation is relatively recent (Khaghani and Skaloud, 2018). Indeed, from
the large spectrum of possible approaches to apply VDM towards the task of sensor fusion (Sensedobry,
2014), only that which uses the VDM as the main process model and inertial and other sensors outputs
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as observations seems to produce satisfactory results, as investigated in simulations by Cork (2014)
for manned aircraft or by Khaghani and Skaloud (2016) for a small fixed-wing drone operation at low
speeds and limited areas.

In short, this integration scheme uses autopilot’s control command (ailerons, elevators, rudder and
propeller speed) as an input to the aerodynamic model that specifies forces and moments acting on
the drone. Its movement is predicted by resolving equations of motion. The necessary information
on the wind is inferred through information redundancy between the aerodynamic model and inertial
measurements.

The consistently available data are used as regular observations within the state-space estimation
scheme. As detailed by Khaghani and Skaloud (2018), the VDM is employed as a system model and the
three angular rates and three specific forces of the IMU are used as measurement updates (Khaghani
and Skaloud, 2018, Equation (35)). Data from other sensors are used when available. This is the case
for GNSS position and velocity (Khaghani and Skaloud, 2018, Equations (35) and (36)). The navigation
filter (EKF or UKF) estimates the corrections to the navigation (𝒙𝒏) and auxiliary states and its associated
covariance matrix (𝑷). Due to the large complexity, the elements of the state transition matrix within
EKF are derived by an automated linearisation software for the general 𝑙-frame navigator (Khaghani
and Skaloud, 2018, Equations (7)–(10)), yet its analytical form is presented in full within the Appendix
of Khaghani (2018) for a local approximation. The same reference contains the models for all formerly
mentioned sensors and actuators. The compound error state-vector has the following components and a
minimum length:

x(46) = [x𝑛 (12), x𝑝 (21), x𝑎 (4), x𝑤 (3), x𝑒 (6)]T, (1)

where the auxiliary states are related to sensor (e.g. IMU) time-correlated errors (𝒙𝑒) containing at
least three biases (modelled as random constant), actuators errors (𝒙𝑎) containing at least one constant
per actuator, wind (𝒙𝑤 ) corrections per axis as well as VDM model-coefficient errors (𝒙𝑝). The latter
is related to all aerodynamic coefficients (hereafter interchangeably referred to as ‘VDM parameters’)
quantifying the forces and moments applied to a particular aircraft as depicted in Figure 1 and later
detailed in this section. Such platform-dependant coefficients are either only approximately known
or they may slightly evolve in time due to some changes in drone payload within a pre-calibrated
system. Specific flight patterns and nominal GNSS reception scenarios can be used for such self (in-
air) calibration (Laupré and Skaloud, 2021). The approach used to identify IMU stochastic model
parameters follows Guerrier et al. (2015) so 𝒙𝑒 may be extended with other time-correlated parameters
when required. Their combined effect is subtracted from IMU-specific forces and angular rates before
the update. The VDM governing equations following Ducard (2009) are given in Figure 1 (Equations
(4) and (5)). The thrust force 𝐹𝑇 is defined in the body frame along the 𝑥-axis. Here, 𝑉 is the norm of
airspeed i.e. the velocity at which the drone moves through the air; 𝐷 is the diameter of the propeller;
𝑛 is the rotation speed of the propeller and advance ratio 𝐽 = 𝑉/𝐷𝜋𝑛; 𝑞 is the dynamic air pressure
(𝑞 = 𝜌𝑉2/2, with 𝜌 being air density) and 𝑆 is the wing surface. The moments are expressed in the
body frame through its known relation (angles 𝛼 and 𝛽) to the wind frame. The variables 𝑏 and 𝑐
correspond to the wingspan and the mean aerodynamic chord of the drone, respectively. The position
of the ailerons, the elevators and the rudder are the variables 𝛿𝑎, 𝛿𝑒 and 𝛿𝑟 , respectively. Additionally,
�̃� = [𝑏𝜔𝑙,𝑥 , 𝑐𝜔𝑙,𝑦 , 𝑏𝜔𝑙,𝑧]T/2𝑉 , where 𝜔𝑙 is the angular velocity vector of the body frame with respect
to the local level frame, correction of which is part of the estimated navigation errors 𝒙𝑛 (12), together
with position, velocity and attitude.

In contrast, the platform-dependant geometric parameters such as wing span 𝑏, mass 𝑚 and moments
of inertia 𝑰𝑏 are excluded from 𝒙𝑝 since they appear as scaling factors in the model and can be
determined with much lower uncertainty a priori as compared to aerodynamic coefficients. Moreover,
they are correlated with the aerodynamic coefficients which are already included in 𝒙𝑝 (Khaghani and
Skaloud, 2018).
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Figure 1. Left panel shows the used drone with coloured actuating surfaces and relations between
airspeed 𝑽, wind 𝒘 and drone 𝒗 velocities through the angle of attack 𝛼 and side-slip angle 𝛽; right
panel shows the modelled moments 𝑀𝑥𝑦𝑧 , thrust force 𝐹𝑇 and aerodynamic forces 𝐹𝑥𝑦𝑧 acting on the
drone as a function of respective model coefficients 𝐶𝑀 , 𝐶𝐹 , control surface deviations 𝛿, dynamic air-
pressure 𝑞, air-density 𝜌, rotation speed 𝑛 of propeller with diameter 𝐷 as well as the advanced ratio 𝐽
defined in the text together with physical drone parameters 𝑆, 𝑏, 𝑐 and non-dimensional angular rate �̃�.

