AVERAGES INVOLVING FOURIER COEFFICIENTS OF NON-ANALYTIC AUTOMORPHIC FORMS(${ }^{1}$)

BY
V. VENUGOPAL RAO

1. Introduction. Let $f(\tau)$ be a complex valued function, defined and analytic in the upper half of the complex τ plane ($\tau=x+i y, y>0$), such that $f(\tau+\lambda)=f(\tau)$ where λ is real and $f(-1 / \tau)=\gamma(-i \tau)^{k} f(\tau), k$ being a complex number. The function $(-i \tau)^{k}$ is defined as $e^{k \log (-i \tau)}$ where $\log (-i \tau)$ has the real value when -iv is positive and γ is a complex number with absolute value 1 . Such functions have been studied by E. Hecke [4] who calls them functions with signature (λ, k, γ). We further assume that $f(\tau)=O\left(|y|^{-c}\right)$ as y tends to zero uniformly for all x, c being a positive real number. It then follows that $f(\tau)$ has a Fourier expansion of the type $f(\tau)=a_{0}+\sum a_{n} \exp (2 \pi i n \tau / \lambda)(n=1,2, \ldots)$, the series being convergent absolutely in the upper half plane. $f(\tau)$ is called an automorphic form belonging to the group generated by the transformations $\tau \rightarrow \tau+\lambda, \tau \rightarrow-1 / \tau$ and a_{n} ($n=1,2, \ldots$) are called the Fourier coefficients of $f(\tau)$. Examples of such functions $f(\tau)$ are quite numerous. For $\lambda=1$, we get analytic modular forms of dimension $-k$ and $\Delta(\tau)$, the discriminant in the theory of elliptic functions, is a well known example. The corresponding Fourier coefficients a_{n} then define the well known Ramanujan τ function. For $\lambda=2$, we get automorphic forms of "stufe 2 ". If $\theta(\tau)=\sum e^{\pi i n^{2} \tau}(-\infty<n<+\infty)$ then $\theta^{k}(\tau) \equiv\{\theta(\tau)\}^{k}, k$ being a positive integer, is an automorphic form of stufe 2 and the Fourier coefficient a_{n} becomes the number of ways in which n can be represented as a sum of k squares. We then consider for a function f with signature (λ, k, γ) the classical problem of obtaining an asymptotic formula for $R^{\delta}(x) \equiv \sum a_{n}(x-n)^{\delta}(0<n \leq x),(\delta>0)$, as $x \rightarrow \infty$. In general it turns out that $R^{\delta}(x)=c_{0} x^{\delta+k}+P_{\delta}(x)$, for $\delta \geq \delta_{0}, \delta_{0}$ being a real number depending on $f(\tau), c_{0}$ a constant independent of $x, P_{\delta}(x)$ being the "error term". The function $P_{\delta}(x)$ can be represented as a series of Bessel functions of the first kind. In the case where $f(\tau)=\theta^{k}(\tau)$, we have

$$
P_{\delta}(x)=-x^{\delta}+\pi^{-\delta} \Gamma(\delta+1) \sum_{n=1}^{\infty} a_{n}\left(\frac{x}{n}\right)^{k / 4+\delta / 2} J_{k / 2+\delta}(2 \pi \sqrt{n x}),
$$

$J_{\mu}(x)$ being the Bessel function of the first kind and the series on the right converges absolutely for $\delta>\frac{1}{2}(k-1)$, conditionally for $\delta>\frac{1}{2}(k-3)$, and can be summed by Riesz typical means (R, n, δ) for $0 \leq \delta \leq \frac{1}{2}(k-3)$. The above problem can be posed for the case where a_{n} represents the number of integral representations of n by a
positive define quadratic form $\sum s_{i j} x_{i} x_{j}(1 \leq i, j \leq m)$, where the matrix $S=\left(s_{i j}\right)$ is an integral, symmetric, positive definite, matrix of order m and the corresponding results are known. Let now $S=\left(s_{i j}\right)$ be a rational, non-singular, symmetric, indefinite matrix of order m. Then the number of integral representations of a rational number t by the indefinite quadratic form $\sum s_{i j} x_{i} x_{j}$ is infinite in general and C. L. Siegel [9] has associated with the set of integral solutions of $\sum s_{i j} x_{i} x_{j}=t$ a nonnegative valued function $\mu(S, t)$ called the "measure of representation". The function $\mu(S, t)$ is a generalization of the number of integral representations of t by the quadratic form with matrix S when S is a rational, positive definite, matrix. $\mu(S, t)$ is finite except for a few special cases. We then consider the problem of expressing $\sum \mu(S, t)(x-t)^{\delta}(0<t \leq x)$ as a series of analytic functions. It is known [12] that when $|S|>0,|S|$ being the determinant of $S, \sum \mu(S, t)(x-t)^{\delta}(0<t \leq x)$ can be expressed as a series of Bessel functions of the first kind and in the case $|S|<0$, as a series of Bessel functions of the type $Y_{v}(x), K_{v}(x)$ and two other series involving functions associated with the Bessel functions, all the series so obtained being convergent absolutely for $\delta>\frac{1}{2}(m-1)$. It is known [10] that the numbers $\mu(S, t)$ can be realized as Fourier coefficients of an analytic automorphic form of the type considered by Hecke in the case $|S|>0$ for suitable values of λ, k and γ and this is not the case when $|S|<0$. A function $f(\tau)$ which yields $\mu(S, t)$ as "Fourier coefficients" (in a generalized sense) has been introduced by Siegel [11] and it turns out that this function is not an analytic function of τ, but transforms like an analytic automorphic form under the transformations $\tau \rightarrow \tau+\lambda, \tau \rightarrow-1 / \tau$ in the upper half of the complex τ plane. H. Maass [6] has introduced a class of nonanalytic functions which generalize the functions introduced by Siegel in the study of indefinite quadratic forms with rational coefficients. Our aim, in this paper, is to represent $\sum a_{t}(x-t)^{\delta}(0<t \leq x)$ as a convergent series of analytic functions where $\left\{a_{t}\right\}$ is the sequence of "Fourier coefficients" of a non-analytic automorphic form in the sense of Maass [6].
2. Non-analytic automorphic forms and some properties of the associated Dirichlet series. Let z denote a complex variable, $z=x+i y, x$ and y real and $w=\bar{z}$. We consider a pair of complex valued functions $f(z, w)$ and $g(z, w)$ defined in the upper half plane $y>0$ which are solutions of the elliptic partial differential equation

$$
\begin{equation*}
y^{2}\left(\frac{\partial^{2} v}{\partial x^{2}}+\frac{\partial^{2} v}{\partial y^{2}}\right)-(\alpha-\beta) i y \frac{\partial v}{\partial x}+(\alpha+\beta) y \frac{\partial v}{\partial y}=0 \tag{1}
\end{equation*}
$$

