Hostname: page-component-8448b6f56d-cfpbc Total loading time: 0 Render date: 2024-04-23T22:52:50.963Z Has data issue: false hasContentIssue false

Rotations, Vibrations and Structure in Solid C60: Investigations by Neutron Scattering

Published online by Cambridge University Press:  25 February 2011

W. A. Kamitakahara
Affiliation:
National Institute of Standards and Technology, Reactor Radiation Division, Gaithersburg, MD 20899
J. R. D. Copley
Affiliation:
National Institute of Standards and Technology, Reactor Radiation Division, Gaithersburg, MD 20899
R. L. Cappelletti
Affiliation:
Ohio University, Dept. of Physics and Astronomy, Athens, OH 45701
J. J. Rush
Affiliation:
National Institute of Standards and Technology, Reactor Radiation Division, Gaithersburg, MD 20899
D. A. Neumann
Affiliation:
National Institute of Standards and Technology, Reactor Radiation Division, Gaithersburg, MD 20899
J. E. Fischer
Affiliation:
University of Pennsylvania, Philadelphia, PA 19104
J. P. Mccauley Jr
Affiliation:
University of Pennsylvania, Philadelphia, PA 19104
A. B. Smit III
Affiliation:
University of Pennsylvania, Philadelphia, PA 19104
Get access

Abstract

In a series of experiments on solid C60, the low-energy rotational dynamics of the molecules, the higher-energy vibrational spectra, and aspects of disorder in the static structure, have been studied. The nearly spherical shape of the C60 molecule, and the occurrence of an orientational phase transition at Tc=256 K, make the C60 solid an excellent system for investigations of orientational dynamics. Coherent quasi-elastic neutron scattering above Tc is described quantitatively by a rotational diffusion model. Below Tc, inelastic scattering froma soft librational mode is observed between 2 and 3 meV. Models of the strong, temperaturedependent diffuse scattering due to orientational disorder are discussed. Finally, measurements of the density of states for the intramolecular ( E ≥ 33 meV) vibrational modes are also presented.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Failey, M. P., Anderson, D. L., Zoller, W. H., Gordon, G. E., Lindstrom, R. M., Anal. Chem. 51, 2209 (1979).Google Scholar
2. Neumann, D. A., Copley, J. R. D., Cappelletti, R. L., Kamitakahara, W. A., Lindstrom, R. M., Creegan, K. M., Cox, D. M. Romanow, W. J., Coustel, N., McCauley, J. P. Jr., Maliszewskyj, N. C., Fischer, J. E., Smith, A. B. III, Phys. Rev. Lett 67, 3808 (1991).CrossRefGoogle Scholar
3. Sears, V. F., Can. J. Phys. 45, 237 (1967).CrossRefGoogle Scholar
4. Tycko, R., Dabbagh, D., Fleming, R. M., Haddon, R. C., Makhija, A. V., Zahurak, S. M., Phys. Rev. Lett. 67, 1886 (1991).Google Scholar
5. Johnson, R. D., Yannoni, C. S., Dorn, H. C., Salem, J. R., Bethune, D. S., Science 255, 1235 (1992).Google Scholar
6. Yannoni, C. S., Johnson, R. D., Meijer, G., Bethune, D. S., Salem, J. R., J. Phys. Chem. 25, 9 (1991).CrossRefGoogle Scholar
7. Heiney, P. A., Fischer, J. E., McGhie, A. R., Romanow, W. J., Denenstein, A. M., McCauley, J. P. Jr. Smith, A. P. III, Cox, D. E., Phys. Rev. Lett. 66, 2911 (1991).Google Scholar
8. Sachidanandam, R., Harris, A. B., Phys. Rev. Lett. 67, 1467 (1991).Google Scholar
9. David, W. I. F., Ibberson, R. M., Matthewman, J. C., Prassides, K., Dennis, T. J. S., Hare, J. P., Kroto, H. W., Taylor, R., Walton, D. R. M., Nature 353, 147 (1991).Google Scholar
10. Neumann, D. A., Copley, J. R. D., Kamitakahara, W. A., Rush, J. J., Cappelletti, R. L., Coustel, N., McCauley, J. P. Jr., Fischer, J. E., Smith, A. B., Creegan, K. M., Cox, D. M., J. Chem. Phys. (in press).Google Scholar
11. Copley, J. R. D., Neumann, D. A., Cappelletti, R. L., and Kamitakahara, W. A., J. Phys. Chem. Solids (in press).Google Scholar
12. Cheng, A., Klein, M. L., Phys. Rev. B 45, 1889 (1992).Google Scholar
13. Sprik, M., Cheng, A., Klein, M. L., J. Phys. Chem. 96, 2027 (1992).Google Scholar
14. Lindemann, F., Phys. Zeits. 11, 609 (1910).Google Scholar
15. Our definition of Γ differs from that of David et al. in ref. [9]. We consider the rotation of the balls in the opposite sense, so that Γ = 220, instead of 120°-22° = 98°.Google Scholar
16. David, W. I. F., Ibberson, R. M., Dennis, T. J. S., Hare, J. P., Prassides, K., Europhys. Lett. 18, 219 (1992).Google Scholar
17. Heiney, P. A., Vaughan, G. B. M., Fischer, J. E., Coustel, N., Cox, D. E., Copley, J. R. D., Neumann, D. A., Kamitakahara, W. A., Creegan, K. M., Cox, D. M., McCauley, J. P. Jr., Smith, A. B. III, Phys. Rev. B 45, 4544 (1992).Google Scholar
18. Li, F., Ramage, D., Lannin, J. S., Conceicao, J., Phys. Rev. B 44, 13167 (1991).Google Scholar
19. Hu, R., Egami, T., Li, F., Lannin, J. S., Phys. Rev. B (in press).Google Scholar
20. Cappelletti, R. L., Copley, J. R. D., Kamitakahara, W. A., Li, F., Lannin, J. S., Ramage, D., Phys. Rev. Lett. 66, 3261 (1991).Google Scholar
21. Wang, C. Z., Xu, C. H., Chan, C. T., Ho, K. M., private communication.Google Scholar
22. Stanton, R. E., Newton, M. D., J. Phys. Chem. 92, 2141 (1988).Google Scholar
23. Adams, G. B., Page, J. B., Sankey, O. F., Sinha, K., Menendez, J., Huffman, D. R., Phys. Rev. B 44, 4052 (1991), and private communication.Google Scholar
24. Bethune, D. S., Meijer, G., Tang, W. C., Rosen, H. J., Golden, W. G., Seki, H., Brown, C. A., de Vries, M. S., Chem. Phys. Lett. 179, 181 (1991).CrossRefGoogle Scholar
25. Prassides, K., Dennis, T. J. S., Hare, J. P., Tomkinson, J., Kroto, H. W., Taylor, R., Walton, D. R. M., Chem. Phys. Lett. 187, 455 (1991).Google Scholar
26. Coulombeau, C., Jobic, H., Bernier, P., Fabre, C., Schiitz, D., Rassat, A., J. Phys. Chem. 96, 22 (1992).Google Scholar
27. Kamitakahara, W.A., Lannin, J. S., Cappelletti, R. L., Copley, J. R. D., Li, F., Physica B (in press).Google Scholar