
2 
CATEGORIES AND EXACT SEQENCES 

The definition of an abstract category imposes few conditions on the objects 
and morphisms of a category, with the consequence that a great diversity of 
mathematical entities can be regarded as categories. In contrast, a category 
of modules has a richer structure than the minimum required for the defi­
nition of a category. The set of homomorphisms Hom(M, N) between two 
modules is always an abelian group, and we can recognise whether or not a 
homomorphism is an injection or surjection. Furthermore, the category may 
or may not contain such things as direct sums, kernels, projective modules, 
etc., depending on the nature of the modules that belong to it. 

Our aim in this chapter is to analyse the extra structure that is available to 
module categories, and thereby to formulate sets of conditions which ensure 
that an abstract category behaves as a module category. We start by inves­
tigating the functorial properties of the abelian groups Hom(M, N) and we 
see how to reformulate the basic properties of modules and homomorphisms 
in terms of these functorial properties. We then use these interpretations to 
define a series of types of abstract category - preadditive, additive, abelian -
which increasingly resemble module categories. Ultimately, we arrive at the 
notion of an exact category, which is a category that has enough structure for 
the purposes of algebraic K -theory. 

2.1 THE HOMOMORPHISM FUNCTORS 

In this section, we take a break from the theory of categories in general and 
return to the consideration of module categories. Our aim is to investigate 
the functorial properties of the group of homomorphisms Hom(MR, NR) as 
M and N vary through the category MODR of right R-modules, where R is 
a ring. 

We find that certain properties, such as the injectivity or surjectivity of 

68 

https://doi.org/10.1017/9780511608667.003 Published online by Cambridge University Press

https://doi.org/10.1017/9780511608667.003


2.1 THE HOMOMORPHISM FUNCTORS 69 

an R-module homomorphism, or the injectivity or projectivity of a module, 
can be reinterpreted in terms of the behaviour of the functors Hom(M, -) 
and Hom( -, N). Such results are useful not only for their applications in 
module theory, but also because they suggest a method whereby concepts 
such as injectivity and projectivity can be extended to abstract categories, 
provided the morphism sets in these categories share enough of the proper­
ties of Hom( -, -). This theme will be developed in the next section. The 
Hom functors are basic to the study of homology, and their introduction in 
[Eilenberg & Mac Lane 1942] predates category theory. 

As usual, we work with categories of right modules, except in a few places 
where we are obliged to consider left modules. The transcription of the 
main part of our discussion to left modules is not quite immediate, although 
straightforward. The complication arises since we usually view Hom(M, N) as 
a member of the right category As, regardless of the chirality of the modules 
M and N. There are also some awkward but essentially trivial variations in 
notation which arise when we need to regard Hom(M, N) as a left module 
over some ring. 

2.1.1 Basic properties 
We start with a discussion of the functorial properties of the sets of homo­
morphisms between modules. 

Let R be a ring and let LR and X R be right R-modules. Since Hom(LR, XR) 
is simply the set Morc(L, X) where the category C is the category MODR of 
right R-modules, the discussion in (1.2.7) shows that Hom defines a pair of 
functors Hom( -, X) and Hom(L, -), which are respectively contravariant and 
covariant. 

Explicitly, given a right R-module homomorphism).. : L ----+ M, the map 

)..* : Hom(MR,XR) ----+ Hom(LR,XR) 

is given by )..*(~) = O. If JL : M ----+ N is another right R-module homomor­
phism, then 

On the other hand, for any R-module homomorphism ~ : X ----+ Y, the map 

is given by ~*(a) = ~a, and (T}~)* = T}*~* for an R-module homomorphism 
T}: Y ----+ z. 
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Each set Hom(LR, X R) is an abelian group, with addition given by the rule 

(a + a')£ = a£ + a'£ for £ ELand a, a' E Hom(LR,XR), 

and it is easy to verify that the maps A * and ~* are homomorphisms of abelian 
groups, that is, 

A*(a + a') = A*a + A*a' and ~*(a + a') = ~*a + ~*a' 
for a, a' E Hom(LR, XR). 

Thus Hom( -, X) and Hom(L, -) are functors with values in the category 
As of abelian groups rather than the category SET of sets. Furthermore, the 
equalities 

hold for pairs of homomorphisms A, A' : L -+ M and ~,f : X -+ Y and, as 
in (1.3.2)(i), each pair of homomorphisms A : L -+ M and ~ : X -+ Y gives a 
commutative diagram 

which can be interpreted as showing that the homomorphisms A * define a nat­
ural transformation from the functor Hom(MR, -) to the functor Hom(LR, -), 
or, equally, that the homomorphisms ~* give a natural transformation from 
Hom( -, X R) to Hom( -, YR). 

2.1.2 Exact sequences 
We now interpret the exactness of sequences of modules in terms of the Hom 
functors. By definition, a sequence 

J-l L -----» M -----» N 

of right R-modules and right R-module homomorphisms is exact if 

Ker(J-l) = Im(A). 

More generally, a sequence of right R-modules 

ai 
... ----+ Mi- 1 ------» Mi ------» Mi+l ----+ ... 
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is called an exact sequence if it is exact at each of its terms Mi. Such a 
sequence may have finite length, or it may be infinite. (A more detailed 
treatment of exact sequences can be found in [BK: IRM], particularly section 
2.4.) Thus the sequence 

A 
O----L 1M 

is exact precisely when the homomorphism A is injective, while 

f.L 
M -----+1 N ---- 0 

is exact precisely when f.L is surjective. 

2.1.3 Proposition 

(i) The sequence 

e o ---- X -----+1 Y 

is exact in MODR if and only if 

e* 0---- Hom(L,X) --->1 Hom(L, Y) 

is an exact sequence of abelian groups for any right R-module L. 
(i)OP The sequence 

f.L 
M -----+1 N ---- 0 

is exact in MODR if and only if 

f.L* 
o ---- Hom(N, X) --->1 Hom(M, X) 

is an exact sequence of abelian groups for any right R-module X. 

Proof 
We prove (i) only, (i)OP being similar. Suppose that e is injective and that 

e*a: = O,a:: L ~ X. By definition, this means that ea: = 0, and so a: = O. 
Conversely, suppose that e* is injective. Choose any element x E Ker e, put 

L = xR and let a: : L ~ X be the inclusion map. Then e*a: = 0, hence a: = 0, 
and so xR = 0, which means that x = O. D 

Next we examine what happens when we extend the exact sequences by 
one term. The assertion that 

e 17 o ---- X -----+1 Y -----+1 Z 
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is an exact sequence of R-modules tells us that X is isomorphic via ~ to the 
kernel of 'r/, while the exactness of 

J1, 
L ---, M ---, N -----> 0 

is equivalent to the fact that N is isomorphic via J1, to the cokernel of '\. 

2.1.4 Proposition 

(i) A sequence 

~ 'r/ 
0-----> X ---, Y ---, Z 

of right R-modules is exact if and only if the sequence of abelian groups 

~* 'r/* 
0-----> Hom(L, X) --....... , Hom(L, Y) --....... , Hom(L, Z) 

is exact for any right R-module L. 
(i)OP A sequence 

J1, 
L ---, M ---, N -----> 0 

of right R-modules is exact if and only if the sequence of abelian groups 

J1,* ,\* 
0-----> Hom(N,X) --....... , Hom(M,X) --....... , Hom(L, X) 

is exact for any right R-module X. 

Proof 
We prove (i) only. Suppose that 0 ---> X ~ Y -!!.... Z is exact. By the 

previous result, ~* is injective, so it is enough to check exactness at Hom(L, Y). 
For any a E Hom(L, X), we have 'r/*~*a = 'r/~a = 0 since 'r/~ = O. Suppose that 
(3 E Hom(L, Y) and 'r/*(3 = O. Then 'r/(3 = 0, and so there is a homomorphism 
a' : L ---> Ker'r/ such that K,a' = (3, where K, is the canonical injection of Ker'r/ 
into Y. But, as we noted above, Ker'r/ is isomorphic via ~ to X, so we can 
construct a homomorphism a : L ---> X with (3 = ~a = ~*a. 

Conversely, suppose that the Hom sequence is exact. Again, the previous 
result tells us that ~ is injective. Substituting X for L, we see that 0 = 
'r/*~* (idx ) = 'r/~, that is, ~X ~ Ker'r/. 

To obtain equality, take an element y E Ker'r/ and put L = yR. Let 
(3 : L ---> Y be the inclusion map. Since 'r/*(3 = 0, (3 = ~*a = ~a for some 
a: L ---> X, which shows that y E ~X. 0 
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2.1.5 Short exact sequences 
A short exact sequence is a sequence 

a (3 o ---> M' ------t) M ------t) Mil ---> 0 

which is exact at each of the terms M', M and Mil. There is an evident 
extension of the statement of the preceding result in which all the sequences 
are taken to be short exact sequences, but the result then fails, as can be seen 
from the following example. 

Consider the exact sequence 

7r o ---> Z ----+) Z ----+) Z/2Z ---> 0 

in which ~ is left multiplication by 2: z f--+ 2z, and 7r is the canonical surjection. 
This induces a Hom sequence 

7r* ~ 
0---> Hom(Z/2Z, Z) ----+) Hom(Z, Z) ----+) Hom(Z, Z) ---> O. 

Now Hom(Z, Z) is isomorphic to Z itself under the map which assigns to an 
endomorphism a of Z its value a(l) at 1, and it is not hard to see that the 
endomorphism of Z induced by ~ * is ~ again and hence non-surjective. Thus 
the Hom sequence is not exact on the right. 

For the dual example, we look at 

~* 7r* 
0----+ Hom(Z/2Z, Z) ---+ Hom(Z/2Z, Z) ---+ Hom(Z/2Z, Z/2Z) ----+ 0 

The terms Hom(Z/2Z, Z) are evidently 0, while Hom(Z/2Z, Z/2Z) is isomor­
phic to Z/2Z. So again the sequence fails to be exact on the right. 

There are several interesting circumstances in which the Hom sequences 
are guaranteed to be short exact sequences. The first is the most immediate 
extension of the last proposition. To state the result, we need the following 
definition. A short exact sequence of R-modules (or of abelian groups) 

a (3 o ---> M' ------t) M ------t) Mil ---> 0 

is said to be a split exact sequence if we can find homomorphisms 

"( : M ---> M' and 8: Mil ---> M 

such that 

(38 = idM", "(a = idM , and a"( + 8(3 = idM . 

It can be shown ([BK: IRM] Theorem 2.4.5) that it is enough to know the 
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existence of only one of the maps 'Y or 8, the other then being constructible, 
and that when the sequence is split, we have M ~ M' EEl Mil. 

Conversely, if we are given a direct sum decomposition of M, then we can 
reconstruct a split exact sequence as above. 

2.1.6 Proposition 

(a) The following statements are equivalent. 

(i) The sequence 

~ "l 
0---+ X ----» Y ----» Z ---+ 0 

of right R-modules is split exact. 
(ii) The sequence of abelian groups 

~* "l* 0---+ Hom(L, X) ---+) Hom(L, Y) ---+) Hom(L, Z) ---+ 0 

is split exact for any right R-module L. 
(iii) The sequence of abelian groups 

~* "l* 0---+ Hom(L, X) --...... ) Hom(L, Y) ---+) Hom(L, Z) ---+ 0 

is exact for any right R-module L. 

(a)OP The following statements are equivalent. 

(i) The sequence 

/-L o ---+ L ----» M ----» N ---+ 0 

of right R-modules is split exact. 
(ii) The sequence of abelian groups 

/-L* >. * 
0---+ Hom(N,X) --...... ) Hom(M,X) --...... ) Hom(L,X) ---+ 0 

is split exact for any right R-module X. 

(iii) The sequence of abelian groups 

/-L* >. * 
0---+ Hom(N, X) --...... ) Hom(M, X) --...... ) Hom(L, X) ---+ 0 

is exact for any right R-module X. 
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Proof 
We prove (a) only. Suppose that (i) holds, that is, 

~ 17 o ~ X ---->l Y ---->l Z ~ 0 

is split exact. Then there are R-module homomorphisms {) : Y ---+ X and 
( : Z ---+ Y such that 

{)~ = idx, 17( = idz and ~{) + (17 = idy. 

Since the identity map idA of a module induces the identity map (idA)* on a 
homomorphism group Hom(L, A), we have 

{)*~* = id, 17*(* = id and ~*{)* + (*17* = id, 

with the identity maps appropriately interpreted. This shows that (ii) holds. 
Trivially (ii) gives (iii). Assume that (iii) holds. Taking the special case 

L = Z, we see that there is some homomorphism ( : Z ---+ Y with ~*(() = idy , 

that is, ~( = idy , which establishes that the module sequence is split exact. 
o 

2.1.7 Projective and injective modules 
An alternative procedure for ensuring that the Hom sequences are short exact 
is to impose conditions on the 'fixed' term rather than the exact sequence of 
'variables'. This leads to a characterization of projective modules and their 
duals, the injective modules. 

2.1.8 Proposition 

(a) Let L be a right R-module. Then the following are equivalent. 

(i) L is projective. 
(ii) The sequence of abelian groups 

~* 17* o ~ Hom(L, X) ------> Hom(L, Y) ------> Hom(L, Z) ~ 0 

is exact for every exact sequence 

~ 17 o ~ X ---->l Y ---->l Z ~ 0 

of right R-modules. 
(a)OP Let X be a right R-module. Then the following are equivalent. 

(i) X is injective. 
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(ii) The sequence of abelian groups 

p,* A * 
0--+ Hom(N, X) --+ Hom(M, X) --+ Hom(L, X) --+ 0 

is exact for every exact sequence 

p, o --+ L -----» M -----» N --+ 0 

of right R-modules. 

Proof 
For (a), we note that the surjectivity of 'TJ* is the same as the assertion 

that, for any homomorphism 'Y : L -+ Z, there is a homomorphism f3 : L -+ Y 
which makes the following diagram commute: 

L 

f3 ...... j 'Y 
,/ 

Y )Z ) 0 
'TJ 

But this is a standard criterion for L to be projective (see [BK: IRMJ Theorem 
2.5.4). 

For (a)OP, use the dual characterization of injective modules (Exercise 2.5.7 
of [BK: IRMJ). D 

2.1.9 Homomorphism functors arisin9 from bimodules 
So far, we have regarded Hom(MR, X R) simply as an abelian group, so that 
both the functors Hom( -, XR) and Hom(MR, -) take values in the right 
category AB. However, it sometimes happens that we wish to take account 
of a further module structure on Hom(MR, X R) under which it may be most 
naturally viewed as a left module, and then our functors will take values in a 
left category. We therefore introduce a separate notation to alert the reader 
to our changed point of view. 

Suppose that SXR is an S-R-bimodule for some rings Rand S. Then 
Hom(MR, X R) has a natural left S-module structure given by 

(sa)(m) = s(am), s E S, mE M, a: M -+ X. 

