HIGHER DERIVATIONS AND TENSOR PRODUCTS OF COMMUTATIVE RINGS

W. C. BROWN

1. Introduction. The genesis of this paper is the following well known result in field theory: Let R denote a field of characteristic $p \neq 0$, and let k denote a subfield of R such that $R^{p e} \subset k$ for some e sufficiently large. Then R is isomorphic to the tensor product (over k) of primitive extensions of k if and only if there exists a finite set Γ of k-higher derivations on R such that k is the field of constants of Γ. A proof of this theorem can be found in [6].

In this paper, we explore how much of this theorem remains true if R and k are arbitrary commutative rings. In other words, we are interested in the following conjecture: Let R / k be an extension of commutative rings. Suppose the characteristic of k is either zero or a prime p. Then $R \cong \otimes k\left[x_{i}\right]$ (the tensor product over k) if and only if there exists a finite set Γ of k-higher derivations on R such that k is the ring of constants of Γ.
This conjecture is, of course, a bit too optimistic. In fact, both directions in the conjecture are false. For instance, if k is a ring of prime characteristic, and $R=k\left[X_{1}, \ldots, X_{n}\right]$ is a polynomial ring in n-indeterminates over k, then $R \cong \otimes k\left[X_{i}\right]$. But, k is never the ring of constants of any finite set Γ of k-higher derivations on R. This fact follows from elementary considerations concerning higher derivations. We shall discuss this point more carefully in the next section of this paper. Conversely, we can easily construct examples R / k and Γ such that k is the ring of constants of Γ, but R fails to be a tensor product of primitive extensions of k. A specific case is Example 1 in this paper.

Thus, a more encouraging problem is the following: Let R / k be an extension of commutative rings with the characteristic of k being zero or a prime p. Let $\Gamma=\left\{D_{1}, \ldots, D_{n}\right\}$ be a finite set of k-higher derivations of R, and let R_{Γ} be the ring of constants of Γ. What further conditions on Γ will allow us to conclude that there exist elements $x_{1}, \ldots, x_{n} \in R-R_{\Gamma}$ such that $R \cong \otimes R_{\Gamma}\left[x_{i}\right]$?

The theorems in this paper together with the examples will give a fairly complete answer to this question.
2. Preliminaries. Throughout this entire paper, R and k will denote commutative, associative rings with identity. We shall always assume that the characteristic of k is either zero or a prime p. We say that R is an extension of k if $R \supset k$, and the identity of k is the same as the identity of R. If R is an extension of k, then we shall indicate this fact by writing R / k.

Received February 8, 1977.

Let R / k be an extension. A k-higher derivation D on R / k is a finite sequence $D=\left\{d_{0}, d_{1}, \ldots, d_{m}\right\}$ of k-endomorphisms of R such that $d_{0}=I$, the identity map on R, and

$$
\begin{equation*}
d_{r}(x y)=\sum\left\{d_{r-j}(x) d_{j}(y) \mid 0 \leqq j \leqq r\right\} . \tag{1}
\end{equation*}
$$

Here, of course, equation (1) is to hold for all $x, y \in R$ and for all $r \leqq m$. By the rank ($\operatorname{rk} D$) of D, we shall mean the largest integer $l \leqq m$ such that $d_{l} \neq 0$. We shall refer to d_{1}, \ldots, d_{l} as the components of D. If $\Gamma=\left\{D_{1}, \ldots, D_{n}\right\}$ is any finite set of k-higher derivations, then we shall refer to the components of D_{i} as $D_{i j}\left(1 \leqq j \leqq \mathrm{rk} D_{i}\right)$.

We shall also need the notion of a k-higher derivation E of infinite rank on R / k. E is just an infinite sequence $E=\left\{e_{0}, e_{1}, \ldots\right\}$ of k-endomorphisms of R such that for every $m, E^{(m)}=\left\{e_{0}, e_{1}, \ldots, e_{m}\right\}$ is a k-higher derivation on R / k. $E^{(m)}$ is called the m th section of E.

Now suppose $\Gamma=\left\{D_{1}, \ldots, D_{n}\right\}$ is any finite set of k-higher derivations on R / k. By the ring of constants R_{Γ} of Γ, we shall mean the set of all $x \in R$ such that $D_{i j}(x)=0$ for all $1 \leqq i \leqq n$ and $1 \leqq j \leqq \mathrm{rk} D_{4}$. One can easily verify that R_{Γ} is a subring of R containing k.

Let R / k be an extension and let S be a subring of R. If x_{1}, \ldots, x_{n} are any elements of R, then we have a natural mapping $\varphi: \otimes_{S} S\left[x_{i}\right] \rightarrow R$ given by

$$
\varphi\left(\sum s_{\alpha_{1} \ldots \alpha_{n}} x_{1}^{\alpha_{1}} \otimes \ldots \otimes x_{n}^{\alpha_{n}}\right)=\sum s_{\alpha_{1} \ldots \alpha_{n}} x_{1}^{\alpha_{1}} \ldots x_{n}^{\alpha_{n}}
$$

In particular, if Γ is a set of k-higher derivations on R, and $x_{1}, \ldots, x_{n} \in R-$ R_{Γ}, then we have a natural mapping $\varphi: \otimes_{R_{\Gamma}} R_{\Gamma}\left[x_{i}\right] \rightarrow R$. Throughout this paper, all tensor products will be over some ring of constants R_{Γ}. We shall therefore drop the R_{Γ} symbol on the tensor product and merely write $\otimes R_{T}\left[x_{i}\right]$. When we write $R \cong \otimes R_{\mathrm{r}}\left[x_{i}\right]$, we mean that the natural mapping $\varphi: \otimes R_{\mathrm{r}}\left[x_{i}\right]$ $\rightarrow R$ is an isomorphism (onto).

We complete our preliminary remarks with an important identity that higher derivations satisfy if the characteristic of k is a prime p. Let R / k be an extension of characteristic p, and let $D=\left\{d_{0}, d_{1}, \ldots, d_{m}\right\}$ be a k-higher derivation on R. Then equation (1) implies that D induces a k-algebra homomorphism $\psi_{D}: R \rightarrow R[T] /\left(T^{m+1}\right), T$ an indeterminate, given by

$$
\begin{equation*}
\psi_{D}(x)=x+d_{1}(x) T+\ldots+d_{m}(x) T^{m} \tag{2}
\end{equation*}
$$

Since the characteristic of k is $p \neq 0$, the map sending x to $x^{p e}$ is also a ring homomorphism of R. Thus, $\psi_{D}\left(x^{p e}\right)=\left\{\psi_{D}(x)\right\}^{p c}$. Using the fact that $R[T] /$ $\left(T^{m+1}\right)$ is a free R-module with basis $\left\{1, T, \ldots, T^{m}\right\}$, the identity $\psi_{D}\left(x^{p c}\right)=$ $\left\{\psi_{D}(x)\right\}^{p e}$ gives us the following relationships:

$$
d_{j}\left(x^{p^{e}}\right)=\left\{\begin{array}{lll}
0 & \text { if } p^{e} & \text { j } \tag{3}\\
\left\{d_{r}(x)\right\}^{p^{e}} & \text { if } j=r p^{e}
\end{array}\right.
$$

for $1 \leqq j \leqq m$.

Now suppose R_{D} denotes the ring of constants of D in the above discussion. Then equation (3) implies that there exists an e sufficiently large such that $R^{p^{e}} \subset R_{D}$. Thus, if $\Gamma=\left\{D_{1}, \ldots, D_{n}\right\}$ is any finite set of k-higher derivations on R, then there exists an e sufficiently large such that $R^{p^{e}} \subset R_{\Gamma}$. This fact explains the remark made in the example in the introduction. In that example, $k \neq R_{\Gamma}$ for any Γ because $R_{\Gamma} \supset k\left[X_{1}{ }^{p^{e}}, \ldots, X_{n}{ }^{p^{p}}\right]$ for some e sufficiently large.

If the characteristic of k is a prime p, we have seen that $R^{p e} \subset R_{\Gamma}$ for some e sufficiently large. In particular, if $x \in R$, then some power of x lies in R_{r}. We define the integer $\mu_{\Gamma}(x)$ to be the smallest positive integer q such that $x^{q} \in R_{\Gamma}$. If R and k are both fields, then $\mu_{\Gamma}(x)$ is always a power of p. This result continues to hold for arbitrary rings of characteristic p under suitable conditions. We discuss this in the next section.
3. Main results. We return now to the main problem. Let R / k be an extension, and suppose that $\Gamma=\left\{D_{1}, \ldots, D_{n}\right\}$ is a finite set of k-higher derivations on R / k. Suppose that there exist elements $x_{1}, \ldots, x_{n} \in R$ such that

$$
D_{i j}\left(x_{k}\right)= \begin{cases}0 & \text { if } k \neq i, 1 \leqq j \leqq \operatorname{rk} D_{i} \tag{4}\\ 1 & \text { if } k=i, \text { and } j=1 .\end{cases}
$$

If such elements x_{1}, \ldots, x_{n} exist in R, we shall indicate this fact by saying ($D_{1}, \ldots, D_{n} \mid x_{1}, \ldots, x_{n}$) satisfy (4).
Our first goal is to prove the following theorem:
Theorem 1. Suppose R / k is an extension of prime characteristic p, or R / k is an extension of characteristic zero in which no nonzero integer is a zero-divisor in R. Let $\Gamma=\left\{D_{1}, \ldots, D_{n}\right\}$ be a set of k-higher derivations on R / k, and suppose there exist elements $x_{1}, \ldots, x_{n} \in R-R_{\Gamma}$ such that $\left(D_{1}, \ldots, D_{n} \mid x_{1}, \ldots, x_{n}\right)$ satisfy (4). Then $R_{\Gamma}\left[x_{1}, \ldots, x_{n}\right] \cong \otimes R_{\Gamma}\left[x_{i}\right]$.

To prove Theorem 1, we divide it into two cases (characteristic p or zero) and proceed by a series of lemmas which are of interest in their own right.

3A. The characteristic p case.