2.2. Model reduction

As previously mentioned, the corrections 𝒙𝑝 to aerodynamic coefficients (VDM parameters) are (possi-
bly highly) correlated through the polynomial form of the dynamic model (Equations (4) and (5)). First,
such correlations should be considered during filter initialisation with confidence prior to enabling them
to be tuned if required. Second, there is a need to combine sets of highly correlated states to reduce
the system to a size that is feasible for micro-controller implementation, as was suggested by Laupré
and Skaloud (2020) but not explored so far. Rather than using very well-known approaches of state
reduction via sub-optimal filtering (Gelb, 1974), we suggest lumping some correlated parameters for the
estimation but using the full model for their application via the re-projected and previously determined
correlations. The goal is thus to maintain as much of the system accuracy as possible, yet optimise the
system for real-time implementation by suppressing some states, thereby reducing the computational
requirements to update the state vector (the number of multiplications increases with the cube of state-
vector size). The candidate pairs of coefficients for a possible reduction are identified by analysing the
evolution of the covariance matrix 𝑃 in time. If the correlation between two states is high and does
not vary temporally, the updated values are expected to change in a similar way when refined during
the state estimation. Linear regressions can be formulated to express one coefficient as a function of
the other as

𝐶 𝑗 = 𝑠𝑖 𝑗 ∗ 𝐶𝑖 + 𝑜𝑖 𝑗 (9)

where the coefficient 𝐶 𝑗 is expressed as a scale 𝑠𝑖 𝑗 function of 𝐶𝑖 plus an offset 𝑜𝑖 𝑗 . The aerodynamic
equations can be modified accordingly, reducing the total VDM parameters in the augmented state
𝒙𝑝 by the number of candidates found. The choice of the aerodynamic coefficients to be paired and
their linear expressions are given in Section 6.2. The influence of the new aerodynamic model on the
VDM navigation performance in nominal flight conditions and under GNSS outage are explored in
Section 6.6.
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Table 2. Summary of discrete Kalman Filter steps.

Prediction steps Update steps

�̃�𝑘+1 = 𝚽𝑘 �̂�𝑘 𝑮𝑘 = 𝑯𝑘 �̃�𝑘𝑯
𝑇
𝑘 + 𝑹𝑘

�̃�𝑘+1 = 𝚽𝑘𝑷𝑘𝚽𝑘
𝑇 + 𝑸𝑘 𝑲𝑘 = �̃�𝑘𝑯

𝑇
𝑘 𝑮𝑘

−1

�̂�𝑘 = �̃�𝑘 + 𝑲𝑘 (𝒛 − 𝑯𝑘 �̃�𝑘 )
𝑷𝑘 = (𝑰 − 𝑲𝑘𝑯𝑘 ) �̃�𝑘

3. Numerical conditioning

3.1. General

The concept of constraining state-space estimators by computer is not new (Gelb, 1974), and for the case
of inertial navigation, well analysed (Grewal et al., 2007). Although the general remedies are known
(Grewal and Andrews, 1993), the potential numerical weaknesses particular to the implementation of
VDM-based navigation should be first identified, before deciding on the necessity as well as a strategy
for their mitigation. We first recall two types of problems leading to numerical instabilities: (a) ill-
conditioning due to large magnitudinal differences in state values (round-off error) and (b) asymmetry
of the state covariance matrix 𝑃. While the symmetry can be forced using a simple yet redundant
operation as 𝑃 = (𝑃 + 𝑃𝑇 )/2, round-off errors are complex to avoid and correct as they occur during
mathematical operations with limited precision.

An ill-conditioning indicator proposed by Grewal and Andrews (1993) using the largest 𝜆max and
the smallest 𝜆min eigenvalue of matrix 𝑆 in the update Kalman filter equations (Table 2) is cond(𝑆) =
|𝜆max |/|𝜆min |.

The following rule of thumb can be used to ensure a well-conditioned matrix (Grewal et al., 2007):
cond(𝑆) � 1/(2−𝑁 ) with 𝑁 being the number of bits used in the mantissa. The software environment
with a 64-bit architecture uses 52 bits for its mantissa1 and therefore, the condition number should be
below 1015 to guarantee numerical stability of the system. Additionally, round-off errors on the solution
of the system 𝐴𝑥 = 𝑏 can be shown to be bound by the following formula (Verhaegen and Van Dooren,
1986):

‖(𝐴−1𝑏) − (�𝐴−1𝑏)‖ ≤ 𝜖 · cond( �̂�) · ‖(�𝐴−1𝑏)‖ (10)

where ‖ · ‖ is the norm, 𝜖 is the machine/computer precision, cond( · ) is the condition number of
a matrix and (𝐴−1𝑏) is the exact solution of the system while the symbol ˆ( · ) denotes its numerical
approximation. The error in the resolution of a linear system is directly proportional to the condition
number of the inverted matrix as shown in Equation (10). Although numerical errors do not necessarily
lead to filter divergence, the filter can become momentarily unstable, leading to a slower steady-state
convergence (Grewal and Andrews, 1993) or incorrect state estimation.

3.2. VDM in global-frame

As described by Khaghani and Skaloud (2018), the navigation frame is Earth-referenced to the WGS-
84 ellipsoid with local level resolving axes and position expressed as geodetic latitude, longitude and
height. For numerical operations, latitude and longitude is expressed in 𝑟𝑎𝑑𝑖𝑎𝑛𝑠, and height in 𝑚. When
using these units for their corrections within the filter states 𝒙𝑛, the values come close to machine
precision. Furthermore, the use of differential GNSS decreases the corresponding variance in position.
For example, when kept in radians, the achievable centimetre accuracy in position with Real Time
Kinematic (RTK) or Post Processing Kinematic (PPK) results in a standard deviation of approximately
10−9 [rad], which generates in the corresponding covariance matrix 𝑃 values of 10−18 [rad2].