Thus Hom( -, XR) is a contravariant functor from MODR to SMOD, which 
we write as Hx( -) to distinguish it from its more common manifestation as 
a functor with values in AB. 
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If N is another right R-module and jJ, : M -+ N is an R-module homomor­
phism, we define 

Hx(jJ,) : Hx(N) ~ Hx(M) by aHx(jJ,) = ajJ,. 

In the language of (1.2.6), Hx is a contravariant and contrachiral functor 
from MODR to SMOD, with Hx(jJ,v) = HX(jJ,)Hx(v) for composable jJ, and 
v. 

Now assume that M is a T-R-bimodule for some ring T. Then Hom(MR' X R) 
becomes a right T-module for any right R-module X, under the rule (at)m = 
a(tm) for a E Hom(MR, X R ), t E T, mE M. 

We write HM (-) = Hom(MR, -). The action of this functor on morphisms 
is given by HM (~)a = ~a, where a E Hom(MR, XR) and ~ E Hom(XR' YR), 
and Y is a right R-module. We see that HM ("1)HM (~) = HM ("1~) whenever 
the composition is defined, and that HM (-) is a covariant, cochiral functor 
from MODR to MODT. 

Note that these constructions include the case that X or M is simply an 
R-module, since any right R-module can be viewed as a Z-R-bimodule. The 
functor HM is then the same as the functor Hom(MR, -), both having values 
in the right category As, which is MODZ under another name. However, 
the functor Hx takes values in the mirror category ZMOD of As, so that 
Mor( -, X R ) = Mir oHx( -): compare with (1.1.5) and (1.2.6). 

We can also regard both M and X simultaneously as being variables for 
Hom, which is then a bifunctor from MODR x MODR to As. More gener­
ally, Hom gives rise to bifunctors from MODR x SMODR to SMOD and from 
TMoDR X MODR to MODT. These will have mixed variance and chirality. 

2.1.10 The extension functors 
As we saw in (2.1.4), an exact sequence 

~ "1 o ~ X ----+) Y ----+) Z ~ 0 

of right R-modules gives rise to an exact sequence of abelian groups 

~* "1* o ~ Hom(L, X) ---f) Hom(L, Y) ---f) Hom(L, Z) 

for any R-module L. By the example in (2.1.5), the Hom sequence cannot 
always be extended on the right to form a short exact sequence. 

This fault can be repaired by introducing the extension functors Ext'R( -, -), 
n;::: 1, which, like HomR( -, -), are bifunctors from MODR x MODR to As. 
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There are then long exact sequences of the form 

o ---t Hom(L, X) 
---t Extl(L, X) 
---t Ext2 (L, X) 

---t Hom(L, Y) 
---t Ext1 (L, Y) 

---t Hom(L, Z) 
---t Ext1 (L, Z) 

which may continue for ever to the right, depending on the nature of the 
ring R and the particular modules involved. There are analogous long exact 
sequences in which the roles of the variables are exchanged. 

The term 'extension functor' is used since the elements of Extk(L, X) de­
scribe all the possible extensions of L by X, that is, all short exact sequences 

o ----> X ----> M ----> L ----> 0 

with M a right R-module, under a suitable equivalence relation. The higher 
extension groups ExtR(L, X) have a similar interpretation. 

The construction of these functors is outlined in Exercise 2.1.7 below. 

Exercises 
2.1.1 Let RM and RX be left R-modules. Following (2.1.1), define functors 

Hom(RM, -) : RMoD -+ As and Hom( -, RX) : RMoD -+ As, and 
determine their chiralities. 

Following (2.1.9), show that a bimodule RMS defines a functor 
HM (-) : RMoD -+ SMOD and that a bimodule RXT defines a func­
tor Hx( -) : RMoD -+ MODT. Give the chiralities of these functors. 

Thus Hom( -, -) affords an example of a bifunctor of mixed vari­
ance and chirality. 

2.1.2 Let {M.x 1,\ E A} be a set of right R-modules, where the index set A 
may be infinite. Show that, for any right R-modules L and X, there 
are isomorphisms of abelian groups 

and 

Show that the inverse of the second of the above isomorphisms 
restricts to an injective homomorphism 

EB A Hom(L, M.x) -----+ Hom(L, EB A M.x), 

which is in fact an isomorphism when L is finitely generated. 
Warning. The description of the fourth term Hom(I1 A M.x, X) is 
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far from straightforward, since it requires some notion of convergence. 
A related question is treated in Exercise 2.3.1 of [BK: IRM]. 

2.1.3 Regard the ring R as an R-R-bimodule, and let M be a right R­
module. Define a map f: MR --+ Hom(RR' MR) by f(m)(r) = mr. 
Show that f is an isomorphism of right R-modules, and deduce that 
the functor Hom(RR, -) = HR( -) is naturally isomorphic to the 
identity functor on MODR. 

Verify the left-handed version of this result. 
(The map f is sometimes called left multiplication by m; its inverse 

is evaluation at 1.) 
2.1.4 Show that an arbitrary direct product of injective R-modules is again 

injective. 
2.1.5 Injectives exist 

This longish exercise outlines the proof that, for any ring Rand 
right R-module M, there is an injective right R-module N and an 
injective R-module homomorphism from M to N. 

(i) Let Q be any divisible Z-module. Then it is known that Q is an 
injective Z-module (see Exercise 2.5.11 of [BK: IRM]). Put R = 
Hom(Rz , Qz). Verify that R is a right R-module by (pr)(x) = 
p(rx), for p in R, r, x in R. 

(ii) Let a be a right ideal of R, let L : a --+ R be the inclusion map, 
and let r.p : a --+ R be an R-module homomorphism. It is a fact 
that R is injective if for any such r.p there is a homomorphism 
'IjJ : R --+ R with 'ljJL = r.p - see Exercise 2.5.8 in [BK: IRM]. 
Let a E a. Verify that, : a --+ Q, ,(a) = (r.pa)(1R)' is a homo­
morphism of Z-modules. Choose 8 : Rz --+ Qz such that 8L = 'Y 
and put ('ljJr)(x) = 8(rx). Verify that 'ljJr E R and that 'IjJ is as 
required. 

(iii) Let M be any right R-module. Using the fact that there is 
an isomorphism of Z-modules M ~ ZA fA for some free abelian 
group ZA and subgroup A of ZA, and the divisibility of the group 
Q of additive rationals, show that M is a subgroup of a divisible 
abelian group Q. 

(iv) Confirm that there is a chain of injective R-module homomor­
phisms 

M >--+ Hom(R, M) >--+ Hom(R, Q) = R. 
Remark. It can be shown that an R-module M can be embedded 
in a 'minimal' injective R-module E(M); this means that there is 
an injective R-module homomorphism f : M --+ E(M) such that for 
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any other injective R-module homomorphism", : M -+ I with I an 
injective module, there is an injective homomorphism p : E(M) -+ I 
with", = pE. As a universal object, the module E(M) is unique 
up to isomorphism and is known as the injective hull of M. The 
construction can be found in most texts on ring theory, for instance 
[Rotman 1979], §3. 

2.1.6 Let Q be a divisible abelian group. For a left R-module N, let tl(N) = 
Hom(Nz , Qz). Verify that tl(N) is a right R-module, with tl(R) = Ii 
as in the previous exercise. 

Confirm that tl is a contravariant functor from RMoD to MODR 

and that tl restricts to a functor from RPnOJ to INJR, the category 
of injective right R-modules. 

2.1.7 The group Extk 
This substantial exercise gives one construction, using the Baer 

sum, of the groups Extk(M", M'). Our treatment is based on Chap­
ter III, §2, of [Mac Lane 1975]. Alternative definitions, and further 
details, can be found in most texts on homological algebra (see, for 
example, [Weibel 1995]). 

Our arguments depend on some basic methods of manipulating 
short exact sequences that are described in more detail in section 2.4 
of [BK: IRM]. Let 

E 
a j3 o ~ M' ----+) M ----+) M" ~ 0 

be a short exact sequence and let (j : L" -+ M" be a homomorphism. 
Then the pull-back of M and L" over M" gives an exact sequence 

(j*E 
p, 7J o ~ M' ----+) M x M" L" ------t) L" ~ 0, 

the pull-back of E along (j. (An alternative expression is that (j*E is 
obtained from E by base change.) 

Similarly, given a homomorphism ¢ : M' -+ N', the push-out of N' 
and Mover M' gives a short exact sequence 

a v o ~ N' ----+) N' EBM' M ------t) M" ~ 0, 

the push-out of F along ¢. (Alternatively, ¢*E is said to be obtained 
from E by co base change.) 

Two short exact sequences 
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E1 O~M' 
a1 

) M1 
(31 
)M"~O 

and 

E2 O~M' 
a2 

) M2 
(32 
)M"~O 

are equivalent if there is an isomorphism X : M1 -+ M2 with Xa1 = a2 
and (32X = (31. The notation is E1 == E 2· 

For fixed M' and Mil, equivalence of short exact sequences is an 
eqivalence relation on the set of all short exact sequences E, and it is 
compatible with pull-backs and push-outs. 

We write [EJ for the class of E and we define Extk(M", M') to be 
the set of all such equivalence classes. 

The direct sum E1 EEl E2 is defined to be the short exact sequence 

I I a1 Etla 2 (31 Etl{h II II o ~ M EEl M -----+) M1 EEl M2 -----+) M EEl M ~ O. 

Define an operation, the Baer sum, on Extk(M",M' ), by 

where the diagonal homomorphism 

1:1" : Mil ~ Mil EEl Mil has I:1 l m" = (mil, mil) 

and the codiagonal homomorphism 

~' : M' EEl M' ~ M' has ~/(m', n') = m' + n'. 

(i) Verify that the Baer sum depends only on the equivalence 
classes of E1 and E 2, so that it is a well-defined law of compo­
sition on Extk(M", M'). 

(ii) Confirm that the middle term of E1 + E2 is 

(M1 XM" M2)/{(a1m', -a2m') 1m' EM'}. 

(iii) Verify that the composition is associative and commutative. 

(iv) Deduce that Extk(M", M') is an abelian group, with zero ele­
ment corresponding to the standard split exact sequence, and 

-[EJ = [( -id)*EJ 

where -id is the negative of the identity map on M'. 
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(v) Let ¢, 'l(; : L" -+ M". Verify the following chain of equivalences: 

¢*E + ~*E == (~')*(~")*(¢*E EB 'l(;*E) 

== (~')*(~")*(¢ EB 'l(;)*(E EB E) 

== (~"(¢ EB 'l(;)~")*E 

== (¢ + 'l(;)*E. 

Deduce that Extk( -, M') is a contravariant functor. Show also 
that Extk(M", -) is a covariant functor and that Extk( -, -) 
is a bifunctor. 

(vi) Show that Extk(p, X) = 0 for all R-modules X if and only if 
p is a projective R-module. 

(vii) Let 

Y 
~ 17 0---+ X ----» Y ----» Z ---+ 0 

be an exact sequence of right R-modules. For A E Hom(L, Z), 
define 

&(A) = [A*Y] E Ext k(Z, X), 

and, anticipating the Snake Lemma (Exercise 2.3.13), verify 
that 

0------4 HomR(L, X) ------4 HomR(L, Y) ------4 HomR(L, Z) 
& 1 1 1 ------4 ExtR(L, X) ------4 ExtR(L, Y) ------4 ExtR(L, Z) 

is an exact sequence of abelian groups. 

(viii) Derive the corresponding exact sequence with fixed second vari­
able, and show that Extk(L, J) = 0 for all R-modules L if and 
only if J is an injective R-module. 

(ix) Here is an inductive definition of ExtR(L, X) for n 2: 2. Choose 
a short exact sequence 

o ---+ S ---+ P ---+ L ---+ 0 

with P projective (such a sequence exists; we may take P to be 
free by Lemma 2.5.7 of [BK: IRM]), and put 

ExtR(L,X) = ExtR- 1 (S,L) for n 2: 2. 

It can be shown that the right-hand side is independent of the 
choice of the short exact sequence above. 
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It is also possible to make a definition in terms of the second 
variable by taking a short exact sequence 

o ------> X ------> J ------> C ------> 0 

with J injective (see Exercise 2.1.5 above). Much hard work 
reveals that the two definitions coincide, or, more properly, that 
the functors obtained are naturally isomorphic. Full details are 
given in [Mac Lane 1975] and [Rotman 1979]. 

2.2 ADDITIVE CATEGORIES 

When [Eilenberg & Mac Lane 1945] had given the abstract definition of a 
category, a natural next step was to seek the conditions on the morphism 
sets of an abstract category which enable the definitions and constructions 
of module theory to be developed in that category. The exploration led to 
the definitions of additive, exact (in the non-K-theory sense) [Buchsbaum 
1955] and abelian categories [Grothendieck 1957]. These abstractions were 
motivated by the desire to apply homological methods in categories that arise 
in algebraic geometry, such as categories of sheaves and of vector bundles 
(which we do not encounter in this text), as well as intellectual curiosity. The 
widest class of categories that share some properties of modules comprises the 
preadditive categories. In such a category C, each morphism set Morc(L, X) 
is an abelian group and the functors arising from morphisms must respect 
addition. These requirements suffice to permit the recognition of direct sums, 
exact sequences, kernels and cokernels, and projective and injective objects in 
C. However, there need not be any nontrivial examples of such things within 
the category. 

The next step is the definition of an additive category, which is required 
to contain a direct sum of any two of its objects. Many interesting module 
categories are additive categories, for example, the categories MR of finitely 
generated modules and PR of finitely generated projectives. Also, many of 
the categories of interest in K-theory are additive categories. 

There is some variation in the literature as to the precise definition of a 
preadditive category, as there is with the definitions of (pre)additive subcat­
egories of (pre ) additive categories. Indeed, some authorities do not make 
formal definitions. Even where terms like additive and abelian categories 
have standard meanings, there is a complex web of interacting axioms woven 
through the literature. Our own choice of axioms has been guided by intuitive 
appeal rather than minimality. 

Throughout this section, we work with right categories, it being clear that 
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there is a corresponding discussion for left categories. Modules are right mod­
ules over an arbitrary ring R, unless otherwise specified. 

To make the comparison and transcription of results easier, we often use 
the same symbols - L, M, ... , X, Y, ... - for objects of an abstract category C 
as we used for modules in the preceding section. 

2.2.1 Preadditive categories 
A category C is called preadditive if the following conditions are satisfied. 

Ad 1. For each pair of objects M and N of C, Morc(M, N) is an abelian 
group. 

Ad 2. If A, A' : L --t M and p" p,' : M --t N are morphisms in C, then 

p,(A + A') = p,A + p,A' and (p, + p,')A = p,A + p,' A. 

Ad 3. C contains a zero object 0 such that More(O, N) = 0 and More(M, 0) = 
0, the trivial group, for all objects M and N. 

Here, a zero object is as defined in (1.4.14). There is (usually) more than one 
zero object, but any two zero objects are isomorphic by a unique isomorphism, 
so we often refer to 'the' zero object of C. 

Note that the set Ende(M) of endomorphisms of any object M in C must 
be a ring. 