Lemma 1. Suppose R / k is an extension of prime characteristic p. Let $D=$ $\left\{d_{0}, d_{1}, \ldots, d_{m}\right\}$ be a k-higher derivation on R. Set $R_{D}=\left\{z \in R \mid d_{j}(z)=0\right.$, $j \geqq 1\}$. Suppose there exists an element $x \in R$ such that $d_{1}(x)=1$. Then
$(\alpha) \mu_{R_{D}}(x)=p^{f}$ for some $f \geqq 1$,
(β) $p^{f-1} \leqq \mathrm{rk} D<p^{f}$, and
(γ) if $c x^{i}=0$ for some $c \in R_{D}$ and some $i<\mu_{R_{D}}(x)$, then $c=0$.
Proof. From the remarks in the preliminaries, we know that $R^{p e} \subset R_{D}$ for some e sufficiently large. Thus, $\mu_{R_{D}}(z)$ is a well defined function on R. Since $d_{1}(x)=1$, we see $x \notin R_{D}$. Thus, $\mu_{R_{D}}(x)>1$. Let us set $q=\mu_{R_{D}}(x)$. Then $x^{q} \in R_{D}$. So $0=d_{1}\left(x^{q}\right)=q x^{q-1}$. If $p \nmid q$, then $x^{q-1}=0$. In particular,
$x^{q-1} \in R_{D}$. This contradicts the definition of q. Thus, $p \mid q$. Now write $q=n p^{f}$, for some $f \geqq 1$ and n relatively prime to p.

Now if $p^{f}>\operatorname{rk} D$, then equation (3) implies that $d_{j}\left(x^{p f}\right)=0$ for all $j=1$, \ldots, m. Thus, $x^{p f} \in R_{D}$. Since $p^{f} \leqq n p^{f}$, we conclude that $n=1$. So, $\mu_{R_{D}}(x)=$ p^{f} in this case.

If $p^{f} \leqq \mathrm{rk} D$, then $d_{p^{\prime}}$ is well defined. Using (3), we have:

$$
\begin{equation*}
0=d_{p^{f}}\left(x^{n p f}\right)=\left\{d_{1}\left(x^{n}\right)\right\}^{p f}=\left\{n x^{n-1}\right\}^{p^{f}} \tag{5}
\end{equation*}
$$

Since n is a unit in R, we conclude from (5) that $x^{(n-1) p f} \in R_{D}$. Again since $(n-1) p^{f}<n p^{f}$, we must have $(n-1) p^{f}=0$, i.e. $n=1$. Thus, the proof of (α) is complete.

As for (β), we have already noted that rk $D<p^{f}$. For if rk $D \geqq p^{f}$ then d_{p}, is defined and we would have $0=d_{p^{f}}\left(x^{p f}\right)=\left\{d_{1}(x)\right\}^{p f}=1$. On the other hand, if rk $D<p^{f-1}$, then (3) implies $x^{p f-1} \in R_{D}$ (a contradiction since $p^{f-1}<p^{f}$). Thus, rk $D \geqq p^{f-1}$, and (β) is established.

For the proof of (γ), we proceed via induction on i. Suppose $c x=0$ for some $c \in R_{D}$. Applying d_{1} to this equation gives $c=0$. Thus, (γ) is established if $i=1$. So, assume $c x^{l}=0$ some $1<l<p^{f}=\mu_{R_{D}}(x)$. If $(p, l)=1$, then applying d_{1} to $c x^{l}=0$ gives $c l x^{l-1}=0$. Since l is a unit in R, we conclude $c x^{l-1}=0$. Thus, by induction, $c=0$. Therefore, we can assume $p \mid l$. Since $p \leqq l<p^{f}$, the p-adic expansion of l has the following form:

$$
\begin{equation*}
l=a_{2} p^{i}+\ldots+a_{f-1} p^{f-1} \tag{6}
\end{equation*}
$$

Here $1 \leqq i \leqq f-1$, and $0<a_{i}<p$. Now $p^{i} \leqq p^{f-1} \leqq r k D$ by (β). So, d. is well defined. We need the following fact: For any $y, z \in R$, we have

$$
\begin{equation*}
d_{p^{i}}\left(z y^{p^{N}}\right)=y^{p . v} d_{p^{i}}(z) \quad \text { whenever } N>i . \tag{7}
\end{equation*}
$$

Equation (7) follows easily from equations (1) and (3). If we now apply $d_{p^{i}}$ to the equation $c z^{l}=0$ and use (6) and (7), we get

$$
\begin{equation*}
c a_{i}{ }^{p^{l}} x^{\left(a_{i-1}\right) p^{i+}+a_{i+1} p^{i+1}+\ldots+a_{f-1} p^{\prime-1}}=0 . \tag{8}
\end{equation*}
$$

Since $c_{i}{ }^{p i}$ is a unit in k and the exponent in (8) is smaller than l, we conclude by induction that $c=0$. This completes the proof of Lemma 1 .

We can now give a proof of Theorem 1 if the characteristic of k is a prime p.
Proof of Theorem 1 (char $k=p$). Choose any i such that $1 \leqq i \leqq n$. Then by equation (4), $x_{i} \in \cap_{\mid \neq i} R_{D l}\left(R_{D_{l}}\right.$ being, of course, the ring of constants of $D_{l .}$) Since $R_{\Gamma}=R_{D_{i}} \cap\left(\cap_{l \neq i} R_{D_{l}}\right)$, we conclude that $\mu_{\Gamma}\left(x_{i}\right)=\mu_{R_{D_{i}}}\left(x_{i}\right)$. Thus, by Lemma 1, $\mu_{\Gamma}\left(x_{i}\right)=p^{f_{i}}$ for some $f_{i} \geqq 1$. Further, $p^{f_{i-1}} \leqq \operatorname{rk} D_{i}<p^{f_{i}}$, and property (γ) holds for any $c \in R_{D_{i}}$.

We now claim that $R_{D_{i}}\left[x_{i}\right]$ is a free $R_{D_{i}}$-module with basis $S_{i}=\left\{x_{i}{ }^{\alpha} \mid 0 \leqq\right.$ $\left.\alpha<\mu_{r}\left(x_{i}\right)\right\}$. Since $x_{i}{ }^{p f i} \in R_{D_{i}}$, we see that the elements of S_{i} generate the $R_{D_{i}}$-module $R_{D_{i}}\left[x_{i}\right]$. So, it remains to argue that the elements of S_{i} are linearly independent over $R_{D_{i}}$. Suppose we have some non-trivial relation among the
elements of S_{i}, say,

$$
\begin{equation*}
c_{t} x_{i}^{t}+\ldots+c_{1} x_{i}+c_{0}=0 \tag{9}
\end{equation*}
$$

Here the c_{j} are in $R_{D_{i}}(0 \leqq j \leqq t)$ and are not all zero. Further $t \leqq p^{f_{i}}-1$. Among all such non-trivial relations as in (9), we can pick one in which t is as small as possible. Say this relation is

$$
\begin{equation*}
c_{m} x_{i}^{m}+\ldots+c_{1} x_{i}+c_{0}=0 \tag{10}
\end{equation*}
$$

Here $c_{j} \in R_{D_{i}}$ for $0 \leqq j \leqq m, c_{m} \neq 0$, and $1 \leqq m \leqq p^{f_{i}}-1$. If some exponent present in (10) is not divisible by p, say l, then applying $D_{i 1}$ to (10) gives
(11) $m c_{m} x_{i}^{m-1}+\ldots+l c_{x^{l-1}}+\ldots+c_{1}=0$.

Since this is a relation among the elements of S_{i} of smaller degree than m, we conclude that every coefficient in (11) is zero. But then $c_{l}=0$. This is a contradiction, since we are assuming $c_{i} x^{l}$ is present in (10). Thus, we can assume the exponents present in (10) are all divisible by p. Set $f(T)=c_{m} T^{m}+$ $\ldots+c_{0} \in R_{D_{i}}[T]$ (T an indeterminant). Then we can find an $e \geqq 1$ and sufficiently large such that $f(T) \in R_{D_{i}}\left[T^{p e}\right]-R_{D_{i}}\left[T^{p+1}\right]$. Thus, $f\left(x_{i}\right)=0$ can be written as

$$
\begin{equation*}
\sum_{l=0}^{K} c_{l p e} x_{i}^{l p^{e}}=0 \tag{12}
\end{equation*}
$$

Here $K p^{e}=m$. Now $\mu_{\Gamma}\left(x_{i}\right)=p^{f_{i}}>m \geqq p^{e}$. Thus, $e \leqq f_{i}-1$. Consequently, $D_{i p^{e}}$ is well defined. We now apply $D_{i p^{e}}$ to (12). Using (3), we get

$$
\begin{equation*}
\sum_{l=1}^{K} c_{l p^{e} l^{p}} x_{i}^{(l-1) p^{e}}=0 \tag{13}
\end{equation*}
$$

Equation (13) is a relation among the elements of S_{i} of degree less than m. Consequently, the coefficients $l^{p^{e}} c_{l^{p}}$ in (13) are zero. But this implies $p \mid l$ for all l appearing in (12). So, $f(T) \in R_{D_{i}}\left[T^{p+1}\right]$. This is a contradiction. Thus, we have shown that $R_{D_{i}}\left[x_{i}\right]$ is a free $R_{D_{i}}$-module with basis S_{i}.

