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CLASS NUMBERS OF QUADRATIC FORMS OVER

REAL QUADRATIC FIELDS

YOSHIYUKI KITAOKA

Let k be an algebraic number field, let K be a Galois extension of
k of finite degree, and let Oκ, Ok be the maximal orders of K, k, re-
spectively. We consider the conjugate operation: for a given quadratic
lattice M over Oκ equipped with a bilinear form B and for an auto-
morphism σ e G(K/k), we define a new quadratic lattice Mσ over Oκ.
Here Mσ has the same underlying abelian group as M9 but a new Oκ-
action a * v = (7(α)i> (a e Oκ, v e M) the new bilinear form i?σ on Mσ is
defined by Bσ(u,v) = σ~ι{B{u9v)) (u,v eM). Then the 0^-linearity of Bσ

is checked as follows:

Bσ(a*u9v) = σ~1(B(σ(a)u, v))

= aBσ(u,v) {ae Oκ>u9v eM) .

If M has an O^-basis, i.e., M — Oκ[v19v29 ,^J , then Mσ is a quadratic
lattice corresponding to the matrix (σ~\B(vi9Vj))). In this paper we say
that a quadratic lattice M is symmetric if Mσ is isometric to M for any
σ in G(K/k). There are some tools to know class numbers of positive
definite quadratic forms over the ring Z of rational integers, and they
are effective in principle in case of definite quadratic lattices over the
maximal order of an algebraic number field. But they do not seem to
be useful to know the class numbers of symmetric quadratic lattices
apart from the cases of small class numbers. By using the theory of
quaternions we prove

THEOREM. Let K be a real quadratic field QW~q) where q is a
rational prime = 1 (mod 4), and let V be a quaternary quadratic space
over K with bilinear form B and quadratic form Q (Q(x) — B(x9 x)) which
satisfies
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( i ) the discriminant dV of V is a square, that is, det (B(vi9 vά))
is a square, where {vt} is a basis of V,

(ii) V is positive definite at each infinite prime of K,
(iii) there is a lattice M over the maximal order Oκ of K in V such

that M is a unimodular quadratic lattice at each finite prime of K, and
Q(x) = 0 (mod 2) for any xeM.
Furthermore, let G denote the genus of the quadratic lattice M. Then,
for q Φ 5, the class number of isometry classes of quadratic lattices in
G is

±H(H + 1), where H is S2,χ/24 3 + h(*J~^q)l% + fc(V:r3g)/6 ,

and the class number of isometry classes of symmetric^ quadratic lattices
in G is

+ B2,z/25 3

where B2>x is a generalized Bernoulli number with χ(ri) = (~), (~ j

stands for the quadratic residue symbol, and h(V—m) is the class num-
ber of an imaginary quadratic field Q(V—m). If q = 5, then both class
numbers are one.

Remark 1. Theorem in case of q — 5 is proved by Maass [3].

Remark 2. Every quadratic lattice in the genus G in Theorem has
an O^-basis (appendix). Hence G can be regarded as a set of matrices
A in SL(4, Oκ) such that diagonal entries are divisible by 2, and A, σA
are positive definite, where σ is a non-trivial automorphism of K.

Remark 3. Since a conjugate quadratic lattice Lσ of L is not unique
up to rotations, it seems to be difficult to consider our problems within
the category of rotations in general. However there are some exceptional
cases which can be treated as follows:

Let K/k be a Galois extension and VQ be a quadratic space over k,
and put V = K®k VQ. For σ e G(K/k) and an element v = 2] atvi9 where
at G K and {v<} is a basis of Vo over k, we define σ(v) by 2 <r(ai)Vz-

*> We consider the rational number field Q as k in the introduction.
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Then, for a given quadratic lattice L in V and σ e G(K/k)y we have

Lσ ^ σ~\L). Suppose that two lattices L, M are isometric by a rotation

φ9 <p(L) ~ M. Put φa = σ~ιψσ\ then φσ(σ~ιL) = σ~λM. Next we show that

<pσ is a rotation. Let φ(y19 , vn) — (v19 , vn)Γ. Then p , ^ , , vn) =

0>i, , Ό σ ^CD implies det ψσ = det σ'^T) = σ"1 det Γ = σ"1 det p = 1, and

(B(φM, φσ(Vj))) = σ-K'T)(B(vi9 Vj))σ-\T) = σ-^TiB^ Vj))T) = σ'\B{vi9 vj)

= (B(vu Vj))9 where B is the bilinear form associated with Vo. Thus φσ is

a rotation. Hence by taking σ~ι(L) as a realization in V of Lσ we can

consider our problems in the category of rotations.