α and β being real numbers and having the following properties:

$$
\left\{\begin{array}{l}
f(z+\lambda, w+\lambda)=e^{2 \pi i b_{1}} f(z, w) \tag{2}\\
g(z+\lambda, w+\lambda)=e^{2 \pi i b_{2}} g(z, w),
\end{array}\right.
$$

λ being a real number and $0 \leq b_{i}<1(i=1,2)$;

$$
\begin{equation*}
g\left(-\frac{1}{z},-\frac{1}{w}\right)=\gamma(-i z)^{\alpha}(i w)^{\beta} f(z, w) \tag{3}
\end{equation*}
$$

where $\gamma= \pm 1$ and $(-i z)^{\alpha},(i w)^{\beta}$ are defined by the principal value of the logarithms;

$$
\left\{\begin{array}{lll}
f(z, w)=O\left(y^{\lambda_{1}}\right) & \text { and } & g(z, w)=O\left(y^{\lambda_{2}}\right) \tag{4}
\end{array} \quad \text { as } y \rightarrow \infty, ~ 子\left(y^{-\mu_{2}}\right) \quad \text { as } y \rightarrow 0\right.
$$

where λ_{i} and $\mu_{i}(i=1,2)$ are positive constants, and the estimates are uniform in $-\infty<x<\infty$.

It then follows from a result of Maass [6, Hilfssatz 8] that

$$
f_{1}(x, y) \equiv f(z, w)=a_{0} u(y, \alpha+\beta)+b_{0}
$$

$$
\begin{equation*}
+\sum_{t \neq 0, t \equiv 0_{1}(\bmod 1)} a_{t} W\left(\frac{2 \pi|t|}{\lambda} y ; \alpha, \beta, \operatorname{sgn} t\right) e^{2 \pi i t x / \lambda} \tag{5}
\end{equation*}
$$

and

$$
\begin{align*}
g_{1}(x, y) \equiv & g(z, w)=c_{0} u(y, \alpha+\beta)+d_{0} \\
& +\sum_{t \neq 0, t \equiv b_{2}(\bmod 1)} b_{t} W\left(\frac{2 \pi|t|}{\lambda} y ; \alpha, \beta, \operatorname{sgn} t\right) e^{2 \pi i t x / \lambda}, \tag{6}
\end{align*}
$$

the series on the right of (5) and (6) being absolutely convergent, where

$$
\begin{aligned}
u(y, \gamma) & =\frac{y^{1-\gamma}-1}{1-\gamma}=\sum_{n=1}^{\infty} \frac{(\log y)^{n}}{n!}(1-\gamma)^{n-1}, \\
W(y ; \alpha, \beta, \varepsilon) & =y^{-\frac{1}{2}(\alpha+\beta)} W_{\ddagger(\alpha-\beta) \varepsilon, z(\alpha-\beta-1)}(2 y), \quad(\varepsilon= \pm 1)
\end{aligned}
$$

with $W_{l, m}(y)$ the Whittaker solution of the confluent hypergeometric differential equation in reduced form [8], and $\operatorname{sgn} t= \pm 1$ according as $t>0$ or $t<0$ respectively.

It is useful to note that

$$
W_{l, m}(y)=\frac{y^{l} e^{-\frac{1}{k} y}}{\Gamma\left(m+\frac{1}{2}-l\right)} \int_{0}^{\infty} t^{m-l-\frac{1}{2}} e^{-t}\left(1+\frac{t}{y}\right)^{m+l-\frac{1}{2}} d t
$$

for $y>0$ and $\operatorname{Re}\left(m+\frac{1}{2}-l\right)>0$.
From the properties of the function $W_{l, m}(y)$, it follows that

$$
W(y ; \alpha, \beta, \varepsilon) \sim 2^{\frac{1}{2}(\alpha-\beta) \varepsilon} y^{\left.-\frac{1}{2}(\alpha+\beta)+(\beta-\alpha) \varepsilon\right]} e^{-y}, \text { as } y \rightarrow \infty
$$

and therefore

$$
W(y ; \alpha, \beta, 1)=O\left(y^{-\beta} e^{-y}\right), \text { for } y \rightarrow \infty(y \text { real })
$$

From the power series representation of the Whittaker function it follows [8, p. 116] that

$$
W(y ; \alpha, \beta, 1)=O\left(y^{-K}\right), \text { for } y \rightarrow 0(y \text { real })
$$

with

$$
K>\frac{1}{2}(\alpha+\beta)+\frac{1}{2}|\alpha+\beta|-1
$$

We will be referring to (5) and (6) respectively as the nonanalytic Fourier expansions of $f(z, w)$ and $g(z, w)$ and the sequences of complex numbers $\left\{a_{t}\right\}$ and $\left\{b_{t}\right\}$ as their Fourier coefficients respectively.

We then introduce the Dirichlet series

$$
\begin{align*}
& \phi_{1}(s)=\sum_{t>0} \frac{a_{t}}{t^{s}}, \quad \psi_{1}(s)=\sum_{t>0} \frac{a_{-t}}{t^{s}}, \\
& \phi_{2}(s)=\sum_{t>0} \frac{b_{t}}{t^{s}} \quad \psi_{2}(s)=\sum_{t>0} \frac{b_{-t}}{t^{s}} \tag{7}
\end{align*}
$$

where s is a complex variable and $t^{s}=e^{s \log t}$ with $\log t$ real. On account of the estimates (4), it follows that the four Dirichlet series in (7) have finite abscissae of convergence [6, p. 257]. Further it is known [6] that they can be continued analytically into the entire complex s plane and the resulting functions are meromorphic. The functions defined by the Dirichlet series in (7) satisfy [6] a functional equation of the following type.
Let