Now the same proof shows that $R_{\Gamma}\left[x_{i}\right]$ is a free R_{Γ}-module with basis S_{i}. Thus, $\otimes R_{\Gamma}\left[x_{i}\right]$ is a free R_{Γ}-module with basis $\left\{x_{1}{ }^{\alpha_{1}} \otimes \ldots \otimes x_{n}{ }^{\alpha_{n}} \mid 0 \leqq \alpha_{i}<\right.$ $\left.\mu_{\Gamma}\left(x_{i}\right)\right\}$. Now let $\varphi: \otimes R_{\Gamma}\left[x_{i}\right] \rightarrow R_{\Gamma}\left[x_{1}, \ldots, x_{n}\right]$ be the natural mapping, i.e. φ is given by

$$
\begin{equation*}
\varphi\left(\sum c_{\alpha_{1} \ldots \alpha_{n}} x_{1}^{\alpha_{1}} \otimes \ldots \otimes x_{n}^{\alpha_{n}}\right)=\sum c_{\alpha_{1} \ldots \alpha_{n}} x_{1}^{\alpha_{1}} \ldots x_{n}^{\alpha_{n}} \tag{14}
\end{equation*}
$$

Clearly φ is onto. The fact that φ is one-to-one follows easily from the fact that
 for some $c_{\alpha_{1} \ldots \alpha_{n}} \in R_{\Gamma}$, and $0 \leqq \alpha_{i}<\mu_{\Gamma}\left(x_{i}\right)$. Then we can rewrite $\sum c_{\alpha_{1} \ldots \alpha_{n}} x_{1}{ }^{\alpha_{1}} \ldots x_{n}{ }^{\alpha_{n}}=0$ in the form:

$$
\begin{equation*}
\sum_{\alpha_{1}}\left(\sum c_{\alpha_{1} \ldots \alpha_{n}} x_{2}^{\alpha_{2}} \ldots x_{n}^{\alpha_{n}}\right) x_{1}^{\alpha_{1}}=0 \tag{15}
\end{equation*}
$$

The terms in parentheses in (15) lie in $R_{D_{i}}$ and so are all zero. Induction now gives us every $c_{\alpha_{1} \ldots \alpha_{n}}=0$. Thus, φ is an isomorphism and the proof of Theorem 1 in the characteristic p case is complete.

Before proceeding with the proof of Theorem 1 in the characteristic zero case, we give an example in characteristic p which shows that we cannot omit the hypothesis that $\left(D_{1}, \ldots, D_{n} \mid x_{1}, \ldots, x_{n}\right)$ satisfy equation (4).

Example 1. Let k be a field of characteristic two and set $S=k\left[X_{1}, X_{2}\right]$, a polynomial ring in two variables X_{1} and X_{2} over k. We define two first order k-derivations D_{1} and D_{2} on S by the formulas:

$$
\begin{equation*}
D_{1}\left(X_{1}\right)=0=D_{2}\left(X_{2}\right), \quad D_{1}\left(X_{2}\right)=X_{2}, \quad D_{2}\left(X_{1}\right)=X_{1} \tag{16}
\end{equation*}
$$

One can easily check that $S_{D_{1}}=k\left[X_{1}, X_{2}{ }^{2}\right]$, and $S_{D_{2}}=k\left[X_{1}{ }^{2}, X_{2}\right]$. We further note that $I=\left(X_{1} X_{2}\right)$, the principal ideal in S generated by $X_{1} X_{2}$, is differential under both D_{1} and D_{2}. Thus, D_{1} and D_{2} induce first order k-derivations (which we continue to denote by D_{1} and D_{2}) on $R=S / I$.

If we set x_{i} equal to the residue class of X_{i} in R, then $R=k\left[x_{1}, x_{2}\right]$. One easily checks that $R_{D_{1}}=k\left[x_{1}, x_{2}{ }^{2}\right]$, and $R_{D_{2}}=k\left[x_{1}{ }^{2}, x_{2}\right]$. Thus, if we set $\Gamma=$ $\left\{D_{1}, D_{2}\right\}$, then $R_{\mathrm{r}}=k\left[x_{1}{ }^{2}, x_{2}{ }^{2}\right]$. We note that R is generated as an R_{r}-module by $\left\{1, x_{1}, x_{2}\right\}$.

We now claim that for no elements $f, g \in R-R_{\Gamma}$ is $\varphi: R_{\Gamma}[f] \otimes R_{\Gamma}[g] \rightarrow$ $R_{r}[f, g]$ an isomorphism. Suppose the claim is false. Then there exist $f, g \in$ $R-R_{r}$ such that φ is an isomorphism. Now we can write $f=a+b x_{1}+c x_{2}$ with $a, b, c \in R_{\Gamma}$. Since $x_{1} x_{2}=0$, we can further assume that $b \in k\left[x_{1}{ }^{2}\right]$, $c \in k\left[x_{2}{ }^{2}\right]$. Since $f \notin R_{\mathrm{r}}$, either $b \neq 0$ or $c \neq 0$. We can assume $b \neq 0$ without any loss in generality. We also note that since $f^{2} \in R_{\mathrm{r}}, R_{\mathrm{r}}[f]$ is generated as an R_{r}-module by $\{1, f\}$. Similar remarks can be made about g. That is, we can write $g=a^{\prime}+b^{\prime} x_{1}+c^{\prime} x_{2}$ with $b^{\prime} \in k\left[x_{1}{ }^{2}\right]$, and $c^{\prime} \in k\left[x_{2}{ }^{2}\right] . R_{\mathrm{r}}[g]$ is an $R_{\mathrm{r}^{-}}$ module with generators $\{1, g\}$, and either $b^{\prime} \neq 0$, or $c^{\prime} \neq 0$.

Now an easy computation shows that $f \otimes\left(g+a^{\prime}\right)+1 \otimes(A+a g) \in$ ker φ. Here $A=a a^{\prime}+b b^{\prime} x_{1}{ }^{2}+c c^{\prime} x_{2}{ }^{2}$. Thus, since φ is an isomorphism, we have

$$
\begin{equation*}
f \otimes\left(g+a^{\prime}\right)+1 \otimes(A+a g)=0 \tag{17}
\end{equation*}
$$

Since $\{1, f\}$ is a set of generators of $R_{\Gamma}[f]$, we conclude from (17) and $[\mathbf{1}$, Lemma 10, p. 41] that there exist elements $z_{1}, \ldots, z_{n} \in R_{r}[g]$ and elements
$a_{j \lambda} \in R_{\Gamma}(j=1, \ldots, n, \lambda=1,2)$ such that
(i) $a_{j 1} f+a_{j 2}=0$ for $j=1, \ldots, n$
(ii) $g+a^{\prime}=\sum_{j=1}^{n} z_{j} a_{j 1}$
(iii) $A+a g=\sum_{j=1}^{n} z_{j} a_{j 2}$.

We now argue that the equations in (18) imply a contradiction. There are two cases to consider:

Case 1. Suppose $f=a+b x_{1}+c x_{2}$ with $b \neq 0, c \neq 0$.
In this case, $(18 i)$ implies that $a_{j 1}\left(b x_{1}+c x_{2}\right) \in R_{\Gamma}$. Now write $a_{j 1}, b$ and c as follows:

$$
\begin{align*}
& a_{j 1}=\sum_{l=0}^{N}\left(\alpha_{j 1 l}\left(x_{1}^{2}\right)^{l}+\beta_{j 1 l}\left(x_{2}^{2}\right)^{l}\right) \\
& b=\sum_{l=0}^{N} \gamma_{l}\left(x_{1}^{2}\right)^{l}, \quad c=\sum_{l=0}^{N} \delta_{l}\left(x_{2}^{2}\right)^{l} \tag{19}
\end{align*}
$$

with $\alpha_{j 1 l}, \beta_{j 1 l}, \gamma_{l}, \delta_{l} \in k$. If we substitute the expressions from (19) into the relation $a_{j 1}\left(b x_{1}+c x_{2}\right) \in k\left[x_{1}{ }^{2}, x_{2}{ }^{2}\right]$, we easily see that $\alpha_{j 1 l}=\beta_{j 1 l}=0$ for all l. Thus, $a_{j 1}=0$ for all $j=1, \ldots, n$. But then (18 ii) implies that $g=a^{\prime} \in R_{\Gamma}$, a contradiction.

Case 2 . Suppose $f=a+b x_{1}$ with $b \neq 0$.
We begin as in Case 1. Equation (18 i) implies that $a_{j 1} b x_{1} \in k\left[x_{1}{ }^{2}, x_{2}{ }^{2}\right]$. Writing $a_{j 1}$ and b as in (19) and substituting into the relation $a_{j 1} b x_{1} \in k\left[x_{1}{ }^{2}\right.$, $\left.x_{2}{ }^{2}\right]$ gives $\alpha_{j 1 l}=0$ for all l. We conclude that each $a_{j 1}$ is a polynomial in $x_{2}{ }^{2}$ without constant term. Thus, we can write

$$
a_{j 1}=\sum_{l=1}^{N} \beta_{j 1 l}\left(x_{2}^{2}\right)^{l} \quad(j=1, \ldots, n)
$$

with $\beta_{j 1 l} \in k$. So equation (18 ii) now takes the form

$$
\begin{equation*}
g+a^{\prime}=\sum_{j=1}^{n} z_{j}\left(\sum_{l=1}^{N} \beta_{j l 1}\left(x_{2}^{2}\right)^{l}\right) . \tag{20}
\end{equation*}
$$

Now recall that $b^{\prime} \in k\left[x_{1}{ }^{2}\right], c^{\prime} \in k\left[x_{2}{ }^{2}\right]$ and that $g+a^{\prime}=b^{\prime} x_{1}+c^{\prime} x_{2}$. Since $x_{2}{ }^{2} R \subset k\left[x_{2}\right]$, equation (20) implies $b^{\prime}=0$. Thus, equation (20) has the form

$$
\begin{equation*}
\left\{\sum_{i=0}^{r} \gamma_{i}\left(x_{2}^{2}\right)^{i}\right\} x_{2}=\sum_{j=1}^{n} z_{j}\left(\sum_{l=1}^{N} \beta_{j 1 l}\left(x_{2}^{2}\right)^{l}\right) \tag{21}
\end{equation*}
$$

for some $\gamma_{i} \in k$. Now each $z_{j}=\alpha_{j}+\beta_{j} g$ with α_{j} and β_{j} in R_{r}. If we write α_{j} and β_{j} as in equation (19) and substitute into (21), we easily see that (21) is impossible. Thus, in either case, (18) is impossible. Therefore, φ is never an isomorphism, and Example 1 is complete.

We note that Example 1 also gives an example of the remarks made in the introduction of this paper. If $R=k\left[x_{1}, x_{2}\right]$, and $\Gamma=\left\{D_{1}, D_{2}\right\}$, as in Example 1, then R / R_{r} is an extension of characteristic two such that R_{r} is the ring of constants of Γ. But, R fails to be a tensor product over R_{Γ} of primitive extensions of R_{r}.
In view of Example 1, the hypotheses appearing in Theorem 1 are reasonable.