Of course, AB is a preadditive category, and so is the category RNG of 
nonunital rings. However, the category RING of rings is not preadditive be­
cause the zero mapping is not in general a ring homomorphism. It is clear that 
MeJD R is preadditive for any ring R, and it is easy to see that the basic func­
torial properties of HomR( -, -), given in (2.1.1), transcribe to More( -, -). 
We list them for convenience. 

A morphism A : L --t M in C defines a map 

A* : More(M,X) ------t More(L,X) by A*(~) = o. 
From Ad 2, A * is a homomorphism of abelian groups. For another morphism 
p,: M --t N, 

(p,A)* = A*p,*: More(N,X) ------t More(L,X). 

In the other variable, a morphism ~ : X --t Y gives a homomorphism of 
abelian groups 

~* : Morc(L, X) ------t More(L, Y) by ~*(a) = ~a, 

and (TJ~)* = TJ*~* for a morphism TJ : Y --t Z. 
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Thus More( -, X) and More(L, -) are functors on C, contravariant and 
covariant respectively, with values in the category As of abelian groups. As 
with the Hom functor, in a preadditive category we have equalities 

(A + A')* = A* + A'* and (~+ 0* = ~* +~: 

for pairs of morphisms A, A' : L ~ M and ~,~' : X ~ Y. Each pair of 
morphisms A : L ~ M and ~ : X ~ Y gives a commutative diagram 

Mor(M,X) 
~* 

Mor(M, Y) 

Mor(L,X) ~* Mor(L, Y) 

showing that the homomorphisms A * define a natural transformation from the 
functor Mor (M, -) to the functor Mor (L, -) and that the homomorphisms 
~* give a natural transformation from Mor (-, X) to Mor (-, Y). 

2.2.2 Preadditive subcategories 
Next we define a preadditive subcategory of a preadditive category. There is 
no general agreement as to the proper definition, so we have chosen one suited 
to our immediate purposes. 

A subcategory V of a preadditive category C is said to be a preadditive 
subcategory if 

PAS 1. Morv(L, X) is a subgroup of More(L, X) for any pair of objects L 
and X of V, and 

PAS 2. V contains a zero object of C. 

Evidently, such a subcategory V is itself a preadditive category. 
The zero object of a preadditive category can be viewed as defining a pread­

ditive subcategory with one object. Less trivially, a nonzero object X of C 
gives a minimal full preadditive subcategory P'READD(X) of C; the set of ob­
jects of P'READD(X) is {O, X} and the set of morphisms is Ende(X) together 
with the requisite zero morphisms. 

2.2.3 Monomorphisms and epimorphisms 
We now use the Mor functors to transcribe definitions and results from module 
categories MODR to arbitrary preadditive categories. The fact that the Mor 
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functors on a preadditive category take values in As (rather than SET) is 
crucial in what follows. 

We start with monomorphisms and epimorphisms, which are the analogues 
of injective and surjective homomorphisms - the reason for the change in 
terminology will be explained shortly. 

By analogy with (2.1.3), we make the following definitions in a preadditive 
category C. 

A morphism J.l : X ~ Y in C is said to be a monomorphism if, for any 
object L of C, 

J.l* o ~ Morc(L, X) --->. Morc(L, Y) 

is an exact sequence of abelian groups. 
A morphism f : M ~ N in C is said to be an epimorphism if, for any object 

X ofC, 

o ~ Morc(N, X) --->. Morc(M, X) 

is an exact sequence of abelian groups. 
Important examples of monomorphisms and epimorphisms are provided by 

the following result. 

2.2.4 Lemma 
If J.l : X ~ Y has a left inverse P : Y ~ X (that is, PJ.l = idx ), then J.l is a 

monomorphism. 
If f : M ~ N has a right inverse a : N ~ M (that is, fa = idN ), then f is 

an epimorphism. 

Proof 
By functoriality of Morc(L, -), P*J.l* is just the identity homomorphism on 

the group Morc(L, X). So J.l* is injective. Similarly, f* is surjective. D 
A morphism with a left inverse is often called a split monomorphism, while 

a morphism with a right inverse is known as a split epimorphism. 
Warning. These descriptions are valid only for right categories! The reader 

may wish to formulate their left category counterparts. (The definitions of 
epimorphism and monomorphism can be extended to arbitrary categories; see 
Exercise 2.2.4.) 

In a module category MODR, the basic result (2.1.3) shows that a monomor­
phism is the same thing as an injective morphism while an epimorphism is 
just a surjective morphism. However, these coincidences need not happen in 
an abstract category, which explains the need for new terminology. 
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The most blatant examples in which a monomorphism cannot be an injec­
tion are provided by categories whose objects are not sets. More seriously, 
it may happen that the objects of a preadditive category are sets, but that 
a monomorphism need not be an injection or an epimorphism need not be a 
surjection. Such pathologies are somewhat tricky to find. 

We give examples of both phenomena. 

2.2.5 Example: the opposite category 

Recall from (1.1.6) that the opposite category cop of a category C has objects 
cop in bijective correspondence with the objects C of C, and that for each 
pair of objects COP, DOP of COP, there is a bijection between the morphisms Q: 
in Mor c ( C, D) and the morphisms Q:°P in Mor Cop (DOP , COP). 

The composition in cop is given by the rule 

If C is preadditive, then so also is COP, under the natural definition 

A morphism ~ : X ---7 Y in C induces 

~* : Morc(L, X) ~ Morc(L, Y), 

while its opposite counterpart ~op : yoP ---7 xop gives 

(~OP)* : Morcop (XOP, LOP) ~ Morcop (yop, LOP). 

For any A : L ---7 X, we have (~OP)*(AOP) = (~*(A))OP, so that (~OP)* and ~* 
are either both injective or both not injective. 

Thus ~op is an epimorphism exactly when ~ is a monomorphism. Similarly, 
CP is a monomorphism precisely when ~ is an epimorphism. 

Thus, if C contains both monomorphisms and epimorphisms, so does coP. 
However, the objects of cop are not sets, so its monomorphisms cannot be 
injective mappings, nor can its epimorphisms be surjections. 

2.2.6 Example: topological abelian groups 

This example relies on some elementary topology which we do not develop 
in this text. (The definitions of terms below can be found in [Willard 1970] 
§13.) As well as providing an epimorphism which is not a surjection, it shows 
that an epimorphism in a subcategory may cease to be an epimorphism in a 
larger category. 
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Let HAs be the category of Hausdorff topological abelian groups. Thus 
an object A of HAs is a Hausdorff topological space which is also an abelian 
group in such a way that the group operations are continuous maps, and a 
morphism from A to B in HAs is a continuous map which is also a group 
homomorphism. We exploit the following result ibid, (13.14): if f, 9 : X -> Y 
are continuous maps of topological spaces with Y Hausdorff, and f and 9 
agree on a dense subset of X, then f = g. 

Now the rational numbers Ql and the real numbers JR are both objects of 
HAs with their customary additions and topologies, and moreover Ql is dense 
in R The result quoted above shows that the inclusion map ~ : Ql -> JR is 
an epimorphism in HAs, although not a surjection. Note that ~ is also a 
monomorphism and, of course, an injection. 

In particular, we have an example of a morphism which is both a monomor­
phism and an epimorphism, but not an isomorphism. 

The quotient group JRjQl can be given a topology (indiscrete) so that it 
becomes the cokernel of ~ in the category T opAs of all topological abelian 
groups, but it is not Hausdorff (see [Higgins 1974] Chapter II, §3 and Propo­
sition 5). 

We also note that HAs is a preadditive subcategory of T opAs but that ~ 
is no longer an epimorphism in T opAs. 

2.2.7 Kernel and cokernel 

Before we define short exact sequences in a preadditive category, we record 
the next, easily verified lemma, which shows that the concepts of kernel and 
cokernel in a preadditive category correspond to their counterparts in As via 
the morphism functors. 

2.2.8 Lemma 

Let a : A -> B be a morphism in a preadditive category C. Then the 
following assertions hold. 

(i) Ii: K -> A is a kernel for a if and only if, for any L in C, 

Ii* a* 0--> Morc(L, K) -----t) Morc(L, A) -----4) Morc(L, B) 

is an exact sequence of abelian groups. Thus, for any choice of Ker a, 

Morc(L, Ker a) = Ker Morc(L, a). 

(Note that a* is an alternative notation for Morc(L,a).) 
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(ii) "(: B ---+ C is a cokernel for a if and only if, for any X in C , 

"(* a* 
0----+ Morc(C, X) --~) Morc(B, X) ----+) Morc(A, X) 

is an exact sequence of abelian groups. Thus, for any choice of Cok a, 

Morc(Coka, X) = Ker More (a, X), 

(where a* is an alternative notation for More(a,X)). D 

An immediate consequence is that a morphism is a monomorphism precisely 
when its kernel is the zero object, and an epimorphism precisely when its 
cokernel is the zero object. 

2.2.9 Short exact sequences 
A short exact sequence in a preadditive category is a sequence 

(3 
o ----+ A --~) B --~) C ----+ 0 

in which a is a kernel for {3 and {3 is a cokernel for a. Thus, in particular, a 
is a monomorphism and {3 is an epimorphism. 

An easy exercise is that {3 is an isomorphism if and only if A is the zero 
object, while a is an isomorphism just when C = O. 

The distinction between an epimorphism and a surjection means that some 
caution must be exercised when working with short exact sequences in a gen­
eral preadditive category. The unexpected phenomena that can arise are 
illustrated by the inclusion map L : Q ---+ JR. 

As we noted in (2.2.6), L is both an epimorphism and monomorphism in 
the category 1tAB of Hausdorff abelian topological groups, but it is not an 
isomorphism. Thus the sequence 

is not short exact. In fact, Q cannot be the kernel of JR ---+ 0 because the 
identity map on JR cannot be factored through Q. 

2.2.10 Projective and injective objects 
There are three equivalent definitions for a projective object in an arbitrary 
preadditive category C, which generalize well-known characterizations of pro­
jective modules. 
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Proj 1. The generalization of our basic definition for modules (1.1.7): an 
object P of C is projective (in C) if every short exact sequence 

o --+ L --+ M -----t) P --+ 0 

in C splits at P, meaning that there exists (J : P --+ M in C with 
7r(J = idp . 

Proj 2. P is projective if and only if, whenever the row is exact, the following 
diagram can be completed (so as to provide a commuting triangle): 

P 

f3 ...... j I 
/ 

Y ) Z ) 0 
"7 

(The equivalence of Proj 1 and Proj 2 for modules is shown in Theo­
rem 2.5.4 of [BK: IRM].) 

Proj 3. P is projective if and only if the sequence of abelian groups 

~* "7* 0--+ Mor(P,X) ---+) Mor(P, Y) ---+) Mor(P,Z) --+ 0 

is exact for every short exact sequence 

~ "7 o --+ X -----t) Y -----t) Z --+ 0 

in C (see (2.1.8) for the module version). 

The proof of the fact that these definitions are mutually equivalent is much 
the same as that for modules, and is left to the reader. Likewise, the reader 
should have no problem in formulating and verifying the equivalence of three 
definitions for an injective object. 

However, there is no reason why a preadditive category should contain any 
nontrivial projective or injective object. For example, the category FAB of 
finite abelian groups (which can also be described as the category of finitely 
generated torsion Z-modules or the category of Artinian Z-modules) has no 
nonzero projectives - this can be seen as in Exercise 2.2.10 below. 

More seriously, it may happen that a projective object in a subcategory is 
not projective in a larger category. For an illustration, consider the category 
ASS£: of Artinian semisimple Z-modules. Such a module is a finite sum of 
irreducible Z-modules, that is, abelian groups Z/pZ of prime order for various 
primes p (see (2.3.20 - F) below). A fundamental result, the Artinian Splitting 

https://doi.org/10.1017/9780511608667.003 Published online by Cambridge University Press

https://doi.org/10.1017/9780511608667.003


2.2 ADDITIVE CATEGORIES 91 

Theoremt ([BK: IRM] (4.1.17)) tells us that, for any module M in ASSz, any 
submodule or quotient module of M must be a direct summand, and so every 
module in ASSz is both projective and injective as an object of that category. 
In contrast, no such (nonzero) module can be projective or injective in the 
category F AB. 

Although the concept of exactness was introduced in [Hurewicz 1941], in the 
context of homology groups of topological spaces, the term 'exact sequence' 
did not appear until [Kelley & Pitcher 1947]. The crucial role of exact se­
quences in contemporary module theory and homology theory is evident from 
almost any modern text on these subjects. 

2.2.11 Additive categories 
As we remarked in (1.4.10), the direct sum M' EEl Mil of two modules M' and 
Mil is characterized up to isomorphism by the existence of homomorphisms 

0"' : M' --+ M, 0"" : Mil --+ M, 7r' : M --+ M' and 7r" : M --+ Mil 

satisfying the relations 

These relations make sense in any preadditive category C, and so we may 
define the direct sum of objects M' and Mil of C to be an object M of C which 
satisfies these relations. However, a preadditive category need not contain the 
direct sum of a pair of objects; an easy example is given by P'READD(Z) in 
AB. These observations lead to the following definition. 

A category C is said to be additive if it is a preadditive category satisfying 
the next condition. 

Ad 4. Any two objects of C have a direct sum in C. 

As in the case of modules (the same arguments apply), such a direct sum 
is both a product and a coproduct and so it is unique to within unique iso­
morphism. The notation M' EEl Mil is used to indicate any convenient choice 
of the direct sum ~ in most contexts, there is an obvious candidate for this 
choice. 

It can be shown (Exercise 2.2.6) that a product in a preadditive category 
must be a direct sum, as must be a coproduct. Conversely, when products 
and coproducts exist and they are the same as direct sums in a category C 
satisfying Ad 3, then Ad 1 and Ad 2 hold, so that C is additive. (See [Gabriel 
1962] for details.) 

t The Artinian Splitting Theorem holds over any ring R. 
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We also note in passing that when the direct sum M' EB M" exists, so also 
does M" EB M', which is isomorphic to M' EB M" via a unique isomorphism. 
Thus one may speak of the direct sum of an unordered pair of objects. 

Note also that it is possible to characterize direct sums in terms of split 
exact sequences, again mimicking the result for modules. 

A short exact sequence 

(T' 7f' 
o ----> M' ----t) M ----+) M" ----> 0 

in a preadditive category is split if there are morphisms (T" and 7f" as above. 
As with modules, it is enough to know that one of the splitting morphisms (T" 
or 7f" exists, since the other can then be constructed, and we then find that 
M ~ M' EBM". 

2.2.12 Additive subcategories 
A subcategory V of an additive category C is an additive subcategory if, as 
well as being a preadditive subcategory, V is additive. 

Let M', M" be a pair of objects in V. Any direct sum of M' and M" in 
V is necessarily their direct sum in C also, but the favoured choice M' EB M" 
of the direct sum in C need not itself be an object of V. However, there is 
to be some choice, necessarily isomorphic to this, which, together with its 
associated inclusions and projections (T', (T", 7f', 7f", does lie in V. 