§ 1 . In this section we summarize our necessities without proofs

from the theory of Tamagawa which was lectured in the Summer Insti-

tute at Tokyo in 1970 (for details and more see [6]).

Let q be a prime = 1 (mod 4), and Do be a quaternion algebra over

the rational number field Q which is ramified at and only at q and oo,

and K be Q(Vq) We denote the maximal order of K by Oκ. D denotes

K<8)QD0; then D is a quaternion algebra over K which is ramified at

two infinite primes only. Moreover we denote the non-trivial automor-

phism of K by the bar, x -> x, and the main involution of Do by the

star, x-+x*. These two linear mappings are cannonically extended to D

and the idele group D2 of D, and we denote them by the bar and the

star again. For an O^-module M in D we denote the p-adic closure of

M in Dp = D (g)κ Kp by Mp. The two linear mappings are locally as fol-

lows:

Let p be a prime of K (pJfoo); then Dp is isomorphic to M2(KP) and

the main involution * is given by

c a

Let p be a rational prime.

1) In case that p splits in K, (p) = pxp2y px Φ p29 we have DPl 0 DH =

M2(QP) Θ M2(QP) and the non-trivial automorphism of K operates as the

permutation on it.

If p does not split in K and p\p9 then Kp is a quadratic extension

of Qp and the non-trivial automorphism of K induces one of Kp, and it

operates on Dp ^ M2(KP):
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» (ϊ *) = (ίi
where a,b,c,deKp, and e is a unit of Qp which is not the norm of an

element of Kp.

Now it is obvious that there is a maximal order O in D such that

D = O* = β and €)p = M2(OK) by the correspondence Dp ^ M2(KP), where
OKp is the maximal order of Kp. We fix it hereafter.

Put H = {x e D x = x*} and Ho = Jϊ Π £), and we consider the

quaternion algebra ΰ a s a quadratic space with Q(x) = 2?I(;E) = 2##* over

Z then for xeH0 Q(x) is a rational number since Q(x) = 2##* = 2##.

Hence we can regard HQ as a quaternary positive definite quadratic

lattice over the ring Z of rational integers.

If p splits in K, (p) = fofo (ρλ Φ p2), then the closure of Ho in DPl 0

®MAQJ is

I f (P) = P i s a Prime in Z, then the closure of Ho in Dp is

{ ( c δ ) ; α> &> C 6 OjΓ^ b = - b , c = - c j .

If p = g, then the closure of # 0 in A (Pltf) is ί(_^eg ^) ; & e °^ '

α , ί ί G z i . Hence the norm of Ho is 2Z and the discriminant

is q, where {xτ) is a Z-basis of Ho and B(xux3) = trC^α p = ^ ^ + #^f.

Denote the idele group of K, Q bγ K%, Q5 respectively and put

N = {(A, c) e (Dί, Q5) cAOZ* = O}, where cAOA* means DΓ)P cpAp£)p(Ά*)p

(Q5 is embedded in Z?2). Then ί ) x x QX\D% x Qί/Λ^ is bijectively cor-

responding to the equivalence classes of ideals of form cA£)A*(c e Q%,

A e D%) where the equivalence relation is defined as follows: Wl, 9ΐ are

equivalent if and only if 9K = bB3lB*, where b e Qx, BeDx. Since D is

unramified for any finite prime of K and £) is a maximal order,

AP£)PBP = €)p (Ap, Bp e Dx) implies Ap€)p = ap£)p, £)PBP = a^€)p for any finite
prime p, where ap is in Kp. Hence we get N = Z(U x UQ), where Z is
{(a, Λ7'iΓχ/Qχα~1) a eK%}, U is the group of unit ideles of D, and UQ is

the group of unit ideles of Q. Hence the number of double cosets

Dx x QX\DX x Qx/N is equal to %{DX\DX/K$U}. Let A, α and'α be an

element of D%9 an ideal of K and an element of Dx respectively. Then

€)Aa = &Aa implies α2 — (n(a)) and so α is a principlal ideal since the

class number of K is odd. Hence we have #{Z>X x QX\D% x
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h(D)/h(K), where h(D), h(K) are the class numbers of D and K respec-
tively.