3B. The characteristic zero case.

Lemma 2. Let R / k be an extension of characteristic zero such that no nonzero integer is a zero-divisor in R. Let $D=\left\{d_{0}, d_{1}, \ldots, d_{m}\right\}$ be a k-higher derivation on R, and let R_{D} be the ring of constants of D. Suppose there exists an element x in R such that $d_{1} x=1$. Then x is transcendental over R_{D}.

Proof. By x being transcendental over R_{D}, we, of course, mean that x satisfies no algebraic equation of the form:

$$
\begin{equation*}
c_{n} x^{n}+c_{n-1} x^{n-1}+\ldots+c_{0}=0 \tag{22}
\end{equation*}
$$

where the c_{j} 's are in R_{D} and are not all zero. The proof of Lemma 2 is by contradiction. Suppose x satisfies such an equation (22). Among all such equations that x satisfies, we can pick one for which n is minimal. Say equation (22) is one such equation. Then applying d_{1} to (22) gives

$$
\begin{equation*}
n c_{n} x^{n-1}+\ldots+c_{1}=0 \tag{23}
\end{equation*}
$$

By the minimality of n, the coefficients of the expression in (23) are all zero. Since no nonzero integer is a zero-divisor in R, we conclude that $c_{n}=\ldots=$ $c_{1}=0$. But, then every coefficient in (22) is zero. This is a contradiction, and the proof of Lemma 2 is complete.

Before we give the proof of Theorem 1 in the characteristic zero case, we give an easy example which shows that the hypothesis "no nonzero integer is a zero-divisor in R " cannot be omitted from Lemma 2.

Example 2. Let \mathbf{Z} denote the integers, and let X be an indeterminate. Set $k=\mathbf{Z}[X] /(2 X)$. Then k has characteristic zero, and 2 is a zero-divisor in k. Let x denote the image of X in k. Then $k=\mathbf{Z}[x]$. Now let Y be an indeterminate over k and set $R=k[Y] /\left(x Y^{2}\right)$. Let y be the image of Y in R. Then $R=$ $k[y]$ is an extension of k of characteristic zero, and 2 is a zero-divisor in R.

Now we can define a first order k-derivation D on $k[Y]$ by letting $D(Y)=1$. Since $D\left(x Y^{2}\right)=2 x Y=0$, we see $\left(x Y^{2}\right)$ is a differential ideal under D. So, D induces on R a first order k-derivation (which we shall also call D) such that $D(y)=1$.

Thus, R / k has a first order k-derivation D, and an element $y \in R$ such that $D(y)=1$. But y is algebraic over R_{D} since $x \in R_{D}$ and $x y^{2}=0$. Thus, the conclusion of Lemma 2 can fail if we allow nonzero integers to be zero-divisors.

We now prove Theorem 1 in the characteristic zero case.
Proof of Theorem 1 (char $=0$). Since $\left(D_{1}, \ldots, D_{n} \mid x_{1}, \ldots, x_{n}\right)$ satisfy equation (4), we have $R_{D i} \supset R_{\Gamma}\left[x_{1}, \ldots, \hat{x}_{i}, \ldots, x_{n}\right]$. Thus, by Lemma $2, x_{i}$ is transcendental over $R_{\Gamma}\left[x_{1}, \ldots, \hat{x}_{i}, \ldots, x_{n}\right]$. Now consider $\varphi: \otimes R_{\Gamma}\left[x_{i}\right] \rightarrow$ $R_{\Gamma}\left[x_{1}, \ldots, x_{n}\right]$. If $\sum c_{\alpha_{1} \ldots \alpha_{n}} x_{1}{ }^{\alpha_{1}} \otimes \ldots \otimes x_{n}^{\alpha_{n}} \in \operatorname{ker} \varphi,\left(c_{\alpha_{1} \ldots \alpha_{n}} \in R_{\Gamma}\right)$, then in R, we have

$$
\begin{equation*}
\sum_{\alpha_{1}}\left(\sum c_{\alpha_{1} \ldots \alpha_{n}} x_{2}^{\alpha_{2}} \ldots x_{n}^{\alpha_{n}}\right) x_{1}^{\alpha_{1}}=0 . \tag{24}
\end{equation*}
$$

Since x_{1} is transcendental over $R_{\Gamma}\left[x_{2}, \ldots, x_{n}\right]$, we conclude that each expression in parentheses in (24) is zero. Thus, we conclude by induction that every $c_{\alpha_{1} \ldots \alpha_{n}}$ is zero.

The proof of Theorem 1 is now complete in all cases. We give two examples concerning the hypotheses of Theorem 1 in the characteristic zero case. The first example shows that the hypotheses ($D_{1}, \ldots, D_{n} \mid x_{1}, \ldots, x_{n}$) satisfy (4) cannot be omitted from Theorem 1. The second example shows that the hypothesis "no nonzero integer is a zero-divisor in R " cannot be omitted either.

Example 3. Let k be any field of characteristic zero and let X_{1} and X_{2} be indeterminates over k. Set $R=k\left[X_{1}, X_{2}\right]$. We define two first order k-derivations D_{1} and D_{2} on R by the formulas:

$$
\begin{equation*}
D_{1}\left(X_{1}\right)=X_{1}, \quad D_{1}\left(X_{2}\right)=D_{2}\left(X_{2}\right)=0, \quad D_{2}\left(X_{1}\right)=X_{2} \tag{25}
\end{equation*}
$$

Then one can easily check that $R_{D_{1}}=R_{D_{2}}=k\left[X_{2}\right]$. Thus, $R_{\Gamma}=k\left[X_{2}\right]$ when $\Gamma=\left\{D_{1}, D_{2}\right\}$.
Now if $f \in R-R_{\Gamma}$, then clearly f is transcendental over R_{Γ}. Thus, if f, $g \in R-R_{\Gamma}$, and $\varphi: R_{\Gamma}[f] \otimes R_{\Gamma}[g] \rightarrow R_{\Gamma}[f, g]$ is the natural map, then simple dimension theoretic considerations imply that φ cannot be an isomorphism.

In Example 1, $R_{D_{1}} \neq R_{D_{2}}$. In Example 3, $R_{D_{1}}=R_{D_{2}}$. In either example, $R_{\Gamma}[f, g]$ fails to be isomorphic to $R_{\Gamma}[f] \otimes R_{\Gamma}[g]$. Thus, the order relationships between the rings $R_{D_{i}}$ are not enough to decide if any finitely generated $R_{r^{-}}$ algebra contained in R is a tensor product.

Example 4. Again, let \mathbf{Z} denote the integers. Let X denote an indeterminate over \mathbf{Z} and set $k=\mathbf{Z}[X] /(4 X)$. We shall let x denote the image of X in k. Therefore, $k=\mathbf{Z}[x]$. Now let Y_{1} and Y_{2} be indeterminates over k, and set $S=k\left[Y_{1}, Y_{2}\right]$. We define two first order k-derivatives D_{1} and D_{2} on S by $D_{1}\left(Y_{1}\right)=1=D_{2}\left(Y_{2}\right)$, and $D_{1}\left(Y_{2}\right)=D_{2}\left(Y_{1}\right)=0$. So, $\left(D_{1}, D_{2} \mid Y_{1}, Y_{2}\right)$ satisfy equation (4). Now let \mathfrak{W} be the following homogeneous ideal in S :

$$
\begin{equation*}
\mathfrak{H}=\left(x Y_{1}{ }^{2} Y_{2}{ }^{2}, 2 x Y_{1} Y_{2}{ }^{2}, 2 x Y_{1}{ }^{2} Y_{2}, 2 x Y_{1}{ }^{2}, 2 x Y_{2}{ }^{2}\right) . \tag{26}
\end{equation*}
$$

One can easily check that \mathfrak{A} is differential under D_{1} or D_{2}. Thus, D_{1} and D_{2} induce first order k-derivations (which we shall continue to call D_{1} and D_{2})
on $R=S / \mathfrak{\imath}$. If we let y_{i} denote the image of Y_{i} in R, then $R=k\left[y_{1}, y_{2}\right], R / k$ is an extension of characteristic zero, 2 is a zero-divisor in R and ($D_{1}, D_{2} \mid y_{1}, y_{2}$) satisfy equation (4).

Now set $\Gamma=\left\{D_{1}, D_{2}\right\}$, and let R_{Γ} denote the ring of constants of Γ as usual. Consider $\varphi: R_{\mathrm{r}}\left[y_{1}\right] \otimes R_{\Gamma}\left[y_{2}\right] \rightarrow R_{\Gamma}\left[y_{1}, y_{2}\right]$. An easy computation shows that $x y_{1}{ }^{2}$ and $y_{2}{ }^{2}$ are not elements of R_{Γ}, but $x y_{1}{ }^{2} \otimes y_{2}{ }^{2} \in \operatorname{ker} \varphi$. We shall now show that $x y_{1}{ }^{2} \otimes y_{2}{ }^{2} \neq 0$, and, consequently, φ is not an isomorphism.

The argument is similar to that in Example 1. We assume $x y_{1}{ }^{2} \otimes y_{2}{ }^{2}=0$. Then by [1, Lemma 10, p. 40], there exist elements $a_{j \lambda} \in R_{\Gamma}(j=1, \ldots, n$, $\lambda=0,1, \ldots)$, and $\omega_{j} \in R_{\Gamma}\left[y_{1}\right]$ such that
(i) $\sum_{\lambda=0}^{\infty} a_{j \lambda} y_{2}{ }^{\lambda}=0, \quad j=1, \ldots, n$

$$
\begin{equation*}
\text { (ii) } x y_{1}^{2}=\sum_{j=1}^{n} \omega_{j} a_{j 2} \tag{27}
\end{equation*}
$$

(iii) $0=\sum_{j=1}^{n} \omega_{j} a_{j \lambda}, \quad \lambda \neq 2$.

Here we note that the family $\left\{a_{j \lambda} \mid \lambda=0,1, \ldots\right\}$ has finite support, and, thus, (27 i) is a finite sum. We wish to argue that the equations in (27) are impossible. The computations are tedious but not difficult. We sketch the main ideas and leave the details to the interested reader.