$$
\begin{gather*}
\Gamma(s ; \alpha, \beta)=\int_{0}^{\infty} W(y ; \alpha, \beta, 1) y^{s-1} d y \tag{8}\\
\xi_{i}(s)=\left(\frac{2 \pi}{\lambda}\right)^{-s}\left\{\Gamma(s ; \alpha, \beta) \phi_{i}(s)+\Gamma(s ; \beta, \alpha) \psi_{i}(s)\right\},
\end{gather*}
$$

and

$$
\eta_{i}(s)=\left(\frac{2 \pi}{\lambda}\right)^{-(s+1)}\left\{\Gamma(s+1 ; \alpha, \beta)-\frac{1}{2}(\alpha-\beta) \Gamma(s ; \alpha, \beta)\right\} \phi_{i}(s)
$$

$$
\begin{equation*}
-\left(\frac{2 \pi}{\lambda}\right)^{-(s+1)}\left\{\Gamma(s+1 ; \beta, \alpha)+\frac{1}{2}(\alpha-\beta) \Gamma(s ; \beta, \alpha)\right\} \psi_{i}(s)(i=1,2) . \tag{10}
\end{equation*}
$$

Then

$$
\begin{equation*}
\xi_{1}(\alpha+\beta-s)=\gamma \xi_{2}(s) \quad \text { and } \quad \eta_{1}(\alpha+\beta-s)=-\gamma \eta_{2}(s) \tag{11}
\end{equation*}
$$

3. Preliminary lemmas.

Lemma 1. $\Gamma(s ; \alpha, \beta) \Gamma(s+1 ; \beta, \alpha)+\Gamma(s+1 ; \alpha, \beta) \Gamma(s ; \beta, \alpha)=2 \Gamma(s) \Gamma(s+1-\alpha-\beta)$, with $\Gamma(s ; \alpha, \beta)$ as defined in (8).
This result has been proved by Maass [7, §4].
Lemma 2. The function $\phi_{1}(s)$ is meromorphic in the complex s-plane with at most simple poles at $s=\alpha+\beta$ and $s=1 ;$ further $(s-1)(s-\alpha-\beta) \phi_{1}(s)$ is an entire function of finite order.

Let

$$
\begin{aligned}
& F_{1}(y)=\sum_{t \equiv b_{1}(\bmod 1), t \neq 0} a_{t} W\left(\frac{2 \pi|t|}{\lambda} y ; \alpha, \beta, \operatorname{sgn} t\right), \\
& G_{2}(y)=\sum_{t \equiv b_{2}(\bmod 1), t \neq 0} b_{t} W\left(\frac{2 \pi|t|}{\lambda} y ; \alpha, \beta, \operatorname{sgn} t\right), \\
& F_{2}(y)=\sum_{t \equiv b_{1}(\bmod 1), t \neq 0} t a_{t} W\left(\frac{2 \pi|t|}{\lambda} y ; \alpha, \beta, \operatorname{sgn} t\right), \\
& G_{2}(y)=\sum_{t \equiv b_{2}(\bmod 1), t \neq 0} t b_{t} W\left(\frac{2 \pi|t|}{\lambda} y ; \alpha, \beta, \operatorname{sgn} t\right),
\end{aligned}
$$

and

$$
H_{i}(y)=G_{i}(y)-\lambda \cdot \frac{\alpha-\beta}{4 \pi} F_{i}(y), \quad(i=1,2)
$$

It then follows from the work of Maass [6] that

$$
\begin{align*}
\xi_{1}(s)= & \int_{1}^{\infty} F_{1}(y) y^{s-1} d y+\gamma \int_{1}^{\infty} G_{1}(y) y^{\alpha+\beta-s-1} d y+\frac{a_{0}}{s(s+1-\alpha-\beta)}-\frac{b_{0}}{s} \tag{12}\\
& +\gamma\left\{\frac{c_{0}}{(1-s)(\alpha+\beta-s)}-\frac{d_{0}}{(\alpha+\beta-s)}\right\}
\end{align*}
$$

and

$$
\begin{align*}
\eta_{1}(s)= & \int_{1}^{\infty} H_{1}(y) y^{s-1} d y-\gamma \int_{1}^{\infty} H_{2}(y) y^{\alpha+\beta-s-1} d y \\
& +\lambda \cdot \frac{\alpha-\beta}{4 \pi}\left\{-\frac{a_{0}}{s(s+1-\alpha-\beta)}+\frac{b_{0}}{s}+\gamma\left[\frac{c_{0}}{(1-s)(\alpha+\beta-s)}-\frac{d_{0}}{(\alpha+\beta-s)}\right]\right\} \tag{13}
\end{align*}
$$

From the definition of $\xi_{1}(s)$, it then follows that

$$
\begin{aligned}
& \Gamma(s ; \alpha, \beta) \phi_{1}(s)+\Gamma(s ; \beta, \alpha) \psi_{1}(s) \\
&=\left(\frac{2 \pi}{\lambda}\right)^{s}\left\{\int_{1}^{\infty} F_{1}(y) y^{s-1} d y+\gamma \int_{1}^{\infty} G_{1}(y) y^{\alpha+\beta-s-1} d y\right\} \\
&+\left(\frac{2 \pi}{\lambda}\right)^{s}\left\{\frac{a_{0}}{s(s+1-\alpha-\beta)}-\frac{b_{0}}{s}+\gamma\left[\frac{c_{0}}{(1-s)(\alpha+\beta-s)}-\frac{d_{0}}{(\alpha+\beta-s)}\right]\right\} \\
& \equiv P(s)+\left(\frac{2 \pi}{\lambda}\right)^{s}\left\{\frac{a_{0}}{s(s+1-\alpha-\beta)}-\frac{b_{0}}{s}+\gamma\left[\frac{c_{0}}{(1-s)(\alpha+\beta-s)}-\frac{d_{0}}{(\alpha+\beta-s)}\right]\right\}
\end{aligned}
$$

It follows from the work of Maass [6, p. 256] that

$$
\int_{1}^{\infty} F_{1}(y) y^{s-1} d y+\gamma \int_{1}^{\infty} G_{1}(y) y^{\alpha+\beta-s-1} d y
$$

is an entire function of finite order; hence $P(s)$ is an entire function of finite order.