As with preadditive categories, we can define a minimal additive subcat­
egory AVD(X) of an additive category C in terms of a nonzero object X of 
C by taking AVD(X) to be the full subcategory of C with objects the finite 
direct sums xn, n ~ 1, together with the zero object. 

2.2.13 Examples 
Before developing the theory of additive categories, we give some more exam­
ples. 

All the module categories introduced in (1.1.9), namely, PnOJR, FnEER, 
MR, FR and PR, are additive subcategories of MODR; the verifications rely 
on simple facts about direct sums which are mostly immediate consequences 
of the definitions. For projective modules, we use the fact that M' EB M" is 
projective if and only if both summands are projective ([BK: IRM] Corollary 
2.5.6); and for free modules, we note that the zero module is free on the empty 
set, and that if M and N are free on sets X and Y respectively, then M EBN is 
isomorphic to the free module on the disjoint union XuY ([BK: IRM] Exercise 
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2.1.8). Also, by Lemma 2.5.7 of [BK: IRMJ, M' EB Mil is finitely generated if 
and only if its summands are finitely generated, which equivalence is easy to 
check directly. 

We record the results as follows. 

2.2.14 Lemma 

The categories PnOJR, FnEER, MR, FR and PR are additive subcategories 
of MODR· If S is a subring of R, then MODR is an additive subcategory of 
MODs. D 

Next, we consider product categories. 

2.2.15 Lemma 
Let C and V be additive categories. Then C x V is an additive category. 

Proof 
The sum of morphisms (a, {3) and (a', {3') from (G, D) to (G', D') in C x V 

is given componentwise: 

(a, {3) + (a', {3') = (a + a', {3 + {3'). 

In effect, there is an identity 

Morc(G, G') x Morv(D, D') = Morcxv((G, D), (G', D')) 

which gives us the abelian group structure that we require in C x V. Note 
that the zero is the pair (0,0) and the direct sum is 

(G, D) EB (G', D') = (G EB G', DEB D'). D 

2.2.16 Morphism categories 

Equally straightforward is the extension of the above result to morphism cate­
gories. Let C be an additive category. If (a, {3) and (a', {3') are both morphisms 
from (G,D,,,() to (G',D',"(') in MORc, then so is their sum. Composition of 
morphisms is distributive over addition because this is already true in the 
product category C x C, and the zero is (0,0, ida). 

The direct sum in MORc is given by 

(G, D, "() EB (G', D', "(') = (G EB G', D EB D', "( EB "('), 
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where 

7rc and 7rc' being the split epimorphisms associated with C EB C', and aD 

and aD' being the split monomorphisms associated with DEB D'. In a module 
category, this becomes the familiar formula 

(t EB /,')(e, e') = (te, /,' e') for all c E C, c' E C'. 

We record the consequences of our discussion. 

2.2.17 Lemma 
Suppose that C is an additive category. Then the categories MORc, ENDC, 

Isoc and AuTC are additive categories. D 

2.2.18 Additive functors 

Let C and V be additive categories. For each pair of objects C', C in C, the 
set Morc(C', C) is an additive group, as is Morv(D',D) for each pair D', D 
in V. In this circumstance, it is natural to consider functors between C and 
V that respect the additive structures on the sets of morphisms. 

A covariant functor F from C to V is said to be additive if the map 

F: More(C', C) ---+ Morv(FC',FC) 

is a group homomorphism for all objects C' and C in C: 

F(a: + f3) = Fa: + Ff3 always. 

Additive contravariant functors are defined similarly, as are additive multi­
functors on products of additive categories. 

First examples are the morphism functors themselves. For a fixed object C 
of an additive category, More( C, -) is a covariant additive functor from C to 
As and More( -, C) is a contravariant additive functor from C to As. 

It is clear that if C' is an additive subcategory of the additive category C, 
then the inclusion functor is additive. If F is an additive functor from C to 
V, then the restriction of F to C' will also be additive. 

An important property of an additive functor F : C ----+ V is that it preserves 
zero morphisms, zero objects and direct sums. 

2.2.19 Lemma 
Let C and V be additive categories, and let F C ----+ V be an additive 
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functor. If a is a zero morphism or object in e, then Fa is a zero morphism 
or object in V. 

Proof 
Temporarily, we indicate a zero object in e by Z to distinguish it from the 

various zero maps that we use. 

If a : C' --+ C is any zero map in e, then Fa must be the zero map from FG' 
to FC in V, since F is additive. As idz = a on Z itself, idFz = F(idz ) = a 
on FZ. Hence for a zero object Z' in V, the unique maps FZ --+ Z' and 
Z' --+ F Z are mutually inverse isomorphisms. 0 

2.2.20 Theorem 
Let e and V be additive categories and let F : e --+ V be an additive functor. 

Then for any two objects G' and G" of e, 

F(G' EB G") ~ F(G') EB F(G") in V. 

Proof 
Recall from (2.2.11) that the direct sum of the pair of objects G' and G" 

in e can be characterized as an object G of e for which there are morphisms 

a' : G' ----+ G, a" : G" ----+ G, 7r' : G ----+ G' and 7r" : G ----+ G" 

satisfying the relations 

7r' a' = ide', 7r" a" = ide" and a' 7r' + a" 7r" = ide. 

Since F preserves sums and products, and converts identities to identities and 
zeroes to zeroes, the maps Fa', Fa", F7r' and F7r" satisfy the equations that 
show FG to be a direct sum also. 0 

2.2.21 Functor categories 
Recall from (1.3.9) that, given a small category e and an arbitrary category 
V, the functor category [e, V] has as objects the covariant functors from e to 
V, the morphisms from F to G in [e, V] comprising the set Nat(F, G) of all 
natural transformations from F to G. 

Our aim now is to show that properties of V can be carried over to [e, V] 
by making pointwise definitions; the category e can be completely arbitrary. 

The essential observation is that a set Nat(F, G) of morphisms in [e, V] is 
in fact a disjoint union of sets Morv(F(G), G(G)), one for each object G of e, 
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so that any property or condition on Nat(F, G) can be verified, or imposed, 
separately in each Morv(F(C), G(G)). 

Suppose that V is additive. If TJ and ( are in Nat(F, G), the pointwise 
definition of their sum TJ + ( in Nat(F, G) is 

(TJ + ()c = TJc + (c for all GEe, 

and the zero natural transformation 0 in Nat(F, G) is given by 

Oc = 0 : FG ----t GG. 

Thus Nat(F, G) is an abelian group for any pair of functors. 
Since V has a zero object, we can define the zero functor 

o:e----tv 
by 

O(G) = 0 for all G in e, 
which is a zero object in [e, V]. 

We can also define the direct sum of two functors F and G in [e, V] in the 
obvious way: 

(F EB G)(G) = F(G) EB G(G) for all G in e. 
To verify that this actually gives a direct sum, we again use the characteriza­
tion of direct sums in a preadditive category which we gave in (2.2.11). For 
each object G, there are morphisms 

aC : FG ----t FG EB GG, /3c: FC EB GG ----t GG, 

,C : FG EB GG ----t FG and 8c : GG ----t FG EB GG 

with 

/3cac = 0, ,c8c = 0, /3c8c = idcc, ,cac = idFc 

and 

ac,c + 8c /3c = idFCEBcc, 

which gives a set a, /3",8 of natural transformations that exhibit FEB G as a 
direct sum in [e, V]. 

Thus we have the following result. 

2.2.22 Proposition 
Let e be a small category and let V be an additive category. 

functor category [e, V] is an additive category. 
Then the 

o 
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Exercises 
2.2.1 Let D be a preadditive subcategory of the preadditive subcategory C. 

Show that EndD(X) is a subring of Endc(X) for every object X in 
D. 

Given an object X of C and a subring D of Endc(X), define a 
minimal preadditive subcategory D of C with EndD(X) = D. 

2.2.2 Given a nonzero object X of an additive category C and a subring D 
of Morc(X, X), define a minimal additive subcategory D of C with 
EndD(X) = D. 

Show that the morphisms in D can be represented as sets Mm,n(D) 
of m x n matrices over D. 

Hint. Exercise 2.1.6 of [BK: IRM] helps. 
2.2.3 There seems to be a curious asymmetry in the exact sequences of 

abelian groups obtained in (2.2.3) above, in that they begin, but 
need not end, with the zero group. Show that this is inevitable for 
the following reason. 

In a preadditive (right) category, the following statements are equiv-
alent. 

(i) 'P: X -? Y has a right inverse; 
(ii) for all LEe, Mor(L, X) ~ Mor(L, Y) -? 0 is exact; 

(iii) for all LEe, 'P* : Mor(L, X) -? Mor(L, Y) has a right inverse. 

There is an obvious dualization of the above. 
Deduce that the following are equivalent. 

(i) 'P is an isomorphism; 
(ii) Mor( -, 'P) is always an isomorphism in As; 

(iii) Mor('P, -) is always an isomorphism in As. 
2.2.4 Epimorphisms and monomorphisms in arbitrary categories 

Let C be a (right) category. A morphism 'Y : C -? D in C is defined 
to be a monomorphism if the following holds. 

If {J, {J' : B -? C are two morphisms with 'Y{J = 'Y{J', then {J = {J'. 
Verify that a monomorphism in a preadditive category is again a 

monomorphism in this sense. Observe too that if'Y has a left inverse, 
then 'Y is a monomorphism. 

Give a definition of an epimorphism by duality, that is, 'Y is an 
epimorphism in C if and only if 'Y0P is a monomorphism in coP. 

Verify directly that the two definitions of epimorphism coincide in 
a preadditive category, and that any morphism with a right inverse 
is an epimorphism. 
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Show that the inclusion map L : Z ~ Q is an epimorphism in the 
(nonadditive) category RING of rings with identity. 

2.2.5 Show that C EB 0 ~ C for any object C of a preadditive category C. 
2.2.6 Let C, C f and C" be objects of a preadditive category C. Verify that 

the following statements are equivalent, as asserted in (2.2.11). 

(i) C is the product of C f and C". 
(ii) C is the coproduct of C f and C". 

(iii) C is the direct sum of C f and C". 

Generalize this result to an arbitrary finite set of objects in C. 
2.2.7 Let C be a preadditive category, with a : A ~ B, (3 : B ~ C and 

, : C ~ D composable morphisms in C. 
Show that if (3 and, are epimorphisms, then ,(3 is an epimorphism, 

and if ,(3 is an epimorphism, then, is an epimorphism. 

Prove also that if a and (3 are monomorphisms, so is (3a, and if (3a 
is a monomorphism, so also is a. 

Give counterexamples to the claims that if ,(3 is an epimorphism, 
then (3 is an epimorphism, and if (3a is a monomorphism, so also is 
(3. 

2.2.8 Let AI' ... ' Ak be objects of an additive category A. Show that Al EB 
... EB Ak is a projective object in A if and only AI, ... ,Ak are each 
projective objects in A. (This generalizes a well-known result for 
modules (Theorem 2.5.5 of [BK: IRM]).) 

2.2.9 Projectives depend on the category 

Generalize (2.2.10) to show that, for any ring R, every module in 
ASSR is projective as an object in that category. 

Suppose that R is right Artinian but not semisimple. Find a module 
in ASSR which is not projective in MODR. 

Hint. [BK: IRM], section 4.3 is relevant, particularly Exercise 4.3.7. 

2.2.10 A category without projectives 

Let F As be the category of finite abelian groups. It is well known 
that any finite abelian group is the direct sum of finite cyclic groups 
(see Theorem 6.3.24 of [BK: IRM], for example). So if FAs contains a 
nonzero projective, there must be a nontrivial finite cyclic projective, 
by Exercise 2.2.8 above. However, this is easily seen to be impossible 
- consider the natural surjection of Zja2Z to ZjaZ for any positive 
integer a. 

2.2.11 The opposite category 

Show that if C is an additive category, so likewise is its opposite 
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category COP, where addition of morphisms is given by a OP + {30P = 
(a + (3)OP as in (2.2.5). 

Show that cop is a projective object in cop if and only if C is an 
injective object in C, and vice-versa. 

Give an example of an additive category which contains nontrivial 
injective objects but only the zero projective object. 

2.2.12 Just as a monoid can be regarded as the same thing as a category 
with one object (Exercise 1.1.4), a ring may be taken to be the same 
as a pre additive category with one nonzero object. Viewing a ring R 
in this way, show that right R-modules correspond to contravariant, 
cochiral additive functors from R to MODZ, while left R-modules 
correspond to covariant, contrachiral additive functors from R to 
ZMOD. Show also that R-module homomorphisms correspond to nat­
ural transformations. 

2.3 ABELIAN CATEGORIES 

For the next stage in our examination of categories whose objects in some 
way resemble modules, we consider abelian categories. Such categories must 
contain the kernel and cokernel of each of their morphisms, and most con­
structions that can be carried out in the full module categories MODR are 
reproducible in an abelian category. Indeed, there are Embedding Theorems, 
which show that an arbitrary abelian category can be realized as a subcat­
egory of MODR for some ring R. However, an abelian category may lack 
nontrivial examples of projective or injective objects. 

We show that the various morphism categories associated to abelian cate­
gories are again abelian, as are the functor and product categories. We also 
introduce the idea of a direct sum of categories, which leads to an interesting 
categorical interpretation of the module theory of a Dedekind domain. 

2.3.1 The definition 

Although we have defined kernels and cokernels in an arbitrary category with 
zero object, and thus in an additive category, a morphism in an additive 
category need not have a kernel or cokernel in that category. Indeed, the 
category P A[e] of finitely generated projective modules over a ring of dual 
numbers A[E] (where E2 = 0) fails to contain either the kernel or the cokernel 
of the multiplication homomorphism E : A[E] -t A[E], since each is isomorphic 
to A, which is not projective over A[E]. 
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The requirement that a category should contain kernels and cokernels leads 
to the next definition. 

Let C be an additive category. Then C is an abelian category if the following 
conditions are satisfied. 

Ab 1. If A: L ---- M is a morphism in C, then C contains a kernel (Ker A, 1\:) 
and a cokernel (Cok A, X) of A. (This means not only that the objects 
Ker A and Cok A are in C, but also that the morphisms 

I\: : Ker A -----t L and X: M -----t Cok A 

belong to C.) 

Ab 2. If I\: : K ---- L is a monomorphism in C, then (K, 1\:) is a kernel of some 
morphism A : L ---- M in C. 

Ab 2°P . If X : M ---- C is an epimorphism in C, then (C, X) is a cokernel of 
some morphism A : L ---- M in C. 

Statement Ab 2 is often phrased as 'every monomorphism is normal'. Al­
ternative axiom sets abound in the literature. For example, see [Freyd 1964] 
or [Herrlich & Strecker 1979] for the following. 

2.3.2 Theorem 

Suppose that C is an additive category satisfying Ab 1. Then the following 
statements are equivalent. 

(i) Ab 2 and Ab ~p hold in C. 