1https://www.mathworks.com/help/matlab/matlab_prog/floating-point-numbers.html
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Table 3. Adapted scaled matrices.

Prediction scaled matrices Update scaled matrices

𝒙𝒔 = 𝑺𝑥𝒙 𝒛𝑠 = 𝑺𝑧 𝒛
𝑷𝑠 = 𝑺𝑥𝑷𝑢𝑺

𝑇
𝑥 𝑯𝑠 = 𝑺𝑧𝑯𝑢𝑺

−1
𝑥

𝚽𝑠 = 𝑺𝑥𝚽𝑢𝑺
−1
𝑥 𝑹𝑠 = 𝑺𝑧𝑹𝑢𝑺

𝑇
𝑧

𝑸𝑠 = 𝑺𝑥𝑸𝑢𝑺
𝑇
𝑥 𝑮𝑠 = 𝑺𝑧𝑮𝑢𝑺

𝑇
𝑧

Before recalling the need for a re-scaled implementation, the discrete Kalman Filter steps are sum-
marised in Table 2 to define notation, while more details are provided by Grewal and Andrews (1993)
and Titterton et al. (2004).

A first step to reduce the condition number is to identify the extreme (smallest and largest) state
variances in the initial covariance matrix 𝑷0: the position (10−18 [rad2]) and the propeller speed
(102 [(rad/s)2]). The initial condition number for 𝑃0 is very high (1022), certainly above the aforemen-
tioned limit of 1015. In a second step, chosen scaling factors 𝑆 are applied to the identified problematic
states to reduce the condition number of the covariance matrix 𝑷0: 𝑆1 = 108 for latitude/longitude
and 𝑆2 = 10−2 for the propeller speed. The scaling factors are chosen to change the initial state vari-
ances to approach unity. In this work, only the latitude, longitude and propeller speed-related states
are scaled (𝑆𝜑 = 𝑆𝜆 = 108, 𝑆𝑛 = 0.01). Practically, a scaled vector 𝒙𝒔 is obtained from the initial
state vector 𝒙 multiplied with the scaling diagonal matrix 𝑫𝒙 = [𝐷1, 𝐷2]T. This transformation can
be seen as an arbitrary change of units for (a few) selected variables. Scaling the problematic states
needs to be followed by an adaptation of related matrices as detailed in Table 3. As seen in Equation
(10), the propagation of round-off errors while performing the matrix inversion is proportional to the
condition number. The inversion occurs in the computation of the Kalman gain 𝑲𝑘 , specifically when
the expression 𝑮 = 𝑯𝑷𝑯𝑇 + 𝑹 is inverted. The units of 𝑮 are controlled by the measurement noise
𝑹 and observation 𝑯 matrices. Hence, in the third step, these matrices must also be scaled with the
noise scaling diagonal matrix 𝑺𝑧 (if the noise and the states have the same units, 𝑺𝑧 = diag(𝑺𝑥) so they
correspond to the new state vector 𝒙𝑠. We obtain 𝑯𝑠 = 𝑺𝑧𝑯𝑢𝑺

−1
𝑥 and 𝑹𝑠 = 𝑺𝑧𝑹𝑢𝑺

𝑇
𝑧 .

The potentially problematic matrix is thus 𝑮𝑠 = 𝑺𝑧 (𝑯𝑢𝑷𝑢𝑯𝒖
𝑇 + 𝑹𝑢)𝑺𝒛

𝑇 . By carefully choosing
the elements of 𝑺𝑧 , the magnitude of the elements of 𝑮 can be adjusted to be more homogeneous which
in turn lowers the condition number of the matrix. In the same manner, the observations 𝑧 related to
the scaled states should be adapted to match the corresponding scaled observation matrix to compute a
meaningful innovation: 𝒛 − 𝑯𝒙 =⇒ 𝑺𝑧 𝒛 − 𝑯𝑠𝒙𝑠.

In this work, the measurement noise covariance 𝑹 is chosen to match the sensor characteristics
(GNSS and IMU). These are described in Section 5.2. The entries into system noise covariance 𝑸 for
the relevant states (𝒙𝑛, 𝒙𝑎 𝒙𝑤 , 𝒙𝑒) are presented in Table A1 situated within the Appendix.

4. Factorisation and Schmidt–Kalman

4.1. Mixed approach

We revisit two known implementations of the Kalman filter, the combination of which is expected to
address: (i) the general challenge of numerical stability of the estimation; (ii) the oscillations of state
variables during the in-air initialisation; (iii) the prospect of maintaining the same filtering methodology
during nominal and autonomous operation.

The first method exploits one particular form of factorisation put forward by Thornton and Bierman
(1978), also known as 𝑈𝐷𝑈-factorisation, which separates the state covariance matrix as 𝑷 = 𝑼𝑫𝑼𝑇

with 𝑼 and 𝑫 an upper triangular and diagonal matrix, respectively. The Kalman filtering steps as
presented in Table 2 are adapted accordingly. This factorisation reduces the dynamic ranges of the
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variables, leading to more homogeneous scales in the computations, and preserves the symmetry of the
covariance matrix 𝑃.