We first note that any element $z \in R_{\Gamma}$ can be written in the following form:

$$
\text { (28) } \quad z=\alpha+g_{3}+\ldots+g_{m} .
$$

Here $\alpha \in k$, and g_{i} is a homogeneous polynomial in y_{1} and y_{2} (coefficients in k) of degree i. Since only finitely many $a_{j \lambda}$ appear in (27 i), we can write each $a_{j \lambda}$ as

$$
\begin{equation*}
a_{j \lambda}=\alpha^{j, \lambda}+g_{3}^{j, \lambda}+\ldots+g_{m}^{j, \lambda} \tag{29}
\end{equation*}
$$

for some m sufficiently large. Here $\alpha^{j, \lambda}$ and $g_{i}{ }^{j, \lambda}$ are as in equation (28). If we now substitute (29) into equation (27 i) and apply $D_{2}{ }^{2}$, we conclude that $a_{j 2}$ has the following form:

$$
\begin{equation*}
a_{j 2}=2 x \beta^{j, 2}+g_{3}^{j, 2}+\ldots+g_{m}^{j, 2} . \tag{30}
\end{equation*}
$$

Here $\beta^{j, 2} \in k$, and $g_{i}{ }^{j, 2}$ are homogeneous polynomials of degree i in y_{1} and y_{2}. We now substitute (30) into (27 ii) getting

$$
\begin{equation*}
x y_{1}^{2}=\sum_{j=1}^{n} \omega_{j}\left(2 x \beta^{j, 2}+g_{3}^{j, 2}+\ldots+g_{m}^{j, 2}\right) \tag{31}
\end{equation*}
$$

Now each ω_{j} lies in $R_{r}\left[y_{1}\right]$. Thus, each ω_{j} can be written as $\omega_{j}=\sum_{i=0}^{V} c_{j t} y_{1}{ }^{t}$. Here $c_{j t} \in R_{\Gamma}$. If we write each $c_{j t}$ as in (28) and substitute into equation (31), we easily see that equation (31) is impossible. Thus, $x y_{1}{ }^{2} \otimes y_{2}{ }^{2} \neq 0$, and φ fails to be an isomorphism.

Thus, even if ($D_{1}, \ldots, D_{n} \mid x_{1}, \ldots, x_{n}$) satisfy equation (4), the conclusion of Theorem 1 may fail if some nonzero integer is a zero-divisor in R.

One last comment about Theorem 1 seems appropriate here. We can state a slightly more general version of Theorem 1 as follows:

Theorem 1^{\prime}. Suppose R / k is an extension of prime characteristic p or an extension of characteristic zero in which no nonzero integer is a zero-divisor. Let $\Gamma=$ $\left\{D_{1}, \ldots, D_{n}\right\}$ be a set of k-higher derivations on R, and suppose there exists elements $x_{1}, \ldots, x_{n} \in R-R_{r}$ such that the following system of equations is satisfied;

$$
\begin{align*}
& D_{i j}\left(x_{k}\right)=0 \text { if } k \neq i, 1 \leqq j \leqq \operatorname{rk} D_{i} \tag{32}\\
& D_{i 1}\left(x_{i}\right) \text { is a unit in } R, 1 \leqq i \leqq n .
\end{align*}
$$

Then $R_{\Gamma}\left[x_{1}, \ldots, x_{n}\right] \cong \otimes R_{\Gamma}\left[x_{i}\right]$.
Proof. Set $D_{i 1}\left(x_{i}\right)=\epsilon_{i}$, a unit in R. Let the multiplicative inverse of ϵ_{i} be α_{i}. If $D_{i}=\left\{D_{i 0}, D_{i 1}, \ldots, D_{i m(i)}\right\}$, then clearly $D_{i}{ }^{\prime}=\left\{D_{i 0}, \alpha_{i} D_{i 1}, \ldots\right.$, $\left.\alpha_{i}^{m(i)} D_{i m(i)}\right\}$ is another k-higher derivation on R such that rk $D_{i}{ }^{\prime}=$ rk D_{i}. Since α_{i} is a unit, $R_{D i}=R_{D_{i^{\prime}}}$. Thus, $R_{\Gamma}=\cap R_{D i^{\prime}}$, and equation (32) implies ($D_{1}{ }^{\prime}, \ldots, D_{n}{ }^{\prime} \mid x_{1}, \ldots, x_{n}$) satisfy equation (4). Thus, the result follows from Theorem 1.

To complete our study of the main problem in this paper, we now investigate when $R=R_{\mathrm{r}}\left[x_{1}, \ldots, x_{n}\right]$. In the first place, if the conditions of Theorem 1 are satisfied, we cannot conclude that $R=R_{\Gamma}\left[x_{1}, \ldots, x_{n}\right]$. A simple example will illustrate this point.

Example 5. Let k be any field and let X_{1}, X_{2}, X_{3} be indeterminates over k. Set $R=k\left[X_{1}, X_{2}, X_{3}\right]$. We define two first order k-derivations D_{1} and D_{2} on R by the following formulas:

$$
\begin{align*}
& D_{1}\left(X_{1}\right)=D_{2}\left(X_{2}\right)=1 \\
& D_{1}\left(X_{2}\right)=D_{2}\left(X_{1}\right)=0 \tag{33}\\
& D_{1}\left(X_{3}\right)=D_{2}\left(X_{3}\right)=X_{3} .
\end{align*}
$$

Then $\left(D_{1}, D_{2} \mid X_{1}, X_{2}\right)$ satisfy equation (4). But if $\Gamma=\left\{D_{1}, D_{2}\right\}$, then $X_{3} \notin$ $R_{r}\left[X_{1}, X_{2}\right]$. To prove this fact, we merely have to note that given any $f \in$ $R_{r}\left[X_{1}, X_{2}\right]$, there exists an n sufficiently large such that $D_{1}{ }^{n}(f)=0$. Since $D_{1}{ }^{n}\left(X_{3}\right)=X_{3}$ for all n, we conclude that $X_{3} \notin R_{\Gamma}\left[X_{1}, X_{2}\right]$.

Thus, more conditions on Γ are needed in order to ensure that R is a tensor product over R_{Γ}. We shall state exactly what is necessary when R is an integral domain.

Let R / k be an integral domain, and let S be a subring of R. We shall denote by $Q(S)$ the quotient field of S. If D is a k-higher derivation on S, then D has a natural extension to $Q(S)$. A proof of this fact can be found in [4, Theorem 15]. In particular, if $\Gamma=\left\{D_{1}, \ldots, D_{n}\right\}$ is a set of k-higher derivations on R / k,
then Γ can be viewed as a set of k-higher derivations on $Q(R)$. It also follows from [4, Theorem 15], that $Q\left(R_{\Gamma}\right)$ is a subfield of the field of constants of Γ on $Q(R)$.

We need the following lemma.
Lemma 3. Let R / k be a domain of prime characteristic p. Let $\Gamma=\left\{D_{1}, \ldots, D_{n}\right\}$ be a sel of k-higher derivations on R. Suppose there exist elements $x_{1}, \ldots, x_{n} \in$ $R-R_{\Gamma}$ such that $\left(D_{1}, \ldots, D_{n} \mid x_{1}, \ldots, x_{n}\right)$ satisfy equation (4). Then for every polynomial

$$
f=\sum\left\{c_{\alpha_{1} \ldots \alpha_{n}} x_{1}^{\alpha_{1}} \ldots x_{n}^{\alpha_{n}} \mid 0 \leqq \alpha_{i}<\mu_{\Gamma}\left(x_{i}\right)\right\}
$$

with coefficients $c_{\alpha_{1} \ldots \alpha_{n}} \in Q\left(R_{\Gamma}\right)$, there exists a composite $E_{1} \circ \ldots \circ E_{r}$ of components of D_{1}, \ldots, D_{n} such that $E_{1} \circ \ldots \circ E_{r}(f)=l c_{\gamma_{1} \ldots \gamma_{n}}$. Herel is a nonzero integer (in $\mathbf{Z} / p \mathbf{Z}$), and $c_{\gamma_{1} \ldots \gamma_{n}}$ is one of the (nonzero) coefficients appearing in f.

Proof. The proof of Lemma 3 is easy, and we shall only sketch the main ideas. Since $\left(D_{1}, \ldots, D_{n} \mid x_{1}, \ldots, x_{n}\right)$ satisfy equation (4), Lemma 3 is easily seen to be true if f has degree less than or equal to one. Thus, we can proceed by induction on the degree of f. If f has degree bigger than one, we can assume without loss of generality that x_{1} is present in a term of highest possible degree in f. Then we can write f in the following form:

$$
\begin{equation*}
f=A_{0}+A_{1} x_{1}+\ldots+A_{m} x_{1}{ }^{m} \tag{34}
\end{equation*}
$$

Here $A_{i} \in Q\left(R_{\mathrm{r}}\right)\left[x_{2}, \ldots, x_{n}\right] \subset Q(R)_{D_{1}}$. Further, $A_{m} \neq 0$, and $m \operatorname{deg} A_{m}=$ deg f. We note that $m<\mu_{r}\left(x_{1}\right)$. Thus, by techniques similar to those used in Theorem 1, we can show that there exists a component $D_{1 i}$ of D_{1} such that $D_{1 i}(f) \neq 0, D_{1 i}(f)=B_{1}+B_{2} x_{1}+\ldots+B_{m} x_{1}{ }^{m-1}$ and each B_{i} is just $A_{\text {, }}$ multiplied by some element l_{i} of $\mathbf{Z} / p \mathbf{Z}$. Since the degree of $D_{1 i}(f)$ is less than f, there exists a composite of components $E_{1} \circ \ldots$ o E_{r} of D_{1}, \ldots, D_{n} such that $E_{1} \circ \ldots \circ E_{r}\left(D_{1 i}(f)\right)$ is a nonzero multiple of one of the nonzero coefficients of $D_{1 i}(f)$. Thus, $E_{1} \circ \ldots \circ E_{r} \circ D_{1 i}$ is the required composite for f.