(ii) For any morphism A : L ---- M with kernel (Ker A, 1\:) and cokernel 
(COkA,X), the morphism 

'IjJ : Cok I\: -----t Ker X 

(which exists by the universal properties of kernels and cokernels) is an 
isomorphism. 

(iii) Every morphism A: L ---- M has a unique (epi, mono) factorization; that 
is, there exists an epimorphism 10 : L ---- I and monomorphism f.-t : I ---- M 
with W = A such that, if 10' : L ---- I', f.-t' : I' ---- M is another (epi, mono) 
factorization of A, then there is a unique morphism 'IjJ : I ---- I' making 
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I 

I' 
commute; moreover, 'IjJ is an isomorphism. o 

The isomorphic objects Ker X and I of this theorem are commonly referred 
to as the image Im A of A. 

2.3.3 Module-like behaviour 
In essence, the above result tells us that the Induced Mapping Theorem ([BK: 
IRM] (1.2.11)) must hold in an abelian category. It is then possible to translate 
many general results about modules into the context of an abstract abelian 
category. For example, the Isomorphism Theorems ([BK: IRM] Exercise 1.2.2) 
can be reproduced. However, the proofs are more delicate since it is not 
possible to work with elements. Instead, the universal properties of kernels, 
cokernels, etc. must be used. Arguments of this type are developed in [Mac 
Lane 1975], Chapter IX and [Mac Lane 1971], Chapter VIII. 

On the other hand, there are some features of module categories which 
need not be reproducible in an abelian category. These usually relate to the 
existence of an object with some specific property. For instance, an abelian 
category need not contain any projective object, as is the case with the cate­
gory FAs of finite abelian groups (see Exercise 2.2.10). 

2.3.4 Example 
For an example of an additive category that satisfies axiom Ab 1 but not 
Ab 2, consider the full additive subcategory of As whose objects comprise all 
finite direct sums of the form 7!.,m EB Qn with m, n ;::: o. Here the inclusion 
monomorphism 7!., -+ Q is not a kernel. 

We now look for abelian categories of modules. The first result simplifies 
the checking in many cases of interest. (Its converse, while also true, is less 
elementary - see Exercise 2.3.8 for the details.) 
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2.3.5 Theorem 
Let R be a ring and let C be a full additive subcategory of Mew R such that, 

for any homomorphism A : L -+ M of R-modules in C, the R-modules Ker A 
and Cok A are both in C. 

Then C is abelian. 

Proof 
The R-modules Ker A and Cok A evidently satisfy the universal properties 

needed to make them the kernel and cokernel of A in C. So Ab 1 holds. 
To see that Ab 2 holds, consider a monomorphism K : K -+ L in C. As 
we remarked in (2.2.3), K is an injective mapping. Now C must also contain 
Cok K = L/Im K, and so K is the kernel of the canonical module epimorphism 
A: L -+ Lj 1m K, which is in C. The proof of Ab 2°P is similar. D 

For the next result, recall that, given a ring R, a right R-module M is 
Noetherian if every R-submodule of M is finitely generated. The ring R itself 
is right Noetherian if every right ideal of R is finitely generated. An account 
of Noetherian rings and modules is given in [BK: IRMJ, §3.1. 

2.3.6 Corollary 
Let R be a ring. Then the category MR of finitely generated R-modules is 

an additive subcategory of MODR, and MR is abelian precisely when the ring 
R is right Noetherian. 

Proof 
The sole obstruction to MR being abelian is that it might not contain 

the kernel of some homomorphism, that is, there may be a finitely generated 
module M having a submodule which is not finitely generated. By Corollary 
3.1.7 of [BK: IRMJ, this cannot happen if R is right Noetherian. In the reverse 
direction, if MR is abelian, then every ideal of R is in MR' D 

2.3.7 More examples 
The category HAs of Hausdorff abelian groups is an example of a full additive 
subcategory of MODZ which is not abelian. Observe that the cokernel (in 
T opAs) of the inclusion monomorphism Q -+ ~ does not lie in HAs. 

There are some subcategories of MOD R that are abelian for an arbitrary 
ring R. Let NOETHR denote the full subcategory of MODR whose objects are 
the Noetherian right R-modules, let A'RTR denote the full subcategory whose 
objects are the Artinian right R-modules and let ASS R be the full subcategory 
given by the Artinian semisimple modules. Each of these categories is abelian 
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since it contains any submodule or quotient module of any of its members -
see [BK: IRMJ, Proposition 3.1.2, Proposition 4.1.5 and the Artinian Splitting 
Theorem (4.1.17) respectively. We record our assertion formally. 

2.3.8 Theorem 
The categories NOETHR, AnTR and ASSR are abelian. 

By [BK: IRMJ Corollary 4.1.18, there is an inclusion of categories 

ASSR ~ AnTR 

o 

and, by the same result together with the definition of Noetherian, there are 
inclusions 

ASSR ~ NOETHR ~ MR· 

In general, AnTR is not a subcategory of N OETHR. An example (due to P. 
M. Cohn) of a cyclic Artinian, non-Noetherian module is exhibited in Exercise 
4.1. 7 of [BK: IRMJ. 

Next, we give the conditions for equality between these various categories. 

2.3.9 Proposition 

(i) N OETHR = MR if and only if R is right Noetherian. 
(ii) AUR = MR if and only if R is right Artinian. 

(iii) ASS R = MR if and only if R is an Artinian semisimple ring (in which 
case ASS R = PR, the category of finitely generated projective right R­
modules). 

(iv) Suppose that R is right Artinian. Then the ring Rj rad(R) is Artinian 
semisimple, where rad(R) is the Jacobson radical, and 

Proof 
(i) Since R itself is in M R , the equality of categories makes R right Noe­
therian. Conversely, if R is right Noetherian then Rk is Noetherian for any 
natural number k and hence any finitely generated module M is also Noe­
therian - see [BK: IRMJ (3.1.4). 
(ii) The argument is similar to the proof of (i); we use the fact that if R is 
right Artinian, then so is any finitely generated right R-module ([BK: IRM] 
(4.1. 7)). 
(iii) Suppose that R is an Artinian semisimple ring. By the Wedderburn­
Artin Theorem ([BK: IRMJ (4.2.3)), R is a direct product of matrix rings over 
division rings, and so the categories are equal since every finitely generated 
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R-module is both semisimple and projective ([BK: IRM] (4.2.6)). Conversely, 
if the equalities hold, then R is Artinian semisimple by definition. 
(iv) By [BK: IRM] (4.3.15), R/ rad(R) is Artinian semisimple, and, by 
[BK: IRM] (4.3.16), a right R-module M is semisimple if and only if M . 
rad(R) = O. Thus a semisimple R-module can be regarded as an R/ rad(R)­
module by the scalar multiplication 

m . r = m . r for r E R, 

and conversely, this rule can be used to make any R/ rad(R)-module into a 
semisimple R-module. 0 

2.3.10 Product and morphism categories 
Next, we show that product and morphism categories of abelian categories 
are also abelian. As we already know that such categories are additive, it 
suffices to verify the axioms Ab 1, Ab 2 and Ab 2°P , which will follow at once 
from explicit descriptions of kernels, cokernels and so forth. 

Let C and D be abelian categories. A morphism in C x D is a pair 

(a,{3): (C,D) ----> (C',D'), 

with a a morphism in C and (3 a morphism in D. Thus 

Morcxv((C, D), (C', D')) = Morc(C, G') x Morv(D, D'), 

and any assertion about a morphism (a, (3) in C x D can be verified on its 
components a, {3 separately. Thus (a, (3) is a monomorphism precisely when 
a and {3 are both monomorphisms, and likewise for epimorphisms. 

The kernel of (a, (3) is ((Ker a, Ker (3), (K, 'l/J)), where (Ker a, K) and (Ker (3, 'l/J) 
are the respective kernels of a and {3, and the cokernel is ((Cok a, Cok (3), (X, ()). 
In practice, we omit the maps K and 'l/J, and write 

Ker( a, a') = (Ker a, Ker a'), 

and similarly for the cokernel. 
The image is the paif Im(a,{3) = (Ima, Im(3), with the obvious implicit 

morphisms. We summarize as follows. 

2.3.11 Proposition 
Suppose that C and D are abelian categories. Then the category C x D is 

also abelian. 
In particular, a sequence 

o ----> (G', D') ----> (G, D) ----> (Gil, D") ----> 0 
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in C x D is a short exact sequence if and only both component sequences 

o -. G' -. G -. G" -. 0 

and 
O-.D'-. D-. D"-.O 

are short exact sequences. 

105 

o 
Similar arguments are used for the morphism categories attached to the 

category C. In the morphism category MOR C, the kernel of 

(o:,{3): (G,D,,) -. (G',D',8) 

is (Ker 0:, Ker {3, "I), where "I is the restriction of, to Ker 0:, and the cokernel 
is (Cok 0:, Cok {3, 8), where 8 is induced by 8. Images in M 0 R C are defined in 
the expected way. The result is as follows. 

2.3.12 Proposition 
Let C be an abelian category. Then the categories MORC, ENDC, IsoC and 

AuT C are also abelian. 
In particular, a sequence 

0-. (G',D',,') -. (G,D,,) -. (G",D",,") -. 0 

in MOR C is a short exact sequence if and only both component sequences 

o -. G' -. G -. G" -. 0 

and 
0-. D' -. D -. D" -. 0 

are short exact sequences in C. 
Note that in END C and AuT C, the two component sequences are identical. 

o 

2.3.13 Module categories 
Let Rand S be rings. As we saw in (1.3.16), the product category is equivalent 
to the category MODRxs, since every object (M, N) in the product category 
can be regarded as a module over R x S and every morphism is an R x 
S-module homomorphism (1.1.12). Thus there are two ways in which, for 
instance, a kernel can be defined in MODR x MODS, either by using the 
abstract machinery or by taking an equivalent object in MODRxs, 
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The reader should not have much difficulty in verifying that these ap­
proaches give essentially the same objects, to within isomorphisms. 

The kernels and cokernels in the (homo)morphism categories MOR(MoDR), 
£ND(MoDR), Iso(MoDR) and AuT(MoDR) are those in MODRxR. 

2.3.14 Functor categories 
We can also give pointwise descriptions of kernels, cokernels, and so on, in 
a functor category [C, V] provided the appropriate objects exist in V. For 
simplicity we suppose that V is abelian. 

For example, the kernel (Ker1], "') of a morphism 1] from F to G, that is, of 
a natural transformation 1] E Nat(F, G), is obtained as follows. 

For each object G of C, write (Ker1]e, ",0) for the kernel of 1]e : FG -> GG. 
Then the object Ker 1] in [C, V] is the functor from C to V given by 

(Ker 1]) (G) = Ker( 1]e : FG ------+ GG) 

for each object G of C. 
To see that Ker 1] is a functor, note that a morphism 0: : G' -> G gives a 

commutative diagram 

FG' 
1]e' 

GG' 

FG 
1]e 

GG 
which, together with the definition of a kernel as a universal object (1.4.15), 
shows that there is an induced morphism 

(Ker1])(O:) : (Ker1])(G') ------+ (Ker1])(G). 

There is a natural transformation 

'" : Ker 1] ------+ F 

given by 

"'e : (Ker 1]) (G) ------+ F (G), 

"'e as above, and it is straightforward to verify that the pair (Ker 1], "') is a 
kernel for 1]. 

Similarly, cokernels, monomorphisms, epimorphisms, projective and injec­
tive objects in [C, V] are given pointwise by the corresponding objects or 
morphisms in V. 

We record the result for future reference. 
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2.3.15 Theorem 
Let C be a small category and let V be an abelian category. Then the functor 

category [C, V] is an abelian category. D 

2.3.16 Direct sums of categories 
Since we are able to define the direct sum of two, or more, functors between 
additive categories, we can interpret the direct product of two additive cate­
gories as a direct sum, because we can mimic the description of a direct sum 
of modules in terms of injections and projections (2.2.11). 

Throughout the sequel we demand that an equivalence between additive 
categories must be given by an additive functor. 

2.3.17 Theorem 
Let C, C1 and C2 be additive categories. Then the following statements are 

equivalent. 

(i) There is an equivalence of additive categories 

(ii) There are additive functors 

h : C1 ---+ C, lz: C2 ---+ C, PI: C ---+ C1 , P2 : C ---+ C2 

such that there are natural isomorphisms 

and 

and also 

(I and P stand for inclusion and projection.) 

Proof 
Suppose that (i) holds, and let F : C --t C1 X C2 and G : C1 X C2 --t C be the 

(additive) functors that give the equivalence. If C is an object of C, we have 
FC = (C1 , C2 ) for objects C1 of C1 and C2 of C2 . Similarly, for a morphism 0:: 

we have F 0:: = (0::1, 0::2). Define PI C = C 1 and P10:: = 0::1, and likewise for P2 . 

For an object C1 and morphism 0::1 in C1 , let hC1 = G(C1 , 0) and hO::l = 
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G(et1, 0), and similarly for the other variable. The assertion follows, on noting 
that 

(C1,C2) ~ (C1,0) EB (0,C2) inC1 x C2. 

Conversely, if (ii) holds, define FC = (P1C,P2C) and G(C1,C2) = hC1 EB 
hC2 , and similarly for morphisms. 0 

For completeness, we record the extension of the above result to a direct 
product of any finite set of additive categories. The result is analogous to 
that for modules (see [BK: IRM], (2.1.7)). 

2.3.18 Corollary 
Let C and C1 , ... , Cn be additive categories. Then the following are equiva­

lent. 

(i) There is an equivalence of additive categories 

C ':::' C1 X ... X Cn-

(ii) There are additive functors Ii : Ci -t C and Pi : C -t Ci , for i = 1, ... , n, 
with natural isomorphisms 

and 

P;li ':::' Ide; for all i, 

and further 

o 

2.3.19 Infinite direct sums of cate90ries 

Since an additive category has a zero object, it is sensible to speak of the 
direct sum EB A C>. of an infinite set {C >. I A E A} of categories, where A is an 
ordered set. The objects of the direct sum are all sequences of the form 

and a morphism etA : C~ -t CA is a sequence (et>. : C f -t C>.) with each et>. a 
morphism in C>.. 

It is straightforward to verify that EBAC>, is again an additive category 
under the usual componentwise definitions. Thus the zero object is OA = (0), 
and the direct sum in EB A C>. is given by 

Cf. EB C~ = (C~ EB C~). 
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The reader is invited to characterize infinite direct sums in terms of inclusion 
and projection functors. 

2.3.20 Dedekind domains: a review 
Some interesting direct sum decompositions of categories arise from the struc­
ture theory of modules over a Dedekind domain. As we use this structure the­
ory in several places in this text, we turn aside to review its basic definitions 
and results, which are developed in detail in Chapters 5 and 6 of [BK: IRM]. 