Similarly

$$
\begin{align*}
&\left\{\Gamma(s+1 ; \alpha, \beta)-\frac{1}{2}(\alpha-\beta) \Gamma(s ; \alpha, \beta)\right\} \phi_{1}(s)-\left\{\Gamma(s+1 ; \beta, \alpha)+\frac{1}{2}(\alpha-\beta) \Gamma(s ; \beta, \alpha)\right\} \psi_{1}(s) \\
&=\left(\frac{2 \pi}{\lambda}\right)^{s+1}\left\{\int_{1}^{\infty} H_{1}(y) y^{s-1} d y-\gamma \int_{1}^{\infty} H_{2}(y) y^{\alpha+\beta-s-1} d y\right\} \\
&5) \quad+\left(\frac{2 \pi}{\lambda}\right)^{s+1} \cdot \frac{\alpha-\beta}{4 \pi} \cdot \lambda\left\{-\frac{a_{0}}{s(s+1-\alpha-\beta)}+\frac{b_{0}}{s}+\gamma\left[\frac{c_{0}}{(1-s)(\alpha+\beta-s)}-\frac{d_{0}}{(\alpha+\beta-s)}\right]\right\} \tag{15}\\
&= Q(s)+\left(\frac{2 \pi}{\lambda}\right)^{s+1} \cdot \frac{\alpha-\beta}{4 \pi} \cdot \lambda\left\{-\frac{a_{0}}{s(s+1-\alpha-\beta)}+\frac{b_{0}}{s}\right. \\
&\left.+\gamma\left[\frac{c_{0}}{(1-s)(\alpha+\beta-s)}-\frac{d_{0}}{(\alpha+\beta-s)}\right]\right\}
\end{align*}
$$

where $Q(s)$ is an entire function of s of finite order. We can solve for $\phi_{1}(s)$ from (14) and (15). Using Lemma 1, it follows that

$$
\begin{align*}
\phi_{1}(s)= & \frac{\Gamma(s+1 ; \beta, \alpha)+\frac{1}{2}(\alpha-\beta) \Gamma(s ; \beta, \alpha)}{2 \Gamma(s) \Gamma(s+1-\alpha-\beta)} P(s)+\frac{\Gamma(s ; \beta, \alpha)}{2 \Gamma(s) \Gamma(s+1-\alpha-\beta)} Q(s) \\
& +\left(\frac{2 \pi}{\lambda}\right)^{s}\left\{\frac{a_{0}}{s(s+1-\alpha-\beta)}-\frac{b_{0}}{s}+\gamma\left[\frac{c_{0}}{(1-s)(\alpha+\beta-s)}-\frac{d_{0}}{(\alpha+\beta-s)}\right]\right\} \\
& \times \frac{\Gamma(s+1 ; \beta, \alpha)+\frac{1}{2}(\alpha-\beta) \Gamma(s ; \beta, \alpha)}{2 \Gamma(s) \Gamma(s+1-\alpha-\beta)}+\left(\frac{2 \pi}{\lambda}\right)^{s+1} \cdot \frac{(\alpha-\beta)}{4 \pi} . \tag{16}\\
& \times \lambda\left\{-\frac{a_{0}}{s(s+1-\alpha-\beta)}+\frac{b_{0}}{s}+\gamma\left[\frac{c_{0}}{(1-s)(\alpha+\beta-s)}-\frac{d_{0}}{(\alpha+\beta-s)}\right]\right\} \\
& \times \frac{\Gamma(s ; \beta, \alpha)}{2 \Gamma(s) \Gamma(s+1-\alpha-\beta)} .
\end{align*}
$$

$$
\Gamma(s ; \alpha, \beta)=2^{(\alpha-\beta) / 2} \frac{\Gamma(s) \Gamma(s+1-\alpha-\beta)}{\Gamma(s+1-\alpha)} F\left(\beta, 1-\alpha, s+1-\alpha ; \frac{1}{2}\right),
$$

where $F(\alpha, \beta, \gamma ; x)$ denotes the hypergeometric function. It is known that $F\left(\beta, 1-\alpha, s+1-\alpha ; \frac{1}{2}\right) / \Gamma(s+1-\alpha)$ is an entire function of s. Hence

$$
\Gamma(s+1 ; \beta, \alpha)+\frac{1}{2}(\alpha-\beta) \Gamma(s ; \beta, \alpha)
$$

and $\Gamma(s ; \beta, \alpha)$ become entire functions of s after division by $2 \Gamma(s) \Gamma(s+1-\alpha-\beta)$ It follows from (16) that $\phi_{1}(s)$ is meromorphic in the complex s plane and has at most poles at $s=\alpha+\beta, \alpha+\beta-1,1$ and 0 . We now prove that $\phi_{1}(s)$ is regular at $s=\alpha+\beta-1$ and $s=0$ by proving that $\lim _{s \rightarrow 0} s \phi_{1}(s)=0$ and $\lim _{s \rightarrow \alpha+\beta-1}(s-\alpha-\beta+1) \phi_{1}(s)=0$.

It follows from (16) that

$$
\begin{aligned}
\lim _{s \rightarrow 0} s \phi_{1}(s)= & \left(\frac{a_{0}}{1-\alpha-\beta}-b_{0}\right)\left\{\frac{\Gamma(s+1 ; \beta, \alpha)+\frac{1}{2}(\alpha-\beta) \Gamma(s ; \beta, \alpha)}{2 \Gamma(s) \Gamma(s+1-\alpha-\beta)}\right\}_{s=0} \\
& +\frac{\alpha-\beta}{2}\left(-\frac{a_{0}}{1-\alpha-\beta}+b_{0}\right)\left\{\frac{\Gamma(s ; \beta, \alpha)}{2 \Gamma(s) \Gamma(s+1-\alpha-\beta)}\right\}_{s=0}=0
\end{aligned}
$$

by using (17) and elementary properties of the gamma function. Similarly

$$
\begin{aligned}
\lim _{s \rightarrow \alpha+\beta-1} & (s+1-\alpha-\beta) \phi_{1}(s) \\
= & \left(\frac{2 \pi}{\lambda}\right)^{\alpha+\beta-1} \frac{a_{0}}{(\alpha+\beta-1)}\left\{\frac{\Gamma(s+1 ; \beta, \alpha)+\frac{1}{2}(\alpha-\beta) \Gamma(s ; \beta, \alpha)}{2 \Gamma(s) \Gamma(s+1-\alpha-\beta)}\right\}_{s=\alpha+\beta-1} \\
& -\lambda\left(\frac{2 \pi}{\lambda}\right)^{\alpha+\beta} \cdot \frac{\alpha-\beta}{4 \pi} \cdot \frac{a_{0}}{(\alpha+\beta-1)}\left\{\frac{\Gamma(s ; \beta, \alpha)}{2 \Gamma(s) \Gamma(s+1-\alpha-\beta)}\right\}_{s=\alpha+\beta-1}=0 .
\end{aligned}
$$