The second method employs the partial Schmidt–Kalman (Schmidt, 1966) or so-called ‘considered’
filter. The implementation is particularly advantageous when the estimated states are composed in
large part of almost constant values such as sensor biases, or in the case of VDM, the aerodynamic
coefficients. The partial Schmidt–Kalman filter developed by Brink (2017) is principally defined as a
weighted mean between the updated and the predicted ‘partly considered’ states (here abbreviated as
‘considered’ states) and their covariance with a weight factor 𝛾(𝑡) ∈ ]0 − 1〉 as

�̂�
𝑐
𝑦,𝑘 = 𝛾(𝑡) �̂�𝑦,𝑘 + (1 − 𝛾(𝑡)) �̃�𝑦,𝑘 (11)

�̂�
𝑐
𝑦𝑦,𝑘 = 𝛾(𝑡)2 �̂�𝑦𝑦,𝑘 + (1 − 𝛾(𝑡)2) �̃�𝑦𝑦,𝑘 (12)

The dependency of 𝛾 on a relative time 𝑡 is defined later (Equation (14)). The subscript 𝑦 denotes the
elements where the partial Schmidt update is applied. With this definition, 𝛾 = 1 computes an optimal
Kalman update, whereas 𝛾 = 0 creates a Schmidt update on the chosen states.

A practical issue with the𝑈𝐷𝑈 decomposition is that this factorisation is not distributive on additions.
In a naive implementation, one can reconstruct the covariance matrix, apply the partial reset and factorise
it again. However, this would lead to a large increase in computations and partially defeat the purpose,
which is to maintain the covariance in a numerically stable form. Carpenter and D’Souza (2018) presents
a method to apply to a classic Schmidt–Kalman in the case of 𝑈𝐷𝑈 factorised filters. This development
can be adapted to perform the aforementioned weighted mean. Indeed, by using the symmetry of
covariance matrices and denoting (𝑯𝑷𝑯𝑇 + 𝑹) = 𝑮, Equation (12) can be reformulated as

�̂�
𝑐
𝑦𝑦,𝑘 = 𝛾(𝑡)2((𝑰 − 𝑲𝑯) �̃�𝑘 )𝑦𝑦 + (1 − 𝛾(𝑡)2) �̃�𝑦𝑦,𝑘

= (𝛾(𝑡)2 �̃�𝑘 − 𝛾(𝑡)2𝑲𝑯�̃�𝑘 )𝑦𝑦 + (1 − 𝛾(𝑡)2) �̃�𝑦𝑦,𝑘

= (�̃�𝑘 − 𝛾(𝑡)2𝑲𝑯�̃�𝑘 )𝑦𝑦
= �̂�𝑦𝑦,𝑘 + (1 − 𝛾(𝑡)2)(𝑲𝑯�̃�𝑘 )𝑦𝑦
= �̂�𝑦𝑦,𝑘 + (1 − 𝛾(𝑡)2)(�̃�𝑘𝑯𝑮−1𝑯�̃�𝑘 )𝑦𝑦
= �̂�𝑦𝑦,𝑘 + (1 − 𝛾(𝑡)2)(�̃�𝑘𝑯𝑮−1𝑮𝑮−1𝑯�̃�𝑘 )𝑦𝑦
= �̂�𝑦𝑦,𝑘 + (1 − 𝛾(𝑡)2)(𝑲 (𝑯�̃�𝑘𝑯

𝑇 + 𝑹)𝑲𝑇 )𝑦𝑦 (13)

This leads to a similar expression as found by Carpenter and D’Souza (2018), with the only difference
in the term (1− 𝛾(𝑡)2). Since the Bierman–Thornton update step requires scalar processing of measure-
ments, the dimensions of 𝑲 and 𝑮 are 𝑛 × 1 and 1 × 1, respectively. In other words, an update of rank
one is applied directly to the decomposed matrices without the need to recompose them to perform the
partial reset. The factorisation adds 𝑛2 additions, 𝑛2 + 3𝑛 + 2 multiplications and 𝑛− 1 divisions for each
scalar measurement.

Such mixed implementation will be tested outside the nominal scenario within two critical flight
phases, namely during the filter initialisation and GNSS signal outage. Both are described in the following
subsections. For better clarity, the combination of the 𝑈𝐷𝑈 factorisation with the partial-Schmidt filter
implementation will be referred to abbreviated as ‘partial-Schmidt’ in the following sections.

4.2. Initialisation

At the beginning of the filtering process, the Kalman filter passes through a transient phase. This is partly
caused by: (i) the level of uncertainty normally expressed by a quasi diagonal matrix 𝑷0, as most of
the correlations between the states are unknown; (ii) the fact that most of the initial states are unknown
(set to zero) and (iii) (some) have large uncertainties relative to the measurement precision. During
this phase, there is a high probability that some states converge to a local minimum and remain either
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incorrectly estimated and/or correlated to other states until the conditions on their observability improve
(e.g. due to new dynamics or additional measurements). This in turn limits the navigation quality. The
‘initialisation’ employing a partial Schmidt–Kalman filter is proposed to remedy this problem. To allow
the states to evolve more smoothly, these are gradually ‘transited’ from ‘considered’ states to full states.
This corresponds to increasing 𝛾 from 0 to 1 during an initialisation period Δ𝑇ini as

𝛾(𝑡) = 1
Δ𝑇ini

(𝑇 − 𝑇start), 𝑇 ∈ 〈𝑇start, 𝑇start + Δ𝑇ini〉 (14)

where 𝑇 is the absolute time in a mission, 𝑇start is when the initialisation period starts in this time and
𝑡 = (𝑇 −𝑇start) is the current (relative) estimation time. Such ‘initialisation’ is implemented for the VDM
parameters 𝒙𝑝 (that are usually pre-calibrated), the wind 𝒙𝑤 and the sensor error states 𝒙𝑒. These are
referenced as ‘considered’ states later on.