We start with some ideal theory. Let 0 be an arbitrary commutative do­
main with field of fractions K. A fractional ideal of 0 is a finitely generated 
nonzero O-submodule a of K. If b is also a fractional ideal of 0, so is their 
product 

A fractional ideal a is invertible if 

ab = 0 

for some b. 
Our definition of a Dedekind domain ([BK: IRM] (5.1.10)) is that it is a 

commutative domain 0 all of whose fractional ideals are invertible. It can then 
be shown that 0 is a Noetherian ring ([BK: IRM] Exercise 5.1.2). Clearly, 
the fractional ideals of a Dedekind domain form a group Frac(O), and the set 
of nonzero principal ideals Pr(O) is a subgroup of Frac(O). The ideal class 
group of 0 is the quotient group 

Cl(O) = Frac(O)/Pr(O). 

The image of a in Cl( 0) is written {a}. 
It is obvious that a commutative principal ideal domain is the same thing 

as a Dedekind domain with trivial ideal class group. 
We record [BK: IRM] (5.1.19). 

A The Unique Factorization Theorem for Ideals 
Let a be a fractional ideal of a Dedekind domain O. Then there is a 

set of distinct nonzero prime ideals PI, ... , Pk and a set of nonzero integers 
nI, ... , nk such that 

The prime ideals are uniquely determined apart from the order in which they 
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are written, and the exponents are uniquely determined once an order has been 
fixed. 0 

Let 0 again be an arbitrary commutative domain, and let M be an 0-
module. The torsion submodule T(M) is 

T(M) = {m E M I mx = 0 for some x E 0, xi- O}. 

We say that M is a torsion module if M = T(M) and that M is torsion-free 
if T(M) = O. (These definitions anticipate the more general definitions that 
will be made in section 6.2.) 

Here are the fundamental results for projective modules over a Dedekind 
domain. 

B Theorem 
Let 0 be a Dedekind domain and let M be a finitely generated O-module. 

Then M is projective if and only if M is torsion-free (see ([BK: IRMJ (6.3.4)).0 

C Theorem 
Let 0 be a Dedekind domain and let M be a finitely generated projective 

O-module. Then 

for some fractional ideals aI, ... , ar of 0 ([BK: IRMJ (6.1.2)). o 
The next result gives the criterion for two projective modules to be isomor-

phic ([BK: IRMJ (6.1.6)). 

D Steinitz' Theorem 
Let P ~ a1 EB ... EB ar be a projective module over a Dedekind domain O. 

Then 

If Q ~ b1 EB ... EB bs is also a projective O-module, then the following 
statements are equivalent. 

(i) P~Q; 
(ii) r=s and{a1···ar}={b1···bs} inCI(O). o 

The integer r is called the rank of P and the ideal class {a1 ... ar} is called 
the ideal class of P. A projective module is said to be in standard form if 
P = or-1 EB a. 

The next result is immediate from the observation that M/T(M) is torsion­
free. 
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E Corollary 

Let M be a finitely generated module over a Dedekind domain O. Then 

M ~ T(M) EB M/T(M) 

with M /T(M) projective. o 
To complete the picture, we describe the structure of torsion modules over a 

Dedekind domain O. A finitely generated torsion O-module M has annihilator 

Ann(M) = {x E 0 I mx = 0 for all mE M}, 

which is a nonzero ideal of O. If Ann(M) = pn for some nonzero prime ideal 
I' of 0 and natural number n, then M is said to be p-primary. 

Since 0 is Noetherian, any set of submodules of a finitely generated module 
M has maximal members, each of which is finitely generated ([BK: IRMJ, 
(3.1.6)). However, the sum of any two p-primary submodules of M is again 
p-primary, so that M has a unique maximal p-primary submodule, Tp(M). 
The submodule Tp(M) is the p-primary component of M; it is again finitely 
generated. 

Then we have the following result ([BK: IRMJ (6.3.15), (6.3.20)). 

F The Primary Decomposition Theorem 

Let M be a finitely generated torsion module over a Dedekind domain O. 
Then: 

(i) there is a direct sum decomposition 

where almost all (that is, all except a finite number) of the p-primary 
components of M are zero; 

(ii) for each prime ideal I' of 0, 

with 8(1',1) ::; ... ::; 8(1', ep) and ep ::::: 0; 

(iii) the collection of integers 8(1',1), ... ,8(1', ep), where I' ranges over all the 
nonzero prime ideals of 0, is uniquely determined by M and in turn 
determines M to within isomorphism. o 
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2.3.21 Module categories over Dedekind domains 
We can now give the promised direct sum decompositions of categories that 
arise from the structure theory of modules over a Dedekind domain V. 

Since V is a Noetherian ring, any finitely generated (right) V-module M is 
also Noetherian, and in particular, any ascending chain of submodules of M 
has a maximal member, which is again finitely generated ([BK: IRM] (3.1.6)). 
Thus the category Mo of finitely generated (right) V-modules is abelian 
(2.3.6). 

Let To be the full subcategory of Mo whose objects are all the finitely 
generated torsion V-modules. Since the direct sum of two modules belonging 
to To is again a module in To, we see that To is an additive subcategory of 
Mo. As a submodule or quotient module of a module in To again belongs to 
To, the kernel and cokernel of a homomorphism in To is also in To, so that 
To is an abelian category (2.3.5). 

Write TFo for the category of finitely generated torsion-free (right) V­
modules. By (2.3.20 - B), TFo is the same as Po, the category of finitely 
generated projective V-modules. 

Let M and N be finitely generated V-modules. Clearly, an V-module 
homomorphism oX : M -> N induces a homomorphism T(oX) : T(M) -> T(N). 
Thus we have a functor 

T : Mo ----> To. 

There is also a functor F : Mo -> Po, which sends M to M/T(M). 
Now, any module M has a direct sum decomposition M = T(M) ffi M' with 
M' 3:' M /T( M) projective, but there is no direct sum decomposition of the 
category Mo in terms of Po and To, essentially because there is no canonical 
choice of M' - see Exercise 2.3.4. 

For each nonzero prime ideal p of V let Tj"o denote the full subcategory of 
To given by the p-primary modules. Again, Tj"o is an abelian category, and 
we have functors 

for each p. 
By (2.3.20 - F), there is a direct sum decomposition of 

To = EBPEPTj"O 

of the category To into its subcategories Tj"o. 
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2.3.22 The Embedding Theorems 

There are several results to the effect that an abstract additive or abelian 
category can be viewed as embedded as a subcategory in a concrete abelian 
category, such as As, or MODR for some ring R. 

If C is a small additive category, then C can be embedded contravariantly 
as an additive subcategory in the functor category [C, As] by associating with 
an object C the morphism functor Morc(C, -) ([Mitchell 1965], IV (2.3)). 
Since the opposite of an additive category is also additive, this result gives a 
covariant embedding of C in the additive category [COP, As]. 

This result applies also to abelian categories, and extends to show that a 
small additive or abelian category can be embedded in As (ibid. IV (2.6)), 
which result is sometimes known as the Lubkin-Heron-Freyd Representation 
Theorem, although it is also attributed to Mitchell. (The discoverers of this 
circle of results are generous with their attributions.) 

In [Pareigis 1970] (4.14) Theorem 3, we find the more refined result that, 
given a small abelian category C, there is a ring R and a covariant full faithful 
functor (1.3.13) from C to the category MODR. Anticipating the next section, 
we remark that this functor is also 'exact' in that it preserves exact sequences. 

The philosophical consequence of these results is that it suffices to verify 
any sufficiently general statement about abelian categories in the category As; 
this point of view is discussed in [Mitchell 1965], IV. However, it is usually 
more natural to work directly in a given additive or abelian category. 

2.3.23 Example: The Famous Five Lemma 

This lemmat is one of a number of useful results which hold in an abstract 
abelian category, but which are proved more readily by a 'diagram chase' in 
a module category. 

Suppose that we have a commuting diagram, with both rows exact, in an 
additive category: 

/33 

t Possibly so-named because it leads to the Smuggler's Top Theorem, a truly marvellous 
result which this footnote is unfortunately too small to contain ([Blyton 1950]). 
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Then, by embedding the category in As, we may work with elements in the 
various objects. For example: 

Suppose that "(2 and "(4 are epimorphisms, and that "(5 is a monomor­
phism. Then "(3 is also an epimorphism. 

To prove this, let Y3 E N 3 . Taking X4 E M4 with "(4X4 = (33Y3 E N 4 , we 
have 

So Y3 E 1m "(3 as required. 
With slightly less rigmarole, one can prove the dual statement for "(3 to be 

a monomorphism. In combination, these diagram chases yield the following 
highly useful result. 

If ''(1) "(2, "(4 and "(5 are isomorphisms, then so also is "(3· 

Other, less widely used, diagram chase theorems to be found in the litera­
ture have such evocative names as the Snake Lemma, the Horseshoe Lemma, 
the Windmill Lemma, the 3 x 3 Lemma, the Nine Lemma, etc. 

Exercises 

2.3.1 Show that the opposite category of an abelian category is also abelian. 

2.3.2 Let a: L ----+ M and (3 : M ----+ N be morphisms in an abelian category. 
Show (for example, by (2.3.2)), that the following statements are 
equivalent. 

(i) 0 ----+ L ~ M ~ N ----+ 0 is a short exact sequence; 

(ii) a is a monomorphism and (3 = Coka; 

(iii) (3 is an epimorphism and a = Ker (3. 

Recall that our example 0 ----+ Q ----+ lR. ----+ 0 ----+ 0 in 'HAs shows that 
(ii) need not imply (i) when the category is additive but not abelian. 

2.3.3 Show that in an abelian category C any morphism a : L ----+ M gives 
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rise to a commuting diagram of the following kind. 
/'\, T 

0 ----+ K L I ----+ 0 

ja j e 
X II 

0 +----- N E M I' +----- 0 

Here the horizontal sequences are both short exact, e is an isomor­
phism, and /'\, = Ker a and X = Cok a. Thus I = Cok Ker a is the 
image Ima of a. 

Generalizing (2.1.2) from module categories to arbitrary abelian 
categories, we say that a sequence 

ai 
... ---t Ai- I ------+) Ai ------+) AH I ---t ... 

in C is exact at Ai if Kerai = Imai-b and exact if it is exact at 
each term Ai in the sequence. Show that a short exact sequence (as 
defined in (2.2.7)) is an exact five-term sequence which begins and 
ends in the zero object 0 of C. 

2.3.4 Suppose that an additive category C is the direct sum of its subcat­
egories CI and C2 , and that PI, P2 are the projection functors as in 
(2.3.17). Show that for any pair of objects M, N of C, there is an 
isomorphism of abelian groups 

which is natural in each term M, N. 
Show that, for any nonzero integer a, 

Homz(Z, Z/aZ) ~ Z/aZ 

and deduce that Mz is not the direct sum of Tz and TFz - see 
(2.3.21). 

2.3.5 Let {C>. I >. E A} be a set of categories, where the index set A may be 
infinite. Show that if each C>. is additive (or abelian), then the direct 
product TIA C>. (1.1.13) is again additive (or abelian). 

Describe the projective objects in the direct product TIA C>. and 
direct sum EB A C>. - see (2.3.19). 

2.3.6 Let C be an abelian category. Show that a pull-back in C can be 
obtained as the kernel of a suitably defined morphism, and that a 
push-out can be obtained as a cokernel. 

Deduce that C contains the pull-back of any pull-back diagram of 
objects and morphisms in C and likewise for push-outs. 
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2.3.7 Let C be a preadditive category. Show that if C contains all possible 
pull-backs and push-outs of its objects and morphisms, then C is 
abelian. 

2.3.8 Here, for a ring T and T-module homomorphism >., we denote by 
KerT >. and CokT >. the kernel and cokernel of >. in the category 

MODT· 

By the Embedding Theorems (2.3.22), given an abelian category 
C, there is a ring S and embedding of C in MODS such that for any 
morphism>. in C both Kers>' and Coks >' lie in C. Deduce that if 
C is also embedded in MODR for another ring R, then KerR >. ~ 
Kers>' and CokR >. ~ Coks >' as abelian groups, and hence KerR >. 
and CokR >.lie in C (at least to within a canonical isomorphism). This 
proves the converse to (2.3.5). 

2.3.9 Let C be a full subcategory of MODR containing the zero module. 
Show that the following are equivalent. 

(a) C is abelian. 

(b) For any short exact sequence of right R-modules 

a f3 
0-----+ M' --~) M --~) Mil -----+ 0 

both the following hold: 

(i) if ME C, then both M' and Mil are in C, 

and 

(ii) when the sequence is split, if M' and Mil are in C, then 
MEC. 

2.3.10 Extensions depend on the category 

Generalizing (2.3.5), we may define an abelian subcategory C of an 
abelian category A to be an additive subcategory with the further 
property that for any morphism 'Y : C ----+ D in C, then the kernel and 
cokernel of'Y in A are (isomorphic to) objects in C. More precisely, 
if (K,I'\,) is a kernel for 'Y in A, then there is an object K' in C, a 
morphism 1'\,' : K' ----+ C in C and an isomorphism () : K ----+ K' (in A) 
such that I'\, = I'\,'(), and similarly for cokernels. 

Verify that an abelian subcategory is indeed abelian. 

By the discussion in (2.3.7), for any ring R, the category of Artinian 
semisimple modules ASS R is abelian. Verify that ASS R is an abelian 
subcategory of MODR. 

Now suppose that L, N lie in ASS R. By the Artinian Splitting 
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Theorem ([BK: IRM] (4.1.17)), any short exact sequence 

o ----+ L ----+ M ----+ N ----+ 0 

with term M in ASSR must be split. However, this need not be so 
when Land N are viewed as modules in MODR and M can lie outside 
ASSR. 

For an explicit example, take R = K[€], the ring of dual numbers 
over a field K. (This is the polynomial ring whose indeterminate € 

has €2 = 0.) 
Show that the Jacobson radical of R is rad(R) = €K[€] and that 

ASSR = MK, with € acting as 0 on K-spaces (see (2.3.9)(iv)). Now 
consider the exact sequence of R-modules 

o ----+ K ----+ K [€] ----+ K ----+ o. 

2.3.11 Let A be an object of an additive category C. Write aj : A --> A EEl A, 
7rj : A EEl A --> A for the usual monomorphisms and epimorphisms, 
j = 1,2. Then the diagonal map ~A : A --> A EEl A is defined by 
universality to be the unique morphism with 7rj~A = idA, j = 1,2. 
Dually, the codiagonal map 'V A : A EEl A --> A is defined to be the 
unique map such that 'V Aaj = idA, j = 1,2. 

Show that, when C is abelian, ~A : A --> A EEl A is the kernel of 
7r1 - 7r2 : A EEl A --> A, while 'V A : A EEl A --> A is the cokernel of 
al - a2 : A --> A EEl A. 

Confirm also that these definitions extend those given for modules 
in Exercise 2.1.7. 

Show too that, for morphisms 0: : A --> C and (3 : B --> D in C, 

0: EEl (3 : A EEl B ----+ C EEl D, 

as defined in (2.2.16), is the unique morphism such that 

Further, when A = Band C = D, 0: + (3 : A --> C is uniquely defined 
by 

[Pareigis 1970] 4.1 develops this line of argument to give an alter­
native treatment of additive categories. 