Lemma 3. The function $\phi_{1}(s)$ has the functional equation $2 \Gamma(s) \Gamma(s+1-\alpha-\beta) \phi_{1}(s)=$ $\gamma(2 \pi / \lambda)^{2 s-\alpha-\beta}\left\{\lambda(\alpha, \beta, s) \phi_{2}(\alpha+\beta-s)+\mu(\alpha, \beta, s) \psi_{2}(\alpha+\beta-s)\right\}$, where
(18) $\lambda(\alpha, \beta, s)=\Gamma(s+1 ; \beta, \alpha) \Gamma(\alpha+\beta-s ; \alpha, \beta)-\Gamma(s ; \beta, \alpha) \Gamma(\alpha+\beta-s+1 ; \alpha, \beta)$,
and

$$
\begin{align*}
\mu(\alpha, \beta, s)= & \Gamma(s+1 ; \beta, \alpha) \Gamma(\alpha+\beta-s ; \beta, \alpha)+\Gamma(s ; \beta, \alpha) \Gamma(\alpha+\beta-s+1 ; \beta, \alpha) \tag{19}\\
& +(\alpha-\beta) \Gamma(s ; \beta, \alpha) \Gamma(\alpha+\beta-s ; \beta, \alpha) .
\end{align*}
$$

This lemma follows by solving for $\phi_{1}(s)$ from the two equations defined by (11) and using Lemma 1.

LemmA 4. $\lambda(\alpha, \beta, s)=O\left(e^{-\pi|t|}\right)$ and $\mu(\alpha, \beta, s)=O\left(e^{-\pi|t|}|t|^{\beta-\alpha}\right)$ as $|t| \rightarrow \infty$ uniformly for $-\infty<a \leq \sigma \leq b<\infty$, where as usual $s=\sigma+i t$.

It is known [1, p. 76] that

$$
F(a, b, c ; z)=1+\frac{a b}{c} z+\cdots+\frac{(a)_{n}(b)_{n}}{(c)_{n}} z^{n}+O\left(|c|^{-n-1}\right)
$$

as $|c| \rightarrow \infty$, for fixed a, b and z, if $|z|<1$ and $|\arg c| \leq \pi-\varepsilon<\pi$, where for a complex number $x,(x)_{n}=(x+1) \ldots(x+n-1)$. Hence $F\left(\beta, 1-\alpha, s+1-\alpha ; \frac{1}{2}\right) \sim 1$ as $|t| \rightarrow \infty$ uniformly in $-\infty<a \leq \sigma \leq b<\infty$. From Stirling's approximation for $\Gamma(s)$, it follows that $\Gamma(\sigma+i t) \sim \sqrt{2 \pi} e^{\left.-\frac{\xi \pi}{2} \pi t \right\rvert\,}|t|^{\sigma-\frac{1}{\xi}}$ for $t \rightarrow \infty$, uniformly in $-\infty<a \leq \sigma \leq b<\infty$. Hence by (17), it follows that

$$
\begin{align*}
|\Gamma(s ; \alpha, \beta)| & =O\left(\frac{|\Gamma(s)||\Gamma(s+1-\alpha-\beta)|}{|\Gamma(s+1-\alpha)|}\right) \\
& =O\left(e^{-\frac{1 \pi}{\pi}|t|}|t|^{\sigma-\beta-1}\right) \tag{20}
\end{align*}
$$

as $|t| \rightarrow \infty$ uniformly in $-\infty<a \leq \sigma \leq b<\infty$.
Consequently

$$
\begin{aligned}
\lambda(\alpha, \beta, s) & =\Gamma(s+1 ; \beta, \alpha) \Gamma(\alpha+\beta-s ; \alpha, \beta)-\Gamma(s ; \beta, \alpha) \Gamma(\alpha+\beta-s+1 ; \alpha, \beta) \\
& =O\left(e^{-\pi|t|}\right)+O\left(e^{-\pi|t|}\right)=O\left(e^{-\pi|t|}\right)
\end{aligned}
$$

as $|t| \rightarrow \infty$ uniformly in $-\infty<a \leq \sigma \leq b<\infty$.

Similarly

$$
\begin{aligned}
\mu(\alpha, \beta, s)= & \Gamma(s+1 ; \beta, \alpha) \Gamma(\alpha+\beta-s ; \beta, \alpha)+\Gamma(s ; \beta, \alpha) \Gamma(\alpha+\beta-s+1 ; \beta, \alpha) \\
& +(\alpha-\beta) \Gamma(s ; \beta, \alpha) \Gamma(\alpha+\beta-s ; \beta, \alpha) \\
= & O\left(e^{-\pi|t|}|t|^{\beta-\alpha}\right)+O\left(e^{-\pi|t|}|t|^{\beta-\alpha}\right)+O\left(e^{-\pi|t|}|t|^{\beta-\alpha-1}\right) \\
= & O\left(e^{-\pi|t|}|t|^{\beta-\alpha}\right)
\end{aligned}
$$

as $|t| \rightarrow \infty$ uniformly in $-\infty<a \leq \sigma \leq b<\infty$.
Lemma 5. Let $c^{*}>0$ be such that the four Dirichlet series defined by (7) converge absolutely for $s=c^{*}$ and $c^{*}>(\alpha+\beta) / 2$. Then $\phi_{1}(\sigma+i t)=O\left(|t|^{\lambda_{1}}\right)$, as $|t| \rightarrow \infty$ uniformly in $\alpha+\beta-c^{*} \leq \sigma \leq c^{*}$, where $\lambda_{1}=\max \left\{0, \delta_{2}-2\left(\alpha+\beta-c^{*}\right)\right\}$ with $\delta_{2}=\max (\alpha+\beta, 2 \beta)$.