4.3. GNSS outage

During a GNSS outage, the absence of position and velocity observations from a GNSS receiver
prevents the direct update of navigation states that are related to other auxiliary states via an observation
model, resulting in a constant increase in their uncertainties. However, the IMU measurements that are
still present, update all navigation states 𝒙𝑛 at high frequency. Thus, the elevated variance in position
allows for large changes to be applied to the navigation states through IMU updates, possibly leading to
erratic jumps in the trajectory. Such corrections are even more exaggerated if the IMU biases are poorly
estimated. To counter this effect, the following states are set as ‘considered’ with 𝛾 = 0: the position
𝒙𝑛 (𝑝𝑜𝑠), the aerodynamic coefficients 𝒙𝑝, the wind 𝒙𝑤 and the sensor error states 𝒙𝑒.

The benefits of the presented combination of filtering strategies during these sensitive phases of flight
(i.e. the initialisation and GNSS outage) are presented in Sections 6.4 and 6.5, respectively.

5. Experimental setup

5.1. Platform

The platform used for the experimental flights is depicted in Figure 1(left). Its wing span is ∼1.6 m
and the take-off weight of ∼2.8 kg. An open source autopilot (FMUv2) from Dronecode (2008) was
modified to accept the messages from a dual frequency (L1, L2), dual-constellation (GPS, GLONASS)
receiver on board (Topcon B110 for the presented tests) and to receive precise pulse per second (PPS)
for system-GPS time synchronisation.

The payload is composed of a camera, which is not used within this work, and two IMUs from
Thales (Intersence, 2012), installed on a custom micro-controller board (Kluter, 2013), having the
following specifications. Gyros: range ±480 deg/s; performance, random walk 0.25 deg/sqrt(h); noise
density 0.004 deg/s/sqrt(Hz); bias in run stability 12 deg/h; accelerometers: range ± 8 g; performance,
random walk 0.045 m/s/sqrt(h); noise density, 70 µg/sqrt(Hz); bias in run stability 0.1 mg; sampling,
250 Hz. This board references raw IMU observations in GPS time, and saves and streams them for
further processing. Differential post-processing with a reference station allows positioning accuracy to
be within a few cm (0.03 cm for horizontal, and 0.05 cm for vertical), velocity accuracy to be within
a few cm/s (0.04 cm/s for horizontal and 0.08 cm/s for vertical) and attitude accuracy to be within
∼0.05–0.1 deg. GNSS accuracy is considered time-invariant for simplicity. A Javad Triumph2A (Javad,
2018) is chosen as the GNSS base station and a TOPcon B110 GNSS receiver (TOPcon, 2018) is on
the aircraft. The resulting trajectory can be used either for the purpose of calibration and/or reference.
The recorded raw inertial, GNSS and autopilot data are replayed as observations for the VDM-based
navigation system, the quality of which is assessed with respect to the reference trajectory.
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(a) (b)

(c) (d)

Figure 2. Experimental flights references (blue): (a) CF_i8; (b) AF_i7; (c) AF_i6x and (d) AF_i6u,
beginning of the trajectory (red triangle).

5.2. Flights

Four flights of different geometrical configurations are employed to test the benefit of the proposed
numerical strategies within VDM-based navigation on this small fixed-wing drone. First, a 33-minute-
long flight is used for calibrating the aerodynamic coefficients and is referred to as flight CF_i8. Three
other flights, referred to as AF_i7 (28 min), AF_i6x (23 min) and AF_i6u (17 min) are application
flights used to test the suggested modifications to the VDM-based navigation system. As depicted in
Figure 2, the flights are dissimilar in their geometry, combining dynamics and a block pattern for CF_i8,
different dynamics and block for AF_i7, a long straight corridor for AF_i6x, and a u-shape corridor
for AF_i6u. Two flights (CF_i8, AF_i6x) were released as open-source data (Skaloud et al., 2021) and
we have previously reported them for calibrating the VDM-parameters with the help of attitude updates
derived from photogrammetry (Laupré and Skaloud, 2021). Although possible, such calibration is less
practical and therefore not used here.

5.3. Methodology

At first, the VDM-based navigation system is executed on flight CF_i8 with the nominal (i.e. unin-
terrupted) reception of GNSS signals for the purpose of self-calibration of VDM coefficients. These
are estimated via an optimal recursive smoother. The obtained 𝒙𝒑 and corresponding block-covariance
matrix 𝑷𝒑 are used as priors for all other application flights while increasing the uncertainty of 1𝜎
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(a) (b)

Figure 3. Flight CF_i8: (a) condition number of 𝑷 with the unscaled (red) and scaled (blue) model. The
dashed line represents the theoretical numerical stability limit (1015 for a 52-bit mantissa architecture)
over which the numerical stability of the matrix is not anymore; (b) accumulated growth in position
error due to the loss of numerical precision during IMU updates.

to 2% of its initial values. During the three application flights, the VDM parameters are fine-tuned
(whenever GNSS positioning is present) to allow for potential small refinements due to changes in the
platform configuration and its environment related to battery position, the re-assembled parts with a
slightly different orientation between flights, small modification on the payload or changes in the weather
conditions.