Finally, prove the converse of (2.2.20): if F : C --> D is a func­
tor between additive categories, which preserves finite direct sums of 
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objects, together with the corresponding monomorphisms and epi­
morphisms, then F is additive. 

2.3.12 The Three Lemma 

2.3.13 

Extend the Three Lemma ([BK: IRM] Exercise 2.4.1) from modules 
to an arbitrary abelian category A: if a : L --> M and (3 : M --> N 
are any morphisms in A, there is an induced exact sequence 

o --> Ker a --> Ker (3a --> Ker (3 --> Cok a --> Cok (3a --> Cok (3 --> O. 

The Snake Lemma 
Extend the Snake Lemma ([BK: IRM] Exercise 2.4.2) from modules 

to an arbitrary abelian category A: given a commuting diagram of 
objects and morphisms in A with both rows exact 

0 ----> M' 
,i 

M J1 M" ----> 0 

j a' 

1/' 

j a j a" 

1/ 
0 ----> N' N N" ----> 0 

construct a connecting morphism b : Ker a" --> Cok a' which fits into 
an exact sequence 

o --+ Kera' Kera Ker a" 

Coka' Coka Cok a" --+ 0 

2.4 EXACT CATEGORIES 

We now introduce a structure that plays a fundamental role in K-theory, 
namely, that of an exact category. This is an additive category C together 
with a specified class of 'admissible' exact sequences chosen from the class 
of all short exact sequences in C. The definitions, and properties, of the K­
groups K 0 (C), K 1 (C), ... depend not only on the category C but also on the 
class Ex(C). To illustrate this phenomenon, we discuss a few basic properties 
of the Grothendieck group Ko(C). We state the properties required of Ex(C) in 
two parts, one 'elementary', the other 'advanced'. The elementary properties 
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suffice for many purposes, in particular, the construction of the Grothendieck 
group. The more refined advanced properties are designed to ensure that 
Quillen's Q-construction can be carried out, as needed for a definition of 
higher K-theory. We do not discuss Quillen's construction in this text. 

Several authors have formulated definitions of a 'category with admissible 
exact sequences', sometimes from the point of view of homological algebra, 
sometimes from that of K-theory. [Mac Lane 1975], Ch. XII §4, introduces 
proper classes of exact sequences in an abelian category. Such a class satisfies 
conditions GEI-3 of (2.4.1) together with QE1, QE1°P , QE2 and QE2°P of 
(2.4.10). Other variations can be found in [Buchsbaum 1959], [Buchsbaum 
1960] and [Heller 1965]. The definition of a 'K-theoretic' exact category that 
we adopt here appears in [Quillen 1973]. 

To aid the exposition, we use the term 'G-exact' for a category which satis­
fies the elementary conditions that allow the construction of the Grothendieck 
group, and 'Q-exact' for a category satisfying Quillen's conditions. The rea­
son for these neologisms is that the term 'exact category' is already used in 
category theory with a different meaning ([Mitchell 1965], p. 18), and we feel 
it useful to preserve a distinction in an expository text. On the other hand, 
some authors of papers on K-theory use 'exact' to mean 'Q-exact' as in this 
text. 

As usual, we discuss right categories only; it is clear that everything works 
also for left categories. 

2.4.1 G-exact categories 
A G-exact category is a pair (C, Ex(C)) consisting of an additive category C 
together with a specified class Ex(C) of short exact sequences 

o ----+ M' ----+ M ----+ M" ----+ 0 

all of whose terms M', M and Mil are in C. The class Ex( C) must satisfy the 
following requirements. 

GEL Every split exact sequence in C belongs to Ex(C). 
GE2. Ex( C) is closed under isomorphism: if we have a commutative diagram 

of short exact sequences 

0 M' 
/1' 

M 
/1 Mil -----+ -----+ 0 

j~ 
1/' 

j~ j ~ 
1/ 

0 -----+ N' N Nil -----+ 0 

https://doi.org/10.1017/9780511608667.003 Published online by Cambridge University Press

https://doi.org/10.1017/9780511608667.003


120 CATEGORIES AND EXACT SEQENCES 

in which all the vertical arrows are isomorphisms in C and the top 
sequence is in Ex(C), then so also is the bottom sequence. 

GE3. Ex(C) is closed under direct sums: if 

o ----+ M' ----+ M ----+ M" ----+ 0 

and 

o ----+ N ' ----+ N ----+ N" ----+ 0 

are in Ex(C), so also is 

o ----+ M' EB N ' ----+ M EB N ----+ M" EB N" ----+ O. 

The admissible exact sequences in (C, Ex(C)) are the short exact sequences 
belonging to Ex( C). An admissible monomorphism in (C, Ex( C)) is a monomor­
phism Q: : M' --> M in C that occurs in some short exact sequence belonging to 
Ex(C), and an admissible epimorphism in (C, Ex(C)) is similarly one occurring 
in an admissible short exact sequence. Thus any admissible monomorphism 
has a cokernel, which must be an admissible epimorphism, and dually. 

In many contexts where there is a standard choice for the class Ex(C), a 
G-exact category (C, Ex( C)) is referred to simply as C. 

2.4.2 Split and repletely G-exact categories 
Given an additive category C, there are two extreme choices of Ex(C) that 
make (C, Ex(C)) into a G-exact category. 

On the one hand, we can take Ex(C) to be the class of all short exact 
sequences in C. In this case, we say that C is a repletely G-exact category. 
As we frequently wish to consider an additive category C to be a repletely 
G-exact category, we use the same symbol for both and omit Ex( C) from the 
notation. 

At the other extreme, we can take Ex( C) to be the class of all split short 
exact sequences with terms in C. By condition GEl, this is the smallest 
possible choice for Ex(C), and a series of routine verifications establishes that 
axioms GE2 and GE3 hold. In this case, we say that the category is split 
G-exact and we use the notation CEIl to indicate that we view C as a G-exact 
category in this way. 

In some categories, notably the categories PR and FR, these extremal 
choices coincide, since any short exact sequence in them must be split. 

We note next that many familiar module categories are G-exact. 

https://doi.org/10.1017/9780511608667.003 Published online by Cambridge University Press

https://doi.org/10.1017/9780511608667.003


2.4 EXACT CATEGORIES 121 

2.4.3 Theorem 
For any ring R, the following are repletely G-exact categories of right R-

modules. 

(i) MODR itself. 
(ii) PR, the category of finitely generated projective modules. 

(iii) :FR, the category of free modules of finite rank. 
(iv) AnTR, the category of Artinian modules. 
(v) NOETHR, the category of Noetherian modules. 

(vi) M R , the category of finitely generated modules. 
(vii) ASSR, the category of Artinian semisimple modules. 

The categories PR, :FR and ASSR are also split G-exact. 

Proof 
By (2.2.14), PR, :FR and MR are additive categories, and by (2.3.8), 

N OETHR, AnTR and ASSR are also additive (in fact, abelian). Assertions 
(i) to (vii) follow by trivial verifications. 

The definition of a projective module shows that any short exact sequence 
in PR, and hence in :FR, must be split, while any short exact sequence in 
ASSR is split by the Artinian Splitting Theorem ([BK: IRM] (4.1.17)). 0 

2.4.4 Relative exact categories 
We next give some illustrations of more subtle choices for C or Ex(C). 

Suppose that S is a subring of R. One can then define a G-exact category 
MR,S, the S-relative category, to be the additive category MR, but with 
Ex(MR,S) consisting of all those short exact sequences in MR that are split 
when regarded as short exact sequences of S-modules. For examples, see 
Exercise 2.4.5. 

Similarly, it is sometimes useful to consider the full subcategory 'D of MR 
whose objects are projective as S-modules; then all short exact sequences in 
'D are split over S. 

The common generalization of both these examples is given by an additive 
subcategory C of an additive category A (Ms in the preceding examples), 
with Ex(C) comprising all those short exact sequences in C that are split in 
A. 

2.4.5 On terminology 
The term 'semisimple category' is sometimes used by K-theorists instead of 
'split exact category'. However, we feel that 'split' is more descriptive, since 
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the use of 'semisimple' suggests that results about semisimple modules ought 
to hold in the category. However, there are many results, such as the Artinian 
Splitting Theorem ([BK: IRM] (4.1.17)), which hold in ASS R but do not 
necessarily hold in a split exact category such as PRo 

2.4.6 Exact functors 

Let (C, Ex(C)) and (V, Ex(V)) be G-exact categories. An exact Junctorfrom 
(C, Ex(C)) to (V, Ex(V)) is a functor F : C ---+ V which satisfies the following 
conditions. 

EFun1. F is an additive functor. 

EFun2. If 

E 
a f3 o ----7 M' -----7) M -----7) M" ----7 0 

is a short exact sequence belonging to Ex( C), then 

FE 
Fa Ff3 o ----7 F M' -----7) F M -----7) F M" ----7 0 

must belong to Ex(V). 

Notice that requirement EFun2 is, in effect, two conditions - firstly, FE 
must be a short exact sequence in V, and then it must also belong to the 
distinguished class Ex(V). In the literature, (C, Ex(C)) and (V, Ex(V)) are 
commonly both repletely G-exact. One then speaks of F simply as being an 
exact functor from C to V. 

2.4.7 Examples 

Suppose that C and V are G-exact categories and that both have the same 
underlying additive category B. Then the identity functor on B will induce an 
exact functor from (C, Ex(C)) to (V, Ex(V)) if and only if Ex(C) is a subclass 
of Ex(V). In particular, the identity functor fails to be an exact functor from 
MR to M~ (unless R is Artinian semisimple - see (2.3.9) and (2.4.3)). 

Conversely, an exact functor between G-exact categories need not preserve 
all short exact sequences; examples are given by the homomorphism functors 
Hom(L, -) on MOD~ with L not projective (2.1.8). However, any additive 
functor preserves split exact sequences (2.2.20) and so will act as an exact 
functor on a split G-exact category. We record this fact for reference. 
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2.4.8 Proposition 
Suppose that C is a split G-exact category and that V is a G-exact category. 

Then any additive functor from C to V is exact. 0 

The above result shows that, when C is split G-exact, condition EFun1 
implies EFun2. More surprisingly, when C and V are abelian, EFun2 always 
implies EFun1, as can be seen from Exercise 2.3.11. 

2.4.9 The Grothendieck 9rouP 
We now trespass into K-theory to give the construction of the Grothendieck 
group of a G-exact category. This will at least serve to motivate our definition 
of a G-exact category. 

Let (C, Ex( C)) be a G-exact category, and assume that C is small, or that 
C has a small skeleton (1.3.15). For an object G of C, let (G) denote the 
isomorphism class of C, so that (G) = (G') precisely when G ~ G'. Then the 
isomorphism classes of objects of C constitute a set Is(C), and we can form 
the free abelian group Fr(C) on Is(C). Let Rel(C) be the subgroup of Fr(C) 
generated by all expressions of the form 

(G) - (G') - (G") , 

one for each short exact sequence 

o ------t G' ------t G ------t G" ------t 0 

belonging to Ex( C). 
The Grothendieck group Ko(C,Ex(C)) of (C,Ex(C)) is the quotient group 

Fr( C) / Rel( C). It is usual to omit to mention the class of exact sequences and 
write simply Ko(C). 

Clearly, Ko(C) is an abelian group because Fr(C) is. The image of (G) in 
Ko(C) is denoted [G]. By construction, a short exact sequence as above gives 
the equality 

[G] = [G'] + [G"] in Ko(C). 

It is evident that an exact functor F : C --4 V between G-exact categories 
gives a homomorphism 

Ko(F) : Ko(C) ------t Ko(V) 

of abelian groups. 
The Grothendieck group Ko was introduced by A. Grothendieck in 1957 in 

letters to J.-P. Serre that formed the basis of [Borel & Serre 1958]. It was 
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initially applied (in the notation K(X)) to the category of coherent sheaves on 
an algebraic variety X and to the category of vector bundles over a topological 
space X. Grothendieck chose the symbol K (for the German 'Klasse') to avoid 
C(X), already in use as the ring of functions on X. For further history, see 
[Bak 1987J. 

Although we do not give any computations of Grothendieck groups in this 
text, we can give a plausibility argument to illustrate how the choice of the 
class Ex(C) influences Ko(C). 

Consider the category F As of finite abelian groups, which is ARTIE in dis­
guise. The Primary Decomposition Theorem (2.3.20 ~ F) shows that the 
irreducible modules in FAs are the cyclic groups ZlpZ of prime order p. 
Since any finite abelian group A has a composition series with factors of the 
form ZlpZ for various primes p, the symbol [AJ in Ko(FAs) can be written 
as a sum of symbols [71,1 pZ], and it can be shown that K 0 (F As) is the free 
abelian group on the set 

{[ZI pZJ I p prime}. 

However, if we work in the Grothendieck group Ko(FAs®) of the G-exact 
category F As®, in which only split exact sequences are permitted, then the 
symbol [AJ can be reduced to symbols corresponding to indecomposable finite 
abelian groups, which have the form ZlpkZ for p prime, k ~ 1, but no further 
reduction is possible. As might be anticipated, Ko(FAs®) is the free abelian 
group on the set 

{[ZlpkZJ I p prime, k ~ 1}. 

Granted these computations, we can see that the identity functor on the 
additive category F As induces an exact functor I from the split G-exact 
category F As® to the repletely G-exact category F As, but that 

is not injective, since 

2.4.10 Q-exact categories 
In a fundamental paper, [Quillen 1973], Quillen has shown how to construct 
higher dimensional analogues, K1(C), K2 (C), ... , of the Grothendieck group 
of a suitably defined exact category. Although we cannot give any indication 
of Quillen's construction in this text (see [Rosenberg 1996J pp. 289~297 for a 
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quick introduction), this is a convenient place to list the additional conditions 
on the class Ex(C) that are required by Quillen's theory. We take our definition 
directly from [Quillen 1973], §2. 

A Q- exact category is a G-exact category (C, Ex( C)) in which the class Ex( C) 
of admissible exact sequences satisfies the following requirements in addition 
to GEl ~3. Recall that a monomorphism or epimorphism in C is admissible if 
it occurs in a short exact sequence that belongs to Ex( C). 

QE1. Ex(C) is closed under composition of admissible epimorphisms : if 

0: f3 o ~ M' -----» M -----» M" ~ 0 

and 
, fj 

o ~ N' ------» M" -----» N" ~ 0 

are in Ex( C), so is the short exact sequence 

fjf3 
o ~ M XM" N' ~ M -----» N" ~ O. 

QE1°P . Ex(C) is closed under composition of admissible monomorphisms : if 

0: f3 
o ~ M' -----» M -----» M" ~ 0 

and 
, fj 

o ~ M ------» N ------» N" ~ 0 

are in Ex(C), so is the short exact sequence 

, ,0: " 
O~M ------» N ~ M EBMN ~O. 