We can now state the main result in characteristic p. Let $\operatorname{ler}_{R_{\mathrm{r}}}{ }^{1}(R)$ denote the R-module of first order R_{Γ}-derivations of R.

Theorem 2. Let R / k be a domain of prime characteristic p. Let $\Gamma=\left\{D_{1}, \ldots\right.$, $\left.D_{n}\right\}$ be a sei of k-higher derivations on R. Suppose there exist elements x_{1}, \ldots, $x_{n} \in R-R_{\Gamma}$ such that $\left(D_{1}, \ldots, D_{n} \mid x_{1}, \ldots, x_{n}\right)$ satisfy equation (t). Then $R \cong \otimes R_{\mathrm{r}}\left[x_{i}\right]$ if and only if $\left\{D_{11}, \ldots, D_{n 1}\right\}$ span $\mathrm{Der}_{R_{\mathrm{F}}}{ }^{1}(R)$.

Proof. Suppose $\varphi: \otimes R_{\Gamma}\left[x_{i}\right] \rightarrow R$ is an isomorphism. Since the image of φ is $R_{\Gamma}\left[x_{1}, \ldots, x_{n}\right]$, we conclude that $R=R_{\Gamma}\left[x_{1}, \ldots, x_{n}\right]$. Now if D is any first order R_{r}-derivation of R, then D is uniquely determined by its values on the x_{i}. Thus, it is clear that $D=\sum_{i=1}^{n} D\left(x_{i}\right) D_{i 1}$. Therefore, D_{11}, ..., $D_{n 1}$ span $\mathrm{Der}_{R_{\mathrm{F}}}{ }^{1}(R)$.

Suppose we now assume $D_{11}, \ldots, D_{n 1}$ span $\operatorname{Der}_{R_{\Gamma}}{ }^{1}(R)$. We easily see that $\operatorname{Der}_{R_{\Gamma}}{ }^{1}(Q(R))=\operatorname{Der}_{Q\left(R_{\mathrm{\Gamma}}\right)}{ }^{1}(Q(R))=\operatorname{Der}_{K}{ }^{1}(Q(R))$ where K is the subfield of $Q(R)$ generated by $Q\left(R_{\Gamma}\right)$ and $Q(R)^{p}$. Since $\operatorname{Der}_{R_{\Gamma}}{ }^{1}(Q(R)) \cong Q(R) \otimes_{R}$ $\operatorname{Der}_{R_{\Gamma}}{ }^{1}(R)$, we conclude that $\left\{D_{11}, \ldots, D_{n 1}\right\}$ is a basis for the $Q(R)$-module $\operatorname{Der}_{K}{ }^{1}(Q(R))$.

We next show that $\left\{x_{1}, \ldots, x_{n}\right\}$ is a p-basis of $Q(R) / K$. Since $\left(D_{1}, \ldots\right.$, $D_{n} \mid x_{1}, \ldots, x_{n}$) satisfy (4), we easily see that $\left\{x_{1}, \ldots, x_{n}\right\}$ is a p-independent subset of $Q(R) / K$. Thus, there exists a p-basis B of $Q(R) / K$ such that $\left\{x_{1}, \ldots\right.$, $\left.x_{n}\right\} \subset B$. Suppose there exists a $y \in B-\left\{x_{1}, \ldots, x_{n}\right\}$. Then by $[3$, Theorem 17, p. 181], there exists a first order K-derivation D on $Q(R)$ such that $D\left(x_{i}\right)=$ $0, i=1, \ldots, n$, and $D(y)=1$. But, $\left\{D_{11}, \ldots, D_{n 1}\right\}$ is a basis for $\operatorname{Der}_{K}{ }^{1}(Q(R))$. Consequently, there exist constants $\alpha_{1}, \ldots, \alpha_{n} \in Q(R)$ such that

$$
\begin{equation*}
D=\alpha_{1} D_{11}+\ldots+\alpha_{n} D_{n_{1}} \tag{35}
\end{equation*}
$$

If we now evaluate (35) at each x_{i}, we get $\alpha_{i}=0, i=1, \ldots, n$. Thus, $D=0$. But this is impossible since $D(y)=1$. We conclude that $B-\left\{x_{1}, \ldots, x_{n}\right\}=\emptyset$, and, consequently, $\left\{x_{1}, \ldots, x_{n}\right\}$ is a p-basis of $Q(R) / K$.

Since $\left\{x_{1}, \ldots, x_{n}\right\}$ is a p-basis of $Q(R) / K$, we have $Q(R)=K\left(x_{1}, \ldots, x_{n}\right)$. In other words, $Q(R)=Q\left(R_{\Gamma}\right)\left(Q(R)^{p}\right)\left(x_{1}, \ldots, x_{n}\right)$. Iterating this relationship and using the fact that $R^{p^{e}} \subset R_{\Gamma}$ for some e sufficiently large, we get $Q(R)=$ $Q\left(R_{\Gamma}\right)\left(x_{1}, \ldots, x_{n}\right)$.

Now let $z \in R$. Since $Q(R)=Q\left(R_{\Gamma}\right)\left(x_{1}, \ldots, x_{n}\right)=Q\left(R_{\Gamma}\right)\left[x_{1}, \ldots, x_{n}\right]$, there exist elements $c_{\alpha_{1} \ldots \alpha_{n}} \in Q\left(R_{\Gamma}\right)$ such that

$$
\begin{equation*}
z=\sum c_{\alpha_{1} \ldots \alpha_{n}} x_{1}^{\alpha 1} \ldots x_{n}^{\alpha_{n}} \tag{36}
\end{equation*}
$$

Here $0 \leqq \alpha_{i}<\mu_{\Gamma}\left(x_{i}\right)$. We conclude the proof of Theorem 2 by showing that equation (36) implies every $c_{\alpha_{1} \ldots \alpha_{n}}$ lies in R_{Γ}.

We proceed by induction on the number of monomials present on the right hand side of (36). If only one monomial is present, then equation (36) has the form
(37) $z=c_{\alpha_{1} \ldots \alpha_{n}} x_{1}{ }^{\alpha_{1}} \ldots x_{n}{ }^{\alpha_{n}}$.

We now apply Lemma 3 to equation (37). Hence there exists a composite of components $E_{1} \circ \ldots \circ E_{r}$ of D_{1}, \ldots, D_{n} such that $E_{1} \circ \ldots \circ E_{r}(z)=$ $l c_{\alpha_{1} \ldots \alpha_{n}}$. Here l is some nonzero element in $\mathbf{Z} / p \mathbf{Z}$. Since $E_{1} \circ \ldots \circ E_{r}(z) \in R$, we conclude $c_{\alpha_{1} \ldots \alpha_{n}} \in Q\left(R_{\Gamma}\right) \cap R$. But again by [4, Theorem 15], $Q\left(R_{\Gamma}\right) \cap$ $R=R_{\mathrm{r}}$. Thus, $c_{\alpha_{1} \ldots \alpha_{n}} \in R_{\mathrm{r}}$. So, the result is established if only one monomial appears on the right in equation (36).

Now suppose more than one monomial appears on the right in (36). Use Lemma 3 again. We can find a composite of components $E_{1} \circ \ldots \circ E_{r}$ of D_{1}, \ldots, D_{n} such that $E_{1} \circ \ldots \circ E_{T}(z)=l c_{\gamma_{1} \ldots \gamma_{n}}$. Here $c_{\gamma_{1} \ldots \gamma_{n}}$ is one of the coefficients appearing in (36). Thus, $c_{\gamma_{1} \ldots \gamma_{n}} \in R_{\Gamma}$. Now (36) can be rewritten as

$$
\begin{equation*}
z-c_{\gamma_{1} \ldots \gamma_{n}} x_{1}^{\gamma_{1}^{1}} \ldots x_{n}^{\gamma_{n}}=\sum c_{\alpha_{1} \ldots \alpha_{n}} x_{1}^{\alpha_{1}} \ldots x_{n}^{\alpha_{n}} . \tag{38}
\end{equation*}
$$

The sum on the right is now taken over all n-tuples $\left(\alpha_{1}, \ldots \alpha_{n}\right) \neq\left(\gamma_{1}, \ldots, \gamma_{n}\right)$. Since there are fewer monomials now appearing on the right in (38) than in (36), we conclude by induction that every $c_{\alpha_{1} \ldots \alpha_{n}}$ lies in R_{Γ}.

Thus, we have proven that $R_{\Gamma}\left[x_{1}, \ldots, x_{n}\right]=R$. By Theorem 1, $\varphi: \otimes R_{\Gamma}\left[x_{i}\right]$ $\rightarrow R_{\Gamma}\left[x_{1}, \ldots, x_{n}\right]$ is an isomorphism. Therefore, $\otimes R_{\Gamma}\left[x_{i}\right] \cong R$, and the proof of Theorem 2 is complete.

We note that the two main hypotheses in Theorem 2 are independent of each other. Example 5 provides an example in which ($D_{1}, D_{2} \mid X_{1}, X_{2}$) satisfy equation (4), but the set $\left\{D_{1}, D_{2}\right\}$ does not span $\operatorname{Der}_{R_{\Gamma}}{ }^{1}(R)$. For example, if the characteristic of k is two, then $R_{\Gamma}=k\left[X_{1}{ }^{2}, X_{2}{ }^{2}, X_{3}{ }^{2}\right]$. So, D_{3} defined by $D_{3}\left(X_{1}\right)=D_{3}\left(X_{2}\right)=0$, and $D_{3}\left(X_{3}\right)=1$ is a well defined first order R_{r}-derivation on R. But, D_{3} is not an R-linear combination of D_{1} and D_{2}.

On the other hand, if a set $\Gamma=\left\{D_{1}, \ldots, D_{n}\right\}$ of k-higher derivations on R / k is such that the set $\left\{D_{11}, \ldots, D_{n 1}\right\}$ spans $\operatorname{Der}_{R_{\Gamma}}{ }^{1}(R)$, then it need not follow that there exist elements x_{1}, \ldots, x_{n} in R such that equation (4) is satisfied. Consider the following example:

Example 6. Let k be any field of characteristic not equal to two or three. Let X and Y be indeterminates over k, and set $R=k[X, Y] /\left(X^{2}-Y^{3}\right)$. Then R is an integral domain. Since R is a homomorphic image of $k[X, Y]$, $\operatorname{Der}_{k}{ }^{1}(R)$ is a finitely generated R-module. Let x and y denote the images of X and Y in R. Then $R=k[x, y]$. Set $m=(x, y)$, the maximal ideal in R generated by x and y.