6. Results and discussion

After demonstrating the impact of numerical conditioning that affects all results, we present first the
scenario of nominal GNSS signal reception during the long flight CF_i8 for (i) the self-calibration of
VDM-parameters; (ii) the identification of correlated pairs of parameters for model reduction. Second,
we evaluate the proposed strategy of filtering on full and reduced models during the initialisation and
autonomous phases for all three application flights.

6.1. Numerical conditioning

After scaling the states related to errors in horizontal position and the propeller speed 𝑛, the condition
number of 𝑃 decreases considerably by seven orders of magnitude (from 1018 to 1011) for all flights.
The evolution of condition number with respect to time for flight CF_i8 is shown in Figure 3(a). This
plot highlights that re-scaling bounds the condition number of 𝑃 to stay below the theoretical numerical
stability threshold for the considered type of architecture and complex model. In contrast, without re-
scaling, the condition number of 𝑃 oscillates above this theoretical threshold. A hazardous situation
is further manifested by obtaining periodical warnings on the inversion of 𝐺 matrix when calculating
the gain 𝐾 during updates (e.g. MATLAB message ‘Warning: Matrix is close to singular
or badly scaled. Results may be inaccurate. RCOND = 1.9𝑒−20.’). This loss of numerical
precision is manifested in Figure 3(b) by comparing the prediction of positions during simulated GNSS
outages within the same flight. The numerical loss in position precision grows by a rate of 0.31 m per
minute for the unscaled scenario. With the previously described re-scaling of only three variables, the
condition number of the matrix 𝐺 drops by eleven orders of magnitude from 1013 to 102. This practical
example of the improvement in the numerical stability is in agreement with Equation (10), according to
which the propagation of round-off errors is diminished by a factor of 1010.
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(a) (b) (c)

Figure 4. Absolute values of state correlation matrix (CF_i8 with highlighted 𝒙𝑝 after: (a) 30 s of
filtering; (b) the end of forward-filtering and (c) optimal smoothing.

Table 4. Proposed correlated pairs for model reduction (according to Equation (9)) and their linear
relations.

Param. pair Correlation 𝐶 𝑗 𝑠𝑖 𝑗 𝐶𝑖 𝑜𝑖 𝑗

𝐶𝐹𝑇 1 - 𝐶𝐹𝑇 2 0.97 𝐶𝐹𝑇 2 = −40.9154× 𝐶𝐹𝑇 1 −0.202
𝐶𝐹𝑇 3 - 𝐶𝐹𝑥1 0.98 𝐶𝐹𝑥1 = 0.0564× 𝐶𝐹𝑇 3 −0.412
𝐶𝐹𝑦1 - 𝐶𝐹𝑇 3 0.98 𝐶𝐹𝑦1 = −0.0006× 𝐶𝐹𝑇 3 −0.247
𝐶𝐹𝑥1 - 𝐶𝐹𝑦1 0.99 𝐶𝐹𝑥1 = 0.0336× 𝐶𝐹𝑦1 −0.259
𝐶𝑀𝑦1 - 𝐶𝑀𝑦𝛼 0.85 𝐶𝑀 𝑦𝛼 = 0.820× 𝐶𝑀 𝑦1 −1.552

6.2. Self-calibration

During the self-calibration (flight CF_i8), the differential carrier-phase GNSS approach PPK is used for
position and velocity updates during the whole trajectory. Such improved accuracy of aiding is perceived
as important for the estimation of auxiliary states related to aerodynamic parameters. Considered time-
invariant within the flight, their best estimate is obtained via an optimal forward-backward smoother.
The initial aerodynamic coefficients are adapted from a similar shaped platform (Ducard, 2009) to
the drone used for the experimental flights (Section 5). As their values were obtained for a different
payload by Khaghani and Skaloud (2018), their initial uncertainties are set to 5% of their initial values
to allow for possible variations. It should be stressed that the observability of parameters depends on
the manoeuvrers (Laupré and Skaloud, 2020). Therefore, some highly dynamic manoeuvrers are part
of this flight. The use of the optimal smoother further accentuates the existing structural correlations
between the aerodynamic coefficients due to the model (Section 2) while de-correlating them with other
states as depicted in Figures 4(b) and 4(c).

6.3. Parameter relations

The relations between model parameters are obtained by analysing the corresponding sub-bloc of the
covariance matrix after smoothing (𝑷𝑠𝑚). As depicted within the red square in Figure 4(c), the parameters
outside the main diagonal in yellow are correlated by more than 90%. The depicted coefficients are
calculated with the absolute values of the covariance elements as 𝜌𝑖 𝑗 = |𝑃𝑖 𝑗 |/

√
𝑃𝑖𝑖𝑃 𝑗 𝑗 . Five highly

correlated pairs were selected for regression analysis. The resulting linear relations between the selected
pairs are detailed in Table 4. As the force parameter 𝐶𝐹𝑦1 is correlated to 𝐶𝐹𝑇 3 as well as to 𝐶𝐹𝑥1, the
model is reduced by four coefficients.

6.4. Filter initialisation

In the application flights, the set of aerodynamic coefficients obtained after the calibration flight with
optimal smoothing is used while maintaining the possibility to adapt it slightly. Hence, the initial
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Figure 5. Maximum position error during the first 200 s after initialisation without and with partial-
Schmidt (𝑇ini = 100 s) for the three application flights.