By Lemma 4, it follows that

$$
\begin{equation*}
\frac{\lambda(\alpha, \beta, s)}{\Gamma(s) \Gamma(s+1-\alpha-\beta)}=O\left(|t|^{\alpha+\beta-2 \sigma}\right) \tag{21}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\mu(\alpha, \beta, s)}{\Gamma(s) \Gamma(s+1-\alpha-\beta)}=O\left(|t|^{2 \beta-2 \sigma}\right) \tag{22}
\end{equation*}
$$

as $|t| \rightarrow \infty$ uniformly in $-\infty<a \leq \sigma \leq b<\infty$. By the choice of $c^{*}, \phi_{2}(s)=O(1)$, $\psi_{2}(s)=O(1)$ for $\sigma \geq c^{*}$; hence $\phi_{2}(\alpha+\beta-s)=O(1)$ and $\psi_{2}(\alpha+\beta-s)=O(1)$ for $\sigma=\alpha+\beta-c^{*}$. It then follows from Lemma 3, (21) and (22) that

$$
\begin{aligned}
\phi_{1}(s) & =O\left(|t|^{\alpha+\beta-2 \sigma}\right)+O\left(|t|^{2 \beta-2 \sigma}\right) \\
& =O\left(|t|^{\delta_{2}-2 \sigma}\right)
\end{aligned}
$$

on the line $\sigma=\alpha+\beta-c^{*}$ as $|t| \rightarrow \infty$, where $\delta_{2}=\max (\alpha+\beta, 2 \beta)$.
By the choice of c^{*}, it follows that $\phi_{1}(s)=O(1)$ on $\sigma=c^{*}$. In view of Lemma 2, $(s-1)(s-\alpha-\beta) \phi_{1}(s)$ is an entire function of finite order; it then follows by the theorem of Phragmen-Lindelöf that $\phi_{1}(\sigma+i t)=O\left(|t|^{\eta(\sigma)}\right)$ uniformly in $\alpha+\beta-$ $c^{*} \leq \sigma \leq c^{*}$ for $|t| \geq t_{0}$ (t_{0} being a suitable positive constant), where $\eta(\sigma)$ is the linear function joining $\left(c^{*}, 0\right)$ and $\left(\alpha+\beta-c^{*}, \delta_{2}-2 \sigma\right)$. Hence

$$
\begin{aligned}
\phi_{1}(\sigma+i t) & =O\left(|t|^{\delta_{2}-2\left(\alpha+\beta-c^{*}\right)}\right) & & \text { if } \delta_{2}-2\left(\alpha+\beta-c^{*}\right) \geq 0 \\
& =O(1) & & \text { if } \delta_{2}-2\left(\alpha+\beta-c^{*}\right)<0
\end{aligned}
$$

uniformly in $\alpha+\beta-c^{*} \leq \sigma \leq c^{*}$.
As $\lambda_{1}=\max \left(0, \delta_{2}-2\left(\alpha+\beta-c^{*}\right)\right)$, the result follows.
4. Proof of the main theorem. We invoke Perron's formula in the classical theory of Dirichlet series [3, p. 81] and apply it to

$$
\phi_{1}(s)=\sum_{t>0} \frac{a_{t}}{t^{s}},
$$

which converges absolutely for $\sigma \geq c^{*}$. Then we have for $x>0$ and $\delta \geq 0$,

$$
\begin{equation*}
\sum_{0<t \leq x}^{\prime} a_{t}(x-t)^{\delta}=\Gamma(\delta+1) x^{\delta} \cdot \frac{1}{2 \pi i} \int_{c^{*}-i \infty}^{c^{*}+i \infty} \frac{x^{s} \Gamma(s) \phi_{1}(s)}{\Gamma(\delta+1+s)} d s \tag{23}
\end{equation*}
$$

where the dash on the left of (23) indicates that the last term of the sum on the left side of (23) is to be multiplied by $\frac{1}{2}$ if $\delta=0$ and $x=t_{i}$ with $a_{t_{i}} \neq 0$; further the integral on the right of (23) is to be understood as a Cauchy limit. We note that the number of t for which $a_{t} \neq 0$ and $0<t \leq x$ is finite. We now transform the integral on the right of (23) into an integral taken on the line $\operatorname{Re} s=\alpha+\beta-c^{*}$. We now impose the additional condition that the strip $\alpha+\beta-c^{*} \leq \sigma \leq c^{*}$ includes all the singularities of $\phi_{1}(s)$ and that $\Gamma(s)$ and $\phi_{1}(s)$ are both regular on $\operatorname{Re} s=\alpha+\beta-c^{*}$. We consider the integral of

$$
\begin{equation*}
\frac{x^{\delta+s} \Gamma(s)}{\Gamma(\delta+1+s)} \phi_{1}(s) \tag{24}
\end{equation*}
$$

over the rectangle with vertices at $c^{*} \pm i t, \alpha+\beta-c^{*} \pm i t$ oriented in the positive sense. Then

$$
\frac{1}{2 \pi i} \int_{c^{*}-i t}^{c^{*}+i t}+\frac{1}{2 \pi i} \int_{c^{*}+i t}^{\alpha+\beta-c^{*}+i t}+\frac{1}{2 \pi i} \int_{\alpha+\beta-c^{*}+i t}^{\alpha+\beta-c^{*}-i t}+\frac{1}{2 \pi i} \int_{\alpha+\beta-c^{*}-i t}^{c^{*}-i t}
$$

is the sum of the residues of (24) inside the rectangle; we denote this sum by $Q_{\delta}(x)$. By Stirling's approximation and Lemma 5

$$
\begin{aligned}
& \int_{c^{*}+i t}^{\alpha+\beta-c^{*}+i t} \frac{x^{\delta+s} \Gamma(s)}{\Gamma(\delta+1+s)} \phi_{1}(s) d s=O\left(\int_{\alpha+\beta-c^{*}}^{c^{*}} x^{\delta+\sigma}|t|^{\lambda_{1}-\delta-1} d \sigma\right) \\
&=O\left(|t|^{\lambda_{1}-\delta-1}\right)=o(1) \text { as } t \rightarrow \infty \text { if } \lambda_{1}-\delta-1>0 \\
& \text { or } \delta>\lambda_{1}-1 .
\end{aligned}
$$