Now if $D \in \operatorname{Der}_{k}{ }^{1}(R)$, then $2 x D(x)=3 y^{2} D(y)$. It now easily follows from this equation that $D(R) \subset m$. Thus, no first order k-derivation on R can take any element of R to a unit. In particular, if $\Gamma=\left\{D_{1}, \ldots, D_{n}\right\}$, where $\left\{D_{1}, \ldots\right.$, $\left.D_{n}\right\}$ span $\operatorname{Der}_{k}{ }^{1}(R)$, then Γ spans $\operatorname{Der}_{R_{\Gamma}}{ }^{1}(R)$. But, no elements x_{1}, \ldots, x_{n} can be found in R such that ($D_{1}, \ldots, D_{n} \mid x_{1}, \ldots, x_{n}$) satisfy equation (4).

We now turn our attention to the analog of Theorem 2 when R / k is a domain of characteristic zero. We first note that the two main hypotheses in Theorem 2 are not strong enough to imply the result in characteristic zero. Consider the following example:

Example 7. Let k be a field of characteristic zero, and suppose X_{1} and X_{2} are indeterminates over k. Set $R=k\left[X_{1}, X_{2}, Z, 1 / Z\right]$ where $Z^{2}=X_{1}$. We can define two first order k-derivations D_{1} and D_{2} on $k\left[X_{1}, X_{2}\right]$ by setting $D_{1}\left(X_{1}\right)=$ $D_{2}\left(X_{2}\right)=1, D_{1}\left(X_{2}\right)=D_{2}\left(X_{1}\right)=0$. Since Z is separable over $k\left[X_{1}, X_{2}\right]$, each D_{i} has a unique extension to R. We easily check that R / k is a domain of characteristic zero in which ($D_{1}, D_{2} \mid X_{1}, X_{2}$) satisfy equation (4). Further, $\Gamma=$ $\left\{D_{1}, D_{2}\right\}$ spans Der ${ }_{k}{ }^{1}(R)$, and, thus, $\operatorname{Der}_{R_{\Gamma}}{ }^{1}(R)$ also.

Consequently, R / k satisfies the two main hypotheses of Theorem 2 , but $R_{\Gamma}\left[X_{1}, X_{2}\right] \neq R$. For $Z \notin R_{\Gamma}\left[X_{1}, X_{2}\right]$. To see this, we merely have to note that some high power of D_{1} kills any given element of $R_{\mathrm{r}}\left[X_{1}, X_{2}\right]$. Since $D_{1}{ }^{n}(Z) \neq 0$ for any n, we conclude that $Z \not \& R_{\Gamma}\left[X_{1}, X_{2}\right]$.

When we study Example 7, we come to the conclusion that a necessary condition for $R_{\Gamma}\left[x_{1}, \ldots, x_{n}\right]=R$ in the presence of equation (4) is that large composites of $D_{11}, \ldots, D_{n 1}$ should kill any given element of R. If $\left\{D_{11}, \ldots, D_{n 1}\right\}$ span $\operatorname{Der}_{R_{\mathrm{F}}}{ }^{1}(R)$, then this condition is sufficient also.

Theorem 3. Let R / k be an integral domain such that k contains ihe rationals. Let $\Gamma=\left\{D_{1}, \ldots, D_{n}\right\}$ be a set of k-higher derivations on R, and suppose there exist elements $x_{1}, \ldots, x_{n} \in R-R_{r}$ such that $\left(D_{1}, \ldots, D_{n} \mid x_{1}, \ldots, x_{n}\right)$ satisfy equation (4). Then $R \cong \otimes R_{\Gamma}\left[x_{i}\right]$ if and only if the following two conditions are satisfied:
$(\alpha)\left\{D_{11}, \ldots, D_{n 1}\right\}$ span $\operatorname{Der}_{R_{\Gamma}}{ }^{1}(R)$.
(β) For every $z \in R$, there exists a nonnegative integer $N(z)$ such that if $m>$ $N(z)$, then $E_{1} \circ \ldots \circ E_{m}(z)=0$. Here $E_{i} \in\left\{D_{11}, \ldots, D_{n 1}\right\}$.

Proof. If $R \cong \otimes R_{\Gamma}\left[x_{i}\right]$, then $R=R_{\Gamma}\left[x_{1}, \ldots, x_{n}\right]$. In this case, condition (β) follows trivially from equation (4). The proof of (α) is the same as in Theorem 2.

So, let us assume conditions (α) and (β) are satisfied. By Theorem $1, \varphi$: \otimes $R_{\Gamma}\left[x_{i}\right] \rightarrow R_{\Gamma}\left[x_{1}, \ldots, x_{n}\right]$ is an isomorphism. Thus, we need to show that conditions (α) and (β) imply $R_{\Gamma}\left[x_{1}, \ldots, x_{n}\right]=R$.

Let $R_{D_{i 1}}$ denote the ring of constants of $D_{i 1},(1 \leqq i \leqq n)$. We first argue that $R_{\Gamma}=\bigcap_{i=1}^{n} R_{D i 1}$. Clearly, $R_{\Gamma} \subset \bigcap_{i=1}^{n} R_{D_{i 1} .}$. Let $z \in \cap_{i=1}^{n} R_{D_{i 1}}$. It is well known that each D_{i} can be embedded as a section in some R_{Γ}-higher derivation E_{i} of infinite rank on R. A proof of this fact can be found in [5, (q) p. 33]. We can regard E_{i} as a $Q\left(R_{\Gamma}\right)$-derivation of infinite rank on $Q(R)$. By [2, (5)], each component of E_{i} is just a sum of composites of first order $Q\left(R_{\Gamma}\right)$-derivations on $Q(R)$. Now condition (α) implies that $\left\{D_{11}, \ldots, D_{n 1}\right\}$ is a $Q(R)$-basis of $\operatorname{Der}_{Q\left(R_{\mathrm{I}}\right)}^{1}(Q(R))$. Thus, any first order $Q\left(R_{\mathrm{r}}\right)$-derivation on $Q(R)$ vanishes on z. Therefore, any component of E_{i} vanishes on z. In particular, $D_{i j}(z)=0$ for every $j=1, \ldots$, rk D_{i}. Thus, $z \in R_{\Gamma}$.

It is now clear that the components of rank greater than one (if present) in D_{i} play no role in this theorem. Thus, without loss of generality, we can assume that each D_{i} is just a first order k-derivation on R.

We next claim that $Q(R)$ is an algebraic extension of $Q\left(R_{\Gamma}\right)\left(x_{1}, \ldots, x_{n}\right)$. We proceed by contradiction. Suppose $Q(R)$ contains an element z such that z is transcendental over $Q\left(R_{\Gamma}\right)\left(x_{1}, \ldots, x_{n}\right)$. Set $K=Q\left(R_{\Gamma}\right)\left(x_{1}, \ldots, x_{n}, z\right)$. By the proof of Theorem $1,\left\{x_{1}, \ldots, x_{n}\right\}$ is a transcendence set over $Q\left(R_{r}\right)$. Since z is transcendental over $Q\left(R_{\Gamma}\right)\left(x_{1}, \ldots, x_{n}\right),\left\{x_{1}, \ldots, x_{n}, z\right\}$ is also a transcendence set over $Q\left(R_{\Gamma}\right)$. Thus, we can define a $Q\left(R_{\Gamma}\right)$-derivation D on K by $D\left(x_{i}\right)=0$ $(1 \leqq i \leqq n)$, and $D(z)=1$. Since the characteristic of K is zero, D can be extended to a $Q\left(R_{\Gamma}\right)$-derivation on $Q(R)$. Since $\left\{D_{1}, \ldots, D_{n}\right\}$ is a basis for $\operatorname{Der}_{Q\left(R_{\Gamma}\right)}^{1}(Q(R))$, there exist elements $\alpha_{1}, \ldots, \alpha_{n} \in Q(R)$ such that
(39) $D=\alpha_{1} D_{1}+\ldots+\alpha_{n} D_{n}$.

If we evaluate equation (39) at each x_{i}, we get $\alpha_{i}=0$ for all $i=1, \ldots, n$. Thus, $D=0$. But, this is a contradiction since $D(z)=1$. Therefore, $Q(R)$ is an
algebraic extension of $Q\left(R_{\Gamma}\right)\left(x_{1}, \ldots, x_{n}\right)$. In particular, each element $z \in R$ satisfies some algebraic equation over $R_{r}\left[x_{1}, \ldots, x_{n}\right]$.

Now let $z \in R$. Then there exists a nonnegative integer $N(z)$ such that condition (β) holds. We shall show that $z \in R_{\Gamma}\left[x_{1}, \ldots, x_{n}\right]$ by proceeding by induction on the integer $N(z)$.

If $N(z)=0$, then condition (β) implies that $D_{i}(z)=0$ for every $i=1, \ldots n$ Thus, $z \in R_{\Gamma}$. In particular, $z \in R_{\Gamma}\left[x_{1}, \ldots, x_{n}\right]$, and the proof is complete in this case. Thus, we can assume that if $N(z)<M(M>0)$, then $z \in R_{\Gamma}\left[x_{1}, \ldots\right.$, $\left.x_{n}\right]$. Let $z \in R$ such that $N(z)=M$. We note then that $N\left(D_{i}(z)\right)<M$ for any $i=1, \ldots, n$. Thus, $D_{i}(z) \in R_{\Gamma}\left[x_{1}, \ldots x_{n}\right]$ for all i.