Let a be an element of K% then a defines cannonically an ideal of
K. We denote the ideal by id(α). From the oddness of the class num-
ber of K and the fact that the norm of a fundamental unit of K is —1
follows that there is an element aeK% for a given A e D% such that
id (n(Aa)) — id (cAι(A)) is a principal ideal (x) with totally positive xeK.
Then there is an element a in D such that n(a) = x. Thus cAΏA*(c e Q£)
is equivalent to A^A?, where Aj = a-1aA, and id(n(Ai)) is the maximal
order Oκ of K. Now we consider if Π A^Af = A^ίf Π D)Af as a
quadratic lattice over Z with quadratic form Q(x) = 2n(#) Then iϊ Π
AjDZf is in the genus of Ho. A main result of Tamagawa is as fol-
lows:

The above correspondence gives a bisection from the equivalence
classes of cA£)A*(ce Q1,A eDJ) to the equivalence classes in the narrow
sense, namely, by the group of rotations, of even quaternary positive
definite quadratic lattices with discriminant q.

§ 2. Keeping all in § 1, let L be an O^-lattice of D then L is by
definition a normal ideal if and only if the right or left order of L is a
maximal order; then L = AGB = DOPAPOPBP(A,BeD%), where O is the
maximal order of D in § 1 satisfying O = O* = D and £> Π H is an even
quaternary positive definite quadratic lattice with discriminant q. Two
normal ideals L, M are said to be equivalent, L ~ M, if there exist a,
β e Dx such that M = <xL/5. This equivalence relation is different from
one in § 1. Let G be the genus of the maximal order O with quadratic
form Q(x) = 2n(#), that is, G consists of quaternary positive definite
unimodular quadratic lattices N over Oκ such that Q(x) = 0 (mod 2) for
each # in iV and the quadratic space K®OκN is of discriminant 1, and
so it is the same genus as G in Theorem. Regarding D as a quadratic
space over K with quadratic form Q(x) = 2n(x), the rotations of D are
all the mappings of the form x •->axβ, where a, βeD and n(aβ) = 1, and
a non-rotational isometry is given by #•->#*.

LEMMA 1. T&e ctoss number of isometry classes, by the group of
rotations, of quadratic lattices in G is equal to

" h(K)~ι x the class number of normal ideals — h(D)2/h(K)2 ,
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where h(D), h(K) is the class number of D, K, respectively.

Proof. Let L = A€)B {A, Be D%) be a normal ideal such that id (n(AB))
is a principal ideal (a); then we may assume a is totally positive and
then there is an element a e D such that n(a) — a. Put M = α " ^ =
a~ιAΩB. Since id (wO^AZ?)) is the maximal order Oκ of K, M is in the
genus of P as a quadratic lattice with quadratic form 2n(x)9 i.e., Me G.
This correspondence gives a bisection from the equivalence classes of
normal ideals L = A OS (A, JS e Z>2) such that id (n(AB)) is principal to
the equivalence classes by rotations of quadratic lattices in G. It is ob-
vious that the class number of normal ideals equals h(K) x the class
number of normal ideals L = A€)B (A,B e Dl) such that id (n(AB)) is
principal, since h(K) is odd. For a normal ideal L = ADJS (A, B e D%)
we put φ(L) = (ADA"1, B~ι£)B), where the underline means the equivalence
class of maximal orders, namely, ADA'1 = {^APA^er1 α e Dx}. Then

p gives a bisection from the equivalence classes of normal ideals L —
A£)B (A,B eD%) such that id(n(AB)) is principal to the direct product
of two copies of equivalence classes of maximal orders, noting α'Όα = P
(aeK%). The number of equivalence classes of maximal orders is, by
definition of equivalence, #{{A e D* A-'ΏA = £)}\D$/DX} and it is
h(D)/h(K) since {AeD*; A^OA = D} = XJ x [7 as in § 1. This com-
pletes the proof.

By the correspondence in the proof of Lemma 1 we regard a quad-
ratic lattice L in G as a normal ideal AΩB (A,B eD%) such that
id (n(AB)) is principal. Then for quadratic lattices L19L2 in G corres-
ponding normal ideals A^B^ A2£)B2, Lly L2 are rotationally isometric if
and only if Aι£)Bι — A2£)B2, and Lx is isometric to L2 if and only if
Aι€)Bι ~ A2ββ2 or A1OB1 - (A2O£2)*.