Similarly the integral on the line joining $\alpha+\beta-c^{*}-i t$ and $c^{*}-i t$ tends to zero as $|t| \rightarrow \infty$ if $\delta>\lambda_{1}-1$. Hence for $\delta \geq 0$ and $\delta>\lambda_{1}-1$,

$$
\frac{1}{\Gamma(\delta+1)} \sum_{0<t \leq x}^{\prime} a_{t}(x-t)^{\delta}=Q_{\delta}(x)+\frac{1}{2 \pi i}
$$

$$
\begin{equation*}
\times \int_{c^{*}-i \infty}^{c^{*}+i \infty} \frac{x^{\delta+\alpha+\beta-s} \Gamma(\alpha+\beta-s) \phi_{1}(\alpha+\beta-s)}{\Gamma(\delta+1+\alpha+\beta-s)} . \tag{25}
\end{equation*}
$$

Using Lemma 3 and the facts $\phi_{2}(s)=\sum_{t>0} \frac{b_{t}}{t^{s}} \psi_{2}(s)=\sum_{t>0} \frac{b_{-t}}{t^{s}}$, for $s=c^{*}$, the integral on the right of (25) can be rewritten as

$$
\begin{array}{r}
\frac{\gamma}{2}\left(\frac{2 \pi}{\lambda}\right)^{\alpha+\beta} x^{\delta+\alpha+\beta} \frac{1}{2 \pi i} \int_{c^{*-i \infty}}^{c^{*+i \infty}} \frac{\Gamma(\alpha+\beta-s)}{\Gamma(\delta+1+\alpha+\beta-s)}\left\{\frac{\lambda(\alpha, \beta, \alpha+\beta-s)}{\Gamma(\alpha+\beta-s) \Gamma(1-s)} \sum_{t>0} \frac{b_{t}}{t^{s}}\right. \\
\left.\quad+\frac{\mu(\alpha, \beta, \alpha+\beta-s)}{\Gamma(\alpha+\beta-s) \Gamma(1-s)} \sum_{>0} \frac{b_{-t}}{t^{s}}\right\}\left(\frac{4 \pi^{2} x}{\lambda^{2}}\right)^{-s} d s . \tag{26}
\end{array}
$$

We want to exchange the order of integration and summation in (26); this can be done if the series

$$
\begin{equation*}
\sum_{t>0} b_{t} \frac{1}{2 \pi i} \int_{c^{*}-i \infty}^{c^{*}+i \infty} \frac{\lambda(\alpha, \beta, \alpha+\beta-s)}{\Gamma(\delta+1+\alpha+\beta-s) \Gamma(1-s)}\left(\frac{4 \pi^{2} t x}{\lambda^{2}}\right)^{-s} d s \tag{27}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{t>0} b_{-t} \frac{1}{2 \pi i} \int_{c^{*-i \infty}}^{c^{*}+i \infty} \frac{\mu(\alpha, \beta, \alpha+\beta-s)}{\Gamma(\delta+1+\alpha+\beta-s) \Gamma(1-s)}\left(\frac{4 \pi^{2} t x}{\lambda^{2}}\right)^{-s} d s \tag{28}
\end{equation*}
$$

converge absolutely.
Let

$$
\begin{align*}
& J(x ; \alpha, \beta, \delta, c)=\frac{1}{2 \pi i} \int_{c-i \infty}^{c+i \infty} \frac{\lambda(\alpha, \beta, \alpha+\beta-s)}{\Gamma(1-s) \Gamma(\delta+1+\alpha+\beta-s)} x^{-2 s} d s \tag{29}\\
& \quad\left(0<c<\frac{1}{2}(\delta+\alpha+\beta) ; x>0\right)
\end{align*}
$$

and

$$
\begin{equation*}
K(x ; \alpha, \beta, \delta, c)=\frac{1}{2 \pi i} \int_{c-i \infty}^{c+i \infty} \frac{\mu(\alpha, \beta, \alpha+\beta-s)}{\Gamma(1-s) \Gamma(\delta+1+\alpha+\beta-s)} x^{-2 s} d s \tag{30}
\end{equation*}
$$

$$
\left(0<c<\frac{1}{2}(\delta+2 \alpha) ; x>0\right)
$$

where c is such that the path of integration does not include any of the singularities of the integrand. As $F\left(\beta, 1-\alpha, s+1-\alpha ; \frac{1}{2}\right) / \Gamma(s+1-\alpha)$ is an entire function of s, it follows from (17) that $\Gamma(s ; \alpha, \beta)$ is meromorphic in the complex s plane with at most poles at $s=1-n, s=\alpha+\beta-n, n$ being any positive integer. It then follows from (18) that $\lambda(\alpha, \beta, s)$ is a meromorphic function of s with at most poles at points congruent to 0 or $\alpha+\beta$ modulo 1 . The same is true for the function $\mu(\alpha, \beta, s)$. We now study the convergence of the integrals defined by (29) and (30). From Lemma 4, it follows that the integrand in (29) is

$$
O\left(|t|^{-(\delta+1+\alpha+\beta-2 c)} x^{-2 c}\right), \quad \text { where } s=c+i t
$$

Hence the integrals in (27) and (29) converge absolutely if $\delta>2 c^{*}-(\alpha+\beta)$ or $\delta>2 c-$ $(\alpha+\beta)$ respectively. Similarly the integrand in (30) is $O\left(|t|^{-(\delta+1+2 \alpha-2 c)} x^{-2 c}\right)$, where $s=c+i t$. Hence the integrals in (28) and (30) converge absolutely if $\delta>2 c^{*}-$ 2α or $\delta>2 c-2 \alpha$ respectively. It then follows that the series (27) and (28) converge absolutely if $\delta>2 c^{*}-2 \alpha$ and $\delta>2 c^{*}-(\alpha+\beta)$. We therefore have proved the following