(a) (b)

Figure 6. Evolution of horizontal position error (magnitude) after initialisation for 𝑇ini = [0, 100] s in
flights AF_i7 (left) and AF_i6x (right).

error state of model parameters 𝒙𝑝 (0) is zero and its initial covariance follows from that of smoothing
(𝑷𝑠𝑚) with a 2% increase in variance to allow for the coefficients to be slightly adjusted to account
for small modifications in the drone geometry due to re-assembly between flights. The initial value of
navigation parameters and IMU sensor errors follows from the conventional INS/GNSS together with
their confidence levels (Section 5). The initial value of error states 𝒙𝑛 (0) and 𝒙𝑒 (0) is therefore zero, as
is that of actuator errors 𝒙𝑎 (0). The position of the actuators is obtained from the autopilot. The initial
wind is set to zero with an uncertainty of 2 m/s and 0.5 m/s in the horizontal and vertical directions,
respectively (1𝜎).

Initialisation periods of different duration (𝑇ini) are tested on the three application flights to observe
the influence of the partial updates (Section 4) on the fluctuation of position errors. Their maximum
error during the first 200 s after initialisation is shown in Figure 5 for all three application flights. For
all cases with 𝑇ini ≥ 50 s, the maximum position error is reduced, improving the estimation with respect
to the reference trajectories. In a similar trend, the respective norms of the velocity and attitude errors
also decrease. These improvements are only marginal for 𝑇ini being longer than one or two minutes,
the reason for which 𝑇ini = 100 s was chosen. Figure 6 further depicts the detailed evolution of the
horizontal error (magnitude) within flights AF_i7 and AF_i6x without (𝑇ini = 0 s) and with partial
updates (𝑇ini = 100 s). For AF_i6x, the benefit of an ‘initialisation’ phase is substantial as the position
error without a partial update is quite large. This is likely due to the instability of the filter caused by
incorrect initial values of some parameters. Applying the partial-Schmidt filter reduced the maximum
error in position by a factor of 6.

Generally, within the three application flights, all the navigation state errors are decreased when an
initialisation time close to one minute or longer is selected. For initialisation periods lasting longer
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Table 5. Start times (in minutes) of 2-min-long GNSS outage within the application flights after take-off.

Flights GNSS outage start time [min]

AP_i7 17 20 23 26
AP_i6x 12 14 16 18
AP_i6u 10 11 13 14

Figure 7. Maximum (bar) & median (trace) horizontal-position errors during four in total repetitive
GNSS outages of 2 min for VDM and INS. Minutes from the take-off denotes the beginning of each outage.

than 5 min (300 s), there seems to be a higher dependence on the initial state values that reduces the
rate of convergence. Nevertheless, a longer initialisation time (more than 500 s for example) may be
considered on some flights with limited dynamics such as those flown for mapping missions (Laupré and
Skaloud, 2021). These types of flights are monotonous with repetitive patterns flown at constant height
and constant velocity. There, the benefit of partial-Schmidt at the initialisation phase of VDM-based
navigation is less certain, because the dynamics during such missions is low, and in turn, the criteria to
obtain sufficient observability for refining the aerodynamic coefficients may not be achieved (Johansen
et al., 2015).

6.5. Autonomous navigation – full model

When a GNSS outage occurs, the IMU measurements and barometric-derived height are the only
observations available in the current experimental setup. As described in Section 4, the filter is modified
in such a way that all error states related to VDM parameters and that of position are placed in the
‘considered’ mode. For each application flight, four GNSS outages, each of a 2-min duration, were
artificially introduced at different times within the flight, as summarised in Table 5.

For each outage, the magnitude of observed horizontal errors in VDM-based navigation is evaluated
and their maximum (bar) and median (trace) values are depicted in Figure 7. For comparison, a second
evaluation is plotted on the same figure for inertial coasting (with barometer height aiding) using the
identical sensor-error model. From the total of twelve cases, the reduction of maximum horizontal error
for VDM with respect to inertial coasting is very significant on three occasions (more than 10×), and
significant on three others (more than 5×). In the remaining six cases, the improvement varies from
1.5× to 2.5×.

To observe further the improvement of the navigation solution via the proposed VDM approach, the
duration of the first GNSS outage in AF_i6uwas increased to 6 min. The autonomous navigation during
this period is detailed in Figure 8(a,b), for the reference (blue), INS (red) and VDM (green). Panel (c)
in the same figure shows that the maximum horizontal error in position during the outage for VDM is
∼250 m, for the inertial coasting is ∼4.5 km, i.e. approximately 18× larger.
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(a)

(c)

(b)

Figure 8. Navigation solution in AF_i6u flight with 6-min-long absence of GNSS data: (a) horizontal
view with reference trajectory (blue), INS solution (red), VDM solution (green); (b) closeup on reference
and VDM; (c) horizontal distance to reference over the whole flight INS (red), VDM (green).

Figure 9. Maximum and median horizontal errors with full updates (dark grey) and with partial updates
(light grey) during 2-min GNSS outages.

For each application flight, Figure 9 details the maximum and median errors in the horizontal position
during two GNSS outages (each of 2 min) with partial (light grey) and with full (dark grey) updates
of the state-vector. Apart from one minor exception, the position errors (as well as the velocity and
attitude) are lower in all cases when the partial (rather than full) updates are applied. Figure 10 depicts
the estimated position during some of the previously described GNSS outages in the application flights
AF_i7 and AF_i6u without (dashed red) and with (green) the use of partial filtering. The reference
trajectory is depicted as a dotted blue line. The small exception of slightly higher positioning error
with partial filtering is related to the first simulated GNSS outage in the flight AF_i6u. There the error
in heading is higher with the partial-Schmidt implementation, causing slightly larger deviation in the
horizontal position after the nearly 1-km-long straight line as shown in Figure 10(b).

https://doi.org/10.1017/S0373463323000267 Published online by Cambridge University Press

https://doi.org/10.1017/S0373463323000267


428 Gabriel Laupré et al.

(a) (b)

Figure 10. Two-minute GNSS outage with full updates (red dashes), with partial updates (solid green)
on (a) AF_i7, (b) AF_i6u with the reference (dotted blue).