Let L be a quadratic lattice; then L has an isometry which is not
a rotation if and only if any quadratic lattice M which is isometric to
L is always rotationally isometric to L. Hence denoting the number of
isometry classes of quadratic lattices in G and the number of isometry
classes by rotations of them by h and h+ respectively, 2h — h+ equals
the number of quadratic lattices in G which have a non-rotational iso-
metry.

LEMMA 2. 2h - h+ = h(D)/h(K).

Proof. The idea of the proof is essentially due to H. Hijikata. By
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the above remark it suffices to prove that the class number of normal
ideals L = AOB (A,BeD%) such that L ~ L* and id (n(AB)) is principal
equals h(D)/h(K). Put L = AΩB (A, B e ZλJ). If L* = aLβ (a, β e D),
then β*OA* = aAΏBβ. Hence φ(L) (in the proof of Lemma 1) =
(A£)A~\ B-ιΩE) = («"1g*P(g-1i?*)-1, g-'Pff) = (B-'QB, B~ι£)B). If, con-

versely, BeD% is given, then we put A = n(B)~ιB*. Then
, B-'ΩB) and (ADJS)* = AOS and moreover id (rc(AB)) is principal.

This completes the proof.
From Lemma 1 and 2 we have h = }(h(D)2/h(K)2 + h(D)/k(K)), and

1 « = 5. If q > 5, then h(D)/h(K) is β2,χ/24 3 + hW^

—3g)/6, where β2,χ is a generalized Bernoulli number with

( —) (the quadratic residue symbol) and h(V—m) denotes the class num-
\q/

ber of an imaginary quadratic field Q(V—m) ([1], [5], and [2] combining

with § 1). This completes the proof of the former part of Theorem.

Hereafter we calculate the class number h of quadratic lattices L in G

SUch that L IS isometric to L° where σ is a non-trivial automorphism
of JKΓ and 1L,° Is defined in the introduction. Here we introduce a new

equivalence relation ;= for normal ideals :

L, «* M if and only if Z, — ikf or Z/ ̂  ikί* .

Then h is the class number by the new equivalence « of normal ideals
L = AOJS such that L & L and id Oι(AB)) is principal. Let L — AQB
stand for normal ideals such that id (n(AB)) is principal then we have

2#{{L; L ~L}/*} = M L L ~ L}/~} + #{{L; L ~ L ~ L * } / ~

#{{L: L ̂  L,L - L*}/«} = #{{L; L - L*}/«} - #{{L; L ~ L*

= #{{L; L ̂  L*}/«} - #{{L; L ~ L*

; L - L*}/«} = #{{L; L - L*}/^} + #{{L; L ~ L*

Hence we have

; L ~ L*}/~} .

Denote |{{L; L ~ D}/~}, #{{L; L ~ L*}/~} by /ι1; h2 respectively.

LEMMA 3. hγ is the square of the number h0 of equivalence classes
of maximal orders Aζ)A~ι (A e Df) such that AOA'1 = ADA"1.
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Proof. Let L = A€)B (A,B e Df) be a normal ideal such that L =
aLβ, a, βeD; then AGB = aAGBβ implies p(L) = (AOA-1,B^'GB) =
(AOA"1, B-'ΩB). If, conversely, APA"1 = APA"1, ff^Off = g^Qg hold

for A , B G Z?ί, then taking A19 Bλ e D* such that id (jι{Ax)) =
and A£)Aϊι = APA"1, g f ^ g i = g ' Ό g , we have ?>(L) = (APA"1, B~ι£)B)
for L = AXOBU and ^(L) = #>(L). Hence we get L ~ L. This completes
the proof.

LEMMA 4. h0 = (g + 3 - 4^1))/24 + (l - (—)) A , wΛere ( - )

stands for the quadratic residue symbol.