Theorem. Let $c^{*}>0$ be such that all the singularities of $\phi_{1}(s)$ lie in the strip $\alpha+\beta-c^{*} \leq \sigma \leq c^{*}, c^{*}$ not congruent to 0 or $\alpha+\beta$ modulo 1 and also c^{*} satisfy the
conditions of Lemma 5. If λ_{1} is as in Lemma 5, $\delta \geq 0, \delta>2 c^{*}-2 \alpha, \delta>2 c^{*}-\alpha-\beta$ and $\delta>\lambda_{1}-1$, then

$$
\frac{1}{\Gamma(\delta+1)} \sum_{0<t \leq x}^{\prime} a_{t}(x-t)^{\delta}=Q_{\delta}(x)+\frac{\gamma}{2}\left(\frac{2 \pi}{\lambda}\right)^{\alpha+\beta} x^{\delta+\alpha+\beta}
$$

$$
\begin{equation*}
\times\left\{\sum_{t>0} b_{t} J\left(\frac{2 \pi}{\lambda} \sqrt{t x} ; \alpha, \beta, \delta, c^{*}\right)+\sum_{t>0} b_{-t} K\left(\frac{2 \pi}{\lambda} \sqrt{t x} ; \alpha, \beta, \delta, c^{*}\right)\right\} \tag{31}
\end{equation*}
$$

where the summation in the series on the right of (31) is over all real $t>0$ such that $t \equiv b_{2}(\bmod 1)$ and the series on the right of (31) converges absolutely.
5. Some special cases. (1) Let $\beta=0$. Then by a theorem of Maass [6, Satz 6], $f(z, w)$ can be transformed by the application of a suitable differential operator into the function

$$
\begin{equation*}
\bar{a}_{0}+\bar{b}_{0}+\bar{c}_{0} \sum_{n+b_{1}>0} a_{n+b_{1}} e^{2 \pi i \frac{\left(n+b_{1}\right)}{\lambda} z} \tag{32}
\end{equation*}
$$

\bar{a}_{0}, \bar{b}_{0} and \bar{c}_{0} being suitable constants and n an integer. (32) and a similar transform of $g(z, w)$ then have a functional equation under the mapping $z \rightarrow-z^{-1}$ as in the classical case of the Ramanujan τ function and $\sum_{0<n+b_{1} \leq x} a_{n+b_{1}}\left(x-n-b_{1}\right)^{\delta}$ can be expressed as a series of Bessel functions of the first kind. A very good account of such results can be found in [2].
(2) $\alpha=\beta$. In this case we get the so called wave functions [5] and the functions $J(x ; \alpha, \alpha, \delta, c), K(x ; \alpha, \alpha, \delta, c)$ can be evaluated explicitly in terms of Bessel functions and related functions. It turns out that

$$
\Gamma(s ; \alpha, \alpha)=\frac{1}{\sqrt{ } \bar{\pi}} 2^{s-\alpha-1} \Gamma\left(\frac{s}{2}\right) \Gamma\left(\frac{s+1}{2}-\alpha\right),
$$

and

$$
\lambda(\alpha, \alpha, s)=\frac{(2 \pi) \sin \pi(s-\alpha)}{\sin (\pi s) \sin \pi(2 \alpha-s)}
$$

then

$$
\begin{aligned}
J\left(x ; \alpha, \alpha, \delta, c^{*}\right)= & \frac{1}{2 \pi i} \int_{c^{*}-i \infty}^{c^{*}+i \infty} \frac{2 \Gamma(s)}{\Gamma(\delta+1+2 \alpha-s)} \frac{\sin \pi(\alpha-s)}{\sin \pi(2 \alpha-s)} x^{-2 s} d s \\
= & \frac{1}{2 \pi i} \int_{c^{*}-i \infty}^{c^{*}+i \infty} \frac{2 \Gamma(s)}{\Gamma(\delta+1+2 \alpha-s)} \cos (\pi \alpha) x^{-2 s} d s \\
& -2 \sin (\pi \alpha) \frac{1}{2 \pi i} \int_{c^{*}-i \infty}^{c^{*}+i \infty} \frac{\Gamma(s)}{\Gamma(\delta+1+2 \alpha-s)} \cot \pi(2 \alpha-s) x^{-2 s} d s .
\end{aligned}
$$

The first integral in (33) is a Bessel function of the first kind multiplied by a factor and the second integral in (33) can be expressed [12, §5] in terms of the Bessel
function $Y_{\nu}(x)$ and the Lommel function $S_{\mu, \nu}(x)$. In the same manner it follows that

$$
\mu(\alpha, \alpha, s)=\frac{(2 \pi) \sin (\pi \alpha)}{\sin (\pi s) \sin \pi(2 \alpha-s)},
$$

and

$$
\begin{equation*}
K\left(x ; \alpha, \alpha, \delta, c^{*}\right)=\frac{1}{2 \pi i} \int_{c^{*}-i \infty}^{c^{*+i \infty}} \frac{2 \sin (\pi \alpha) \Gamma(s)}{\Gamma(\delta+1+2 \alpha-s)} \operatorname{cosec} \pi(2 \alpha-s) x^{-2 s} d s \tag{34}
\end{equation*}
$$

The integral in (34) is expressible [12, $\S 5]$ in terms of the Bessel function $K_{v}(x)$ and a function $G_{\mu, v}(x)$ similar to the Lommel function $\mathrm{S}_{\mu, v}(x)$. The relevant properties of $\mathrm{G}_{\mu, v}(x)$ can be found in [12, §5].

References

1. Bateman Manuscript Project, Higher transcendental functions, Vol. 1, McGraw-Hill, 1953.
2. K. Chandrasekharan and Raghavan Narasimhan, Hecke's functional equation and arithmetical identities, Ann. of Math. 74 (1961), 1-23.
3. K. Chandrasekharan and S. Minakshisundaram, Typical means, Tata Institute Monographs 1, 1952.
4. E. Hecke, Uber die Bestimmung Dirichletscher Reihen durch ihre Funktionalgleichung, Math. Annalen 112 (1936), 664-699.
5. H. Maass, Automorphe Funktionen und indefinite quadratische Formen, Sitzgsber. Heidelberg. Akad. Wiss. Math.-naturwiss. K1. Abh. (1949), 1-42.
6. -, Die Differentialgleichungen in der Theorie der elliptischen Modulfunktionen, Math. Annalen 125 (1953), 235-263.
7. -_ Über die räumliche Verteilung der Punkte in Gittern mit indefiniter Metrik, Math. Annalen 138 (1959), 287-315.
8. W. Magnus und F. Oberhettinger, Formeln und Sätze für die speziellen Funktionen der mathematischen Physik, Springer-Verlag, 1948.
9. C. L. Siegel, Über die analytische Theorie der quadratischen Formen II, Ann. of Math. 37 (1936), 230-263.
10. ——, Indefinite quadratische Formen und Modulfunktionen, Courant Anniversary volume, 1948, 395-406.
11. -, Indefinite quadratische Formen und Funktionentheorie I, Math. Annalen 124 (1951), 17-54.
12. V. V. Rao, The lattice point problem for indefinite quadratic forms with rational coefficients, J. Indian Math. Soc. 21 (1957), 1-40.

University of Saskatchewan, Regina, Saskatchewan