Now we know z satisfies some algebraic equation over $R_{\Gamma}\left[x_{1}, \ldots, x_{n}\right]$. Thus, we have

$$
\begin{equation*}
a_{m} z^{m}+a_{m-1} z^{m-1}+\ldots+a_{0}=0 \tag{40}
\end{equation*}
$$

Here the a_{j} 's are all elements of $R_{\Gamma}\left[x_{1}, \ldots, x_{n}\right]$ and not all zero. We can assume that m in (40) is as small as possible among all such relations on z.
We now claim that our induction hypothesis implies that $m=1$. If $m=1$ in equation (40), then there is nothing to prove. Suppose $m \geqq 2$. We need at this point the analog of Lemma 3. We claim that for any non-zero $f \in R_{\mathrm{r}}\left[x_{1}, \ldots\right.$, $\left.x_{n}\right]$, there exists a composite $D_{1}^{l_{1}} \circ \ldots \circ D_{n}^{l_{n}}$ such that $D_{1}{ }^{l_{1}} \circ \ldots \circ D_{n}{ }^{l_{n}}(f)$ is a non-zero constant of R_{r}. A proof of this fact follows easily from equation (4) and induction on the degree of f. Now, we apply this remark to the leading coefficient a_{m} in (40). Thus, there exists a composite $D_{1}{ }^{l_{1}} \circ \ldots \circ D_{n}{ }^{l_{n}}$ such that $D_{1}{ }^{l_{1}} \circ \ldots \circ D_{n}{ }^{{ }^{n}}\left(l_{m}\right)=c_{m}$ where c_{m} is a non-zero element in R_{r}. If we apply D_{n} to equation (40), we get

$$
\begin{equation*}
D_{n}\left(a_{m}\right) z^{m}+\left(m l_{m} D_{n}(z)+D_{n}\left(a_{m-1}\right)\right) z^{m-1}+\ldots=0 \tag{41}
\end{equation*}
$$

By our induction assumption, the coefficients of z^{i} in (41) lie in $R_{\Gamma}\left[x_{1}, \ldots, x_{n}\right]$. It is now clear that $D_{1}^{l_{1}} \circ \ldots \circ D_{n}^{l_{n}}$ when applied to (40) gives an equation of the form:

$$
\begin{equation*}
c_{m} z^{m}+b_{m-1} z^{m-1}+\ldots+b_{1} z+b_{0}=0 \tag{42}
\end{equation*}
$$

Here c_{m} is a non-zero element in R_{Γ}, and b_{m-1}, \ldots, b_{0} lie in $\left.R_{\Gamma} \mid x_{1}, \ldots, x_{n}\right]$.
Now apply D_{i} to equation (42). We get

$$
\begin{equation*}
\left(m c_{m} D_{i}(z)+D_{i}\left(b_{m-1}\right)\right) z^{m-1}+\ldots=0 \tag{43}
\end{equation*}
$$

Now the minimality of m implies that $m c_{m} D_{i}(z)+D_{i}\left(b_{m-1}\right)=0$ for every $i=1, \ldots, n$. Therefore, $m c_{m} z+b_{m-1} \in R_{\Gamma}$. But this relation implies that z satisfies an algebraic relationship of the type in equation (40) with $m=1$. This is a contradiction since we are assuming that the minimum m possible in (40) is bigger than or equal to two. Thus, we conclude that $m=1$ in equation (40).

We now claim that $z \in Q\left(R_{\Gamma}\right)\left[x_{1}, \ldots, x_{n}\right]$. Our induction hypothesis shows that z satisfies an equation of type (42) with $m=1$. Dividing by c_{1}, gives us that $z \in Q\left(R_{\Gamma}\right)\left[x_{1}, \ldots, x_{n}\right]$. To summarize, we have now shown that $N(z)=M$
implies that there exist elements $c_{\alpha_{1} \ldots \alpha_{n}} \in Q\left(R_{\Gamma}\right)$ such that

$$
\begin{equation*}
z=\sum c_{\alpha_{1} \ldots \alpha_{n}} x_{1}^{\alpha_{1}} \ldots x_{n}^{\alpha_{n}} \tag{44}
\end{equation*}
$$

We now proceed exactly as in the proof of Theorem 2 . We can easily argue by induction on the number of monomials present on the right side of equation (44) that each $c_{\alpha_{1} \ldots \alpha_{n}}$ lies in R. But then each $c_{\alpha_{1} \ldots \alpha_{n}} \in R_{\Gamma}$, and, hence, $z \in$ $R_{\Gamma}\left[x_{1}, \ldots, x_{n}\right]$. This completes the induction step and consequently the proof of Theorem 3 .

We conclude this paper with a few remarks concerning the independence of conditions (α) and (β) in Theorem 3. We have already noted in Example 7 that (α) does not imply (β). We give a final example which shows that (β) does not imply (α).

Example 8. Let k be any field of characteristic zero and suppose X_{1}, X_{2}, X_{3} are indeterminates over k. Set $R=k\left[X_{1}, X_{2}, X_{3}\right]$. We define two k-higher derivations D_{1} and D_{2} on R by the following equations:

$$
\begin{align*}
& D_{11}\left(X_{1}\right)=1, \quad D_{12}\left(X_{1}\right)=0, \quad D_{2}\left(X_{1}\right)=0 \\
& D_{11}\left(X_{2}\right)=0, \quad D_{12}\left(X_{2}\right)=0, \quad D_{2}\left(X_{2}\right)=1 \tag{45}\\
& D_{11}\left(X_{3}\right)=X_{1}, \quad D_{12}\left(X_{3}\right)=X_{3}, \quad D_{2}\left(X_{3}\right)=X_{2}
\end{align*}
$$

Note that D_{1} is a k-higher derivation of rank two, while D_{2} is a k-higher derivation of rank one on R. Clearly, ($D_{1}, D_{2} \mid X_{1}, X_{2}$) satisfy equation (4).

We first show that $\left\{D_{11}, D_{2}\right\}$ satisfy condition (β) of Theorem 3. An easy computation shows that $D_{11} D_{2}=D_{2} D_{11}$ Thus, it suffices to show that for each $z \in R$ there exist integers N and M sufficiently large such that $D_{11}{ }^{N}(z)=$ $D_{2}{ }^{M}(z)=0$. Since D_{11} and D_{2} are symmetric, it suffices to prove this statement for D_{11} only. We need the following lemma.

Lemma 4. $D_{11}{ }^{s}\left(X_{1}{ }^{n} X_{3}{ }^{l}\right)=g\left(X_{1}, X_{3}\right)+\alpha X_{1^{n+s}} X_{3}^{l-s}$.
Here g is a polynomial in X_{1} and X_{3} with coefficients in k such that the degree of g is less than $n+l . \alpha \in k$.

The proof of this lemma is an easy induction argument on s. We omit it.
Now suppose $z \in R$. Since $D_{11}{ }^{N}$ is a k-endomorphism of R, we can assume z is a monomial. Suppose $z=X_{1}{ }^{n} X_{2}{ }^{m} X_{3}{ }^{l}$. We proceed by induction on $L=n+$ l. If $L=0$, then $z=X_{2}{ }^{m}$, and (45) implies $D_{11}(z)=0$. In general, apply $D_{11}{ }^{l}$ to z first. By Lemma 4, we get

$$
\begin{equation*}
D_{11}^{l}(z)=X_{2}^{m}\left(g\left(X_{1}, X_{3}\right)+\alpha X_{1}^{n+1}\right) . \tag{46}
\end{equation*}
$$

Here deg $g<n+l=L$. Thus, by our induction assumption, there exists an N_{1} such that $D_{11^{N}}(g)=0$. Let $N>\max \left\{N_{1}, n+l\right\}$. Then clearly $D_{11}{ }^{N+l}(z)$ $=0$.

Thus, $\left\{D_{11}, D_{2}\right\}$ satisfy condition (β) in Theorem 3 . We next note that $\left\{D_{11}, D_{2}\right\}$ do not span $\operatorname{Der}_{R_{\Gamma}}{ }^{1}(R)$ where $\Gamma=\left\{D_{1}, D_{2}\right\}$. To show this, we make
use of Theorem 3 itself. If $\left\{D_{11}, D_{2}\right\}$ did span $\operatorname{Der}_{R_{\Gamma}}{ }^{1}(R)$, then by Theorem 3, $R=R_{\Gamma}\left[X_{1}, X_{2}\right]$. But in this example, $R \neq R_{\Gamma}\left[X_{1}, X_{2}\right]$. We shall prove this last inequality by showing $X_{3} \notin R_{\Gamma}\left[X_{1}, X_{2}\right]$.

Suppose $X_{3} \in R_{\Gamma}\left[X_{1}, X_{2}\right]$. Then there exist elements $c_{i}, \in R_{\Gamma}$ such that
(47) $X_{3}=\sum c_{i j} X_{1}{ }^{i} X_{2}{ }^{j}$.

Now $D_{12}{ }^{N}$ is a linear transformation with respect to R_{r}. Thus, applying $D_{12}{ }^{\text {N }}$ to (47) and using equation (45), we get
(48) $X_{3}=\sum c_{i j} X_{2}{ }^{j} D_{12}{ }^{N}\left(X_{1}{ }^{i}\right)$.

Now we can easily argue that for N sufficiently large, the right hand side of (48) is zero. Thus, $X_{3}=0$. This is a contradiction. Therefore, $R \neq R_{\Gamma}\left[X_{1}, X_{2}\right]$ and Example 8 is complete.

Theorems 2 and 3 together with the examples given in this paper give a fairly complete answer to the final question in the introduction.

References

1. N. Bourbaki, Algebre commutative (Hermann, Paris).
2. N. Heerema, Higher derivations and automorphisms of complete local rings, Bull. Amer. Math. Soc. ${ }^{\circ} 6$ (1970), 1212-1225.
3. N. Jacobson, Lectures in abstract algebra, $I I I$ (D. Van Nostrand Co., Princeton, New Jersey).
4. V. Nakai, High order derivations I, Osaka J. Math. 7 (1970), 1-27.
5. P. Ribenboim, Higher derivations of rings I, Rev. Roum. Math Pures et Appl. 16 (1971), 77-110.
6. M. Weisfeld, Purely inseparable extensions and higher derizations, Trans-Amer. Math. Soc. 116 (1965), 435-450.

Michigan State University, East Lansing, Michigan