Proof. Let AGA'1 (A e 2)2) be a maximal order. Then the equiv-
alence class of AOA* where the equivalence relation is one defined in
§ 1 is uniquely determined by A£)A~ι. The correspondence is bijective
from equivalence classes of maximal orders to the equivalence classes of
ideals of form cAQA* (c e φ , A e Df). Let AQA~ι (A e D%) be a maxi-
mal order such that A&A'1 = AOA"1. We may assume that id (n(A))
= Oκ without changing the class of the given maximal order AΩA'1.
AOA-1 = AΏA-1 implies A© = aβAG (aeK*,βeD). Since id (n(A)) =
id (a2n(β)n(Ά)) = Oκ, id (α) is principal. Hence we have AD — γA£) (γ e D)
and id (n(γ)) = 0^. Now we define a linear mapping η by 3?(#) = γx*γ*
for α; e D. Then ^(AOA*) = ^ADA*f* = A£)Ά*, and 3y(AOA* Π H) =
AOA* Π iϊ. Moreover %(#(#)) = n(^^*f*) = Nκ/Q(n(γ))n(x) = n(x) since
n(^) is a totally positive unit of K. Therefore an even positive definite
quadratic lattice AOA* Π H with discriminant q has a non-trivial iso-
metry. Then there exists an element e in AOA* Π H with n(e) = 1 by
2.5 in [2]. Conversely assume that AOA* Π H has an element e with
n(β) = 1, where id (n(A)) = Oκ. Put e = Ape,(Z*)p (βp e Op) then n(ep) is
a unit since n(e) — n(Ap)n(ep)n((A*)p) = 1 and nCÂ ), n((5*)^ are units of
Kp from our assumption. Hence we get epe£)p

x. Take an element / in
2?5 such that /p = ep for any finite prime. Then we have A£>Ά~ι =

-'e = AOA"1. By virtue of Tamagawa's

bijection in § 1 and the above bijection h0 is equal to the class number
by rotations of even positive definite quaternary lattices with discriminant

q which have an element with length 2, and it is ίq + 3 — 4^— j j J2A

+ ί l — ί _ \ \ I ± (§ 1 in [2]) since for such quadratic lattices the equivalence
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by rotations is the same as the equivalence by isometries (a vector of
length 2 gives a symmetry).

LEMMA 5. h2 = h(D)/h(K).

Proof. Let L = A€)B (A,B e D%) be a normal ideal such that L =
aL*β (a,βeD) and id (rc(Ag)) is principal. Then ACS = ocB*£>A*β im-

plies ?>(L) = (AOA-1, B~ι£)B) = (fflOΰ*-1, g^Off) = (g^Pff, B~ι£)B).

Conversely take an order B~ιOB (B e D$) then there is some C in Z>2

such that C~ι£)C = B~ι€)B and id (n(Q) is principal. L = C*£)C satisfies
L* =: L and p*(L) = {B-ι£)B,B-ι€)B). This completes the proof of Lemma
5 and of our Theorem.

Appendix

PROPOSITION. Let k be an algebraic number field with the maximal
order o, and V be a regular quadratic space over k with bilinear form
B and we denote det (B(vu v3)) by dV, where {vt} is a basis of V over k.
Then, a lattice L in V has an o-basis, i.e., L = oux + + oun if and
only if there is an element a in kx such that the discriminant dLp of
Lp is equal to a2dV (mod ô x2) for any prime p in k.

Proof. Suppose that L has an o-basis, L = ouγ + + oun. We

define a matrix A by (ux, , un) = (v19 - , vn)A, and put a = \A\. Then

dLp = I (B(ut, Uj)) I = IA |21 {B{vt, vj)) \ = a2dV. Conversely suppose that dLp =

a2dV for an element a in fcx and any prime p in A;. Put Lo = o^ +

+ cwn, M = oα^! + o ^ + + ovn, and L = oex + + o^.-! + αew where

α is an ideal in k; then dMp = dM = α2dF, and <ZL,,ov = |(g(β<, ey))|αj =

α 2d7o r Thus we have a2dV\(B(ei9 e3))\~l o = α2. Since d7|(g(eί, β,))!"1 is

a square in fc, α is principal. This completes the proof.

COROLLARY. Keeping the notations of Proposition, we assume fur-

ther that there is a lattice L in V such that Lp is unimodular for any

prime p in k. Then, L has an o-basis if and only if dV is a unit of k

up to a square of k.

Proof. If L has an o-basis, then dL is a unit at any prime in k.

Hence dL is a unit of k. If, conversely, dV is a unit, then dLp/dV is

a square of unit of kp. Hence dLp = dV (dLp is uniquely determined up

to squares of units of kp by definition). Taking 1 as a in Proposition,
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we get Corollary.
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