Figure 11. Maximum and median horizontal errors during 2-min GNSS outages with the full (dark
grey) and reduced (light grey) models.

In all cases, the trajectory with the ‘considered’ states is smoother than the trajectory with updates in
position. Such differences intensify towards the end of the outage period when the confidence in position
is lower. A smooth and continuous estimate of position with a higher confidence level is more suitable
for the guidance and control algorithms within the autopilot (DoT, 2015), especially when executing a
fail-safe action such as return to land.

6.6. Autonomous navigation – reduced model

The reduced model is compared first with the full model for the nominal case of GNSS signal reception
(100 s after the initialisation). There the differences in positions between both models are less than
0.2 m, and hence practically negligible.

The effect of model reduction is, however, more noticeable within autonomous navigation.
Considering the very same cases as in Figure 9, the differences between both models are plotted in
Figure 11. The errors with the reduced filter are higher in five out of the six cases by a factor ranging
from 1.2× to 2×. In comparison to simulations where both filters performed practically identically, such
differences are noteworthy. This may be due somewhat to larger errors in attitude, notably in yaw angle
determination. Although the drone guidance aims to fly each line with a constant speed and azimuth,
the flying envelope of real tests is certainly richer than that of simulations. Thus, the higher-order
coefficients may be accounting for (or absorbing some) real or non-modelled effects. For instance, the
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yaw angle is correlated with the coefficient 𝐶𝐹𝑦1 ‘refined value’ which may be influenced by the (less
correctly) estimated side-slip angle and thus the real wind (𝒙𝒘).

From these findings, it can be concluded that the gain in computational efficiency brought by the
reduced model comes at a price of slightly worse navigation accuracy in the case of a GNSS outage.
However, the quality of autonomous navigation with the VDM-reduced model is still significantly higher
than that of the inertial coasting model. Within the nominal conditions of GNSS signal reception, these
differences are practically insignificant.

7. Conclusion

Model-based navigation has good potential to improve the quality of autonomous navigation in small
drones that is otherwise limited to platforms where tactical-grade IMUs can be used. However, the
practical implementation of such an approach requires addressing a set of systematic challenges. On
one side, these are related to the numerical stability of the state-space estimation and the capacity of
model adaptation, either after drone re-assembly or due to modification of drone payload. On the other
side, during the stages of initialisation and autonomous navigation, the oscillation of model parameters
is not desired. Final concerns are related to considerably higher computational demands. The proposed
methodology can be summarised as follows.

• The overall numerical stability seems to be completely alleviated by re-scaling a small subset of state
variables and by the employment of 𝑈𝐷𝑈 factorisation together with partial-Schmidt updates on a
subset of filter parameters within the phases of initialisation and autonomous navigation. The
employment of partial updates can be further useful for example within flight lines of constant
velocity and orientation.

• The described strategy is supported empirically by four flights of different geometry. First, optimal
smoothing with high-precision GNSS aiding was used for the self-calibration of model parameters.
These parameters were then used with their respective covariance as priors in the application flights.
Second, in a dozen test cases of 2-minute-long dead reckoning within application flights, the drift of
VDM/IMU-based navigation was confirmed to be significantly less than that of inertial coasting
(1.5×–10×). Third, and even more important, the maximum positioning error of VDM-based
navigation was maintained to 100 m or less. In terms of operational safety, it means that in case of
GNSS signal loss, a small plane with a nominal speed of 15 m/s can return close to home (or away
from the perturbation in GNSS reception) from a distance of ∼2 km.

• For reducing the computational requirements, dependencies among some model-state variables were
first identified empirically by covariance analysis. This allowed for a smaller state vector to be
established that, for the case of onboard processing, may be interesting to consider if computational
resources are limited. Through the predetermined linear relation between aerodynamic coefficients,
a full VDM was then used for motion prediction. In the investigated cases of GNSS outages, the
observed median errors were very similar to that of the full VDM, but the maximum errors were
somewhat larger (1.2×–2×). Therefore, such a trade-off may be interesting to consider, albeit for
maintaining the best possible navigation performance in a GNSS-denied environment, the utilisation
of the full model is recommended.
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A. Appendix

Table A1 presents the system noise for the concerned states. The states that are not listed have zero
process noise, i.e. are considered as time-invariant.
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Table A.1. System noise in continuous form. The values for the wind model apply for calm to light
breeze conditions (≈0–4 m/s).

State Component PSD (1𝜎) Unit

𝒙𝑛 Velocity change 2.8 × 10−3 m/s2/
√

Hz
Angular velocity 2.9 × 10−4 rad/s/

√
Hz

𝒙𝑎 Propeller speed (𝑛) 10 rad/s/
√

Hz
Aileron (𝛿𝑎) 0.01 1/

√
Hz

Elevator (𝛿𝑒) 0.01 1/
√

Hz
Rudder (𝛿𝑟 ) 0.01 1/

√
Hz

𝒙𝑤 Horizontal wind random walk 0.02 m/s/
√

Hz
Vertical wind random walk 0.01 m/s/

√
Hz

𝒙𝑒 Accelerometer random walk 5 × 10−5 m/s2/
√

Hz
Gyroscope random walk 5 × 10−6 rad/s/

√
Hz
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