QE2. Suppose that the short exact sequence 

E 
0: f3 

o ~ M' -----» M -----» M" ~ 0 

is in Ex(C) and that () : L" ----> M" is a morphism in C. Then the 
pull-back exact sequence (cf. Exercise 1.4.11 and [BK: IRM] (2.4.10)) 

()*E 
J-t >. o ~ M' ------» M XM" L" ------» L" ~ 0 

also belongs to Ex(C). (That is, Ex(C) is closed under base change.) 
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QE2°P . Suppose that the short exact sequence 

E 
J-l ,\ o ---+ M' ----+) M ----+) Mil ---+ 0 

is in Ex( C) and that ¢ : M' -t N' is a morphism in C. Then the 
push-out exact sequence 

a f3 
o ---+ N' ----+) N' EB L' M ----+) Mil ---+ 0 

also belongs to Ex(C). (That is, Ex(C) is closed under cobase change.) 
QE3. Suppose that the morphism f3 : M -t Mil in C has a kernel in C, 

and that there is a morphism cp : L -t M such that f3cp : L -t 
Mil is an admissible epimorphism. Then f3 is already an admissible 
epimorphism. 

QE3°P . Suppose that the morphism a : M' -t M in C has a cokernel in C, 
and that there is a morphism 'ljJ : M -t N such that 'ljJa : M' -t N 
is an admissible monomorphism. Then a is already an admissible 
monomorphism. 

2.4.11 Comments on the axioms 
(i) Pull-backs and push-outs in an abstract category are defined by their 

universal properties, which are given for modules in ([BK: IRM] Propo­
sition 2.4.9), and in Exercises 1.4.10 and 1.4.11 for categories in general. 
The definitions of the pull-back sequence O*E and the push-out sequence 
¢*E follow those given for modules in Exercise 2.1.7. 

(ii) In the statement of the axioms, we take for granted the fact that various 
constructions on short exact sequences yield short exact sequences. This 
is easily verified in a module category. In an abstract category, the verifi­
cation can be made by using universal properties, or, more conveniently, 
by invoking the Embedding Theorems (2.3.22). 

(iii) Since the underlying category C is assumed to be additive, rather than 
abelian, part of the requirement imposed by the axioms is that the various 
pull-backs and push-outs are objects in C (note Exercises 2.3.6 and 2.3.7). 

(iv) It is not difficult to show that these conditions make the 'elementary' 
condition GE3 redundant - see Exercise 2.4.4. The fact that the Q­
conditions are stronger than the G-conditions is illustrated in Exercise 
2.4.11. 

We call a Q-exact category (C, Ex( C)) repletely Q-exact when Ex( C) com­
prises all short exact sequences in C, and split Q-exact when Ex(C) consists 
only of the split exact sequences in C. 
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Although the conditions for a Q-exact category appear formidable, they are 
usually fairly easy to check in any given instance. For example, the checking 
of the claims in the following lemma is straightforward. 

2.4.12 Lemma 

(a) Any split G-exact category is Q-exact. 
(b) Let C be an abelian category and let Ex(C) be the class of all short exact 

sequences of C. Then the repletely G-exact category (C, Ex( C)) is Q-exact. 

o 
Because of (b) above, we use the term repletely exact abelian to describe a 

repletely G-exact category (C, Ex( C)) with C abelian. 

2.4..13 Exact subcategories 
To see when a subcategory of a Q-exact category is also Q-exact, we need a 
preliminary definition. Let (A, Ex( A)) be a Q-exact category. Then (C, Ex( C)) 
is a sub-Q-exact category of (A, Ex(A)) if the following conditions are satisfied. 

SubQ1. C is a full additive subcategory of A with the property that whenever 

o ------. A' ------. A ------. A" ------. 0 

is a short exact sequence in A such that A' and A" are isomorphic 
to objects of C, then A is also isomorphic to an object of C. 

SubQ2. Ex(C) is the class of all short exact sequences in Ex(A) whose terms 
belong to C. 

Condition SubQ1 is often rephrased as: C is closed under extensions, or ex­
tension closed. Condition SubQ2 implies that the inclusion functor from C to 
A is exact. 

In practice, it is usually obvious from the nature of C that the first condition 
is satisfied, while the canonical choice of Ex( C) is that suggested by the second 
condition. Thus the following theorem gives a widely applicable condition for 
Q-exactness. The proof is by routine verification of the axioms. 

2.4.14 Theorem 
Any sub-Q-exact category of a Q-exact category is again Q-exact. 0 

2.4.15 Corollary 
Any sub-Q-exact category of a repletely exact abelian category is Q-exact. 

o 
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[Quillen 1973], §2, observes that the above corollary has a converse: if a 
Q-exact category (C, Ex(C)) is (skeletally) small, then there exists a repletely 
exact abelian category in which (C, Ex( C)) is sub-Q-exact. This is shown by 
mimicking the proofs of the earlier embedding theorems for additive cate­
gories, which were outlined in (2.3.22). The corollary and its converse enable 
us to define a Q-exact category as a sub-Q-exact category of a repletely exact 
abelian category. The new definition has the advantage that its axioms are 
relatively simple. 

Observe that a subcategory C of a Q-exact category A may be Q-exact 
without being a sub-Q-exact category of A. For example, the category ASSR 
of Artinian semisimple modules over a ring R is an abelian category, and 
Q-exact; it is in fact both split and repletely exact. The inclusion functor 
from ASSR to MR is exact, but ASSR is not a sub-Q-exact category of MR, 
unless R is Artinian semisimple (which makes Condition SubQ1 hold.) 

The reader may wish to verify the accuracy of the following listing of Q­
exact categories. Here, Q-exactness follows immediately from the corollary 
above. 

2.4.16 Theorem 

For any ring R, MODR is a repletely exact abelian category, and the fol-
lowing are {repletely} sub-Q-exact categories and therefore Q-exact. 

(i) PR, the category of finitely generated projective modules. 
(ii) :FR, the category of free modules of finite rank. 

(iii) AnTR, the category of Artinian modules. 
(iv) N OETHR, the category of Noetherian modules. 
(v) M R , the category of finitely generated modules. 

(vi) MODT, for any extension ring T of R. 

Exercises 

o 

Note. These exercises refer (mostly) to G-exact categories. The enthusiastic 
reader may wish to extend them to Q-exact categories where appropriate. 

2.4.1 Let C be a G-exact category. Show that cop is also a G-exact category. 

2.4.2 Let C and V be G-exact categories. Show that there are canonical 
ways to make C x V and MOR C into G-exact categories. 

Prove that C x V is split or repletely G-exact if and only if both C 
and V are split or repletely G-exact respectively. 
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Generalize these statements for arbitrary finite direct products of 
G-exact categories, and for infinite direct sums of categories as in 
(2.3.19). 

Let K be a field. Show that MCJR(MJC) is not split G-exact, even 
though MK, is. 

2.4.3 Let C be a G-exact category, and let Nl --t N2 be an isomorphism in 
C. Show that if 

o ----t M' ----t M ----t M" ----t 0 

is a short exact sequence in Ex( C), then the short exact sequences 

o ----t M' EB Nl ----t M EB N2 ----t M" ----t 0 

and 

o ----t M' ----t M EB Nl ----t M" EB N2 ----t 0 

are also in Ex(C). 
2.4.4 Show that axioms QE1 and QE2 together imply axiom GE3, as fol­

lows. Take short exact sequences 

(1) o ----t M' ----t M ----t M" ----t 0 

and 

(2) 
v o ----t N ' ----t N ------4) Nil ----t 0 

in Ex(C), construct firstly the pull-back of (1) by the admissible epi­
morphism 

(id, 0) : Mil EB Nil ----t Mil, 

and then the pull-back of the resulting sequence by the admissible 
epimorphism 

id EB v : Mil EB N ----t Mil EB Nil 

to obtain a short exact sequence in Ex(C) 

(3) 
w o ----t M' ----t W ------+) Mil EB N ----t o. 

Show that () = (id EB v)w : W --t Mil EB Nil is admissible, and that the 
corresponding short exact sequence 

() 
o ----t L ----t W ------+) Mil EB Nil ----t 0 

is isomorphic to the direct sum of (1) and (2). 
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2.4.5 Let 0 be a commutative domain. A ring R is said to be an O-order 
if there is an injective ring homomorphism from 0 into the centre 
Z(R) of R, and if, as both a left and right O-module, R is finitely 
generated over 0 and torsion-free. The ring 0 is called the coefficient 
ring. If the coefficient ring can be taken as granted, we often refer to 
R simply as an order. 

Given an O-order R, let TORO,R, TO,R and TFo,R denote the 
full subcategories of MODR whose objects are respectively the 0-
torsion, finitely generated O-torsion and finitely generated O-torsion­
free modules. 

Show that all these categories are repletely G-exact categories. In 
each case, show how to form an O-relative exact category by taking 
as short exact sequences those which are O-split. 

2.4.6 Let F, G : C -+ V be two functors between G-exact categories. Show 
that F and G are both exact if and only if F EB G : C -+ V is exact, 
and that 

Ko(F EB G) = Ko(F) + Ko(G) : Ko(C) ---+ Ko(V). 

2.4.7 Let C and V be G-exact categories. Show that 

Ko(C x V) ~ Ko(C) EB Ko(V). 

Generalize this result to an arbitrary finite direct product of cate­
gories, and to infinite direct sums of categories (2.3.19). 

2.4.8 Categories with cofibrations: axioms 

In [Waldhausen 1985], Quillen's conditions QEI-QE3 (2.4.10) on 
the admissible exact sequences of a Q-exact category are replaced by 
weaker requirements which still suffice for the construction of (higher) 
K-theory, with the advantage that a wider range of categories can be 
used. This and the subsequent exercises outline the definitions and 
some initial calculations. 

Let C be a category with zero object O. The notion of an admissible 
monomorphism is replaced by that of a cofibration (which need not 
in fact be a monomorphism), and the counterpart of an admissible 
exact sequence is a cofibration sequence 

a: (3 
M' -----t) M -----t) Mil 

in which a: is a cofibration and (Mil, (3) is a cokernel of a: (as defined 
in (1.4.15)). 
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The cofibrations are, by definition, the morphisms of a subcate­
gory coC of C which has the same objects as C and is subject to the 
following three axioms. 

Cof!. Every isomorphism of C is in co C. 
Cof2. Every morphism 0 ---.. C in C belongs to coCo 
Cof3. Cofibrations are closed under cobase change, meaning that, for 

any cofibration M' ~ M and any morphism ¢ : M' ---.. N in 
C, the bottom row of the push-out diagram 

a 
M'----t M 

j 
-a 

j 
N ) NEBM' M 

is also in coCo (This implies that N EBM' M is an object of C.) 

With these axioms, the pair (C, coC) is then called a category with 
co fibrations. 

(a) Show that the push-out 0 EBM' M of a cofibration a : M' ---.. 
M and the zero morphism 0 : M' ---.. 0 is (isomorphic to) the 
cokernel Cok a of a. Thus, by Cof3, every cofibration is part of 
a cofibration sequence 

a 
M' ----t) M ~ Coka. 

The canonical morphism M ---.. Cok a is known as a quotient map. 
(b) Show that cofibration sequences are closed under cobase change, 

meaning that, for any cofibration sequence 

a (3 
M' ----t) M ----t) Mil 

and any morphism ¢ : M' ---.. N in C, there is a push-out diagram 

M' 
a 

M 
(3 

Mil 

j 
a 

j 
(3 

j 
N ) NEBM' M ) Cok-a 

in which the lower row is also a cofibration sequence and the 
morphism from Mil to Cok-a is an isomorphism. (Compare with 
Axiom QE2°P , (2.4.10).) 
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(c) Show that, by taking the admissible monomorphisms to be the 
cofibrations, any Q-exact category may be considered to be a 
category with cofibrations. 

2.4.9 Categories with cofibrations: constructions 
Let C be a category with cofibrations. For each natural number n, 

define FnC to be the category for which an object is a sequence of 
cofibrations 

in C, and for which a morphism is a natural transformation of such 
diagrams. One can also form a category F::C equivalent to FnC by 
taking for an object, in addition to the above data, a quotient map for 
each cofibration Mi ~ M j , 0 :::; i < j :::; m. The following assertions 
generalize readily to n > l. 
(a) Show that FIC is a category with cofibrations, where a cofibration 

from 0: : M' ~ M to (3 : N' ~ N in co FI C is, by definition, any 
pair I, 8 of morphisms in C for which 

(i) there is a commutative square 

M' 
0: 

) M 

j I 
(3 

j 8 

N' ) N 

(ii) both I and the induced morphism N' EBM' M ~ N are cofi­
brations in C. 

Deduce that 8 is a cofibration. 
(b) Show that an object of FtC is a cofibration sequence 

0: (3 
M' ----t) M ----t) Mil 

in which Mil is a specified cokernel of 0:. 

Use (a) and the equivalence FtC ~ FIC to regard FtC as a category 
with cofibrations. Show that the three functors 

s, t, q : FtC -----+ C 

which map a cofibration sequence to its respective terms 

M' , M, Mil 
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are exact in the sense that they preserve zero objects, cofibrations 
and push-out diagrams. 

2.4.10 Waldhausen categories 

(a) A Waldhausen category or category of weak equivalences is a cat­
egory with cofibrations e, together with a specified subcategory 
we. The morphisms in we are the weak equivalences. The fol­
lowing axioms hold. 

Weql. Every isomorphism of C is a morphism of we. 
Weq2. Glueing Axiom. For any commutative diagram in C 

M' M 

in which each horizontal morphism is a cofibration and the 
three left-most vertical morphisms are weak equivalences, 
the fourth vertical morphism is also a weak equivalence. 

Deduce that if 

M' )M ) Mil 

jr j 8 j E 

N' ) N ) Nil 

is a map of cofibration sequences in which rand 8 are weak 
equivalences, then E is also a weak equivalence. 

(b) Define the Grothendieck group Ko(C) (which, strictly speaking, 
should be written Ko(e, coC, We)) of the Waldhausen category 
C to be the abelian group generated by an element [M] for each 
object M of C and subject to a relation 

[M] = [M'] + [Mil] 

for each cofibration sequence 

0: f3 
M' -----+) M -----+) Mil, 
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and a further relation 

[M] = [N] 

for each weak equivalence M ~ N in C. 

Show that when C is a Q-exact category considered as a cate­
gory with cofibrations, and with weak equivalences chosen to be the 
isomorphisms of C, then the group just defined coincides with the 
Grothendieck group of C as defined previously (2.4.9). 

2.4.11 Q-exact is strictly stronger than G-exact 
Let C be the full subcategory of As whose objects are the finite 

abelian 2-groups. To choose Ex( C) such that (C, Ex( C)) is a G-exact 
category, let Ex(C) consist of all direct sums (as in GE3) of short exact 
sequences that are either split or have cyclic middle term. Thus, for 
example, the sequence 

(j 7r 
0----4 Zj2Z EB Zj2Z ----t) Zj2Z EB Zj8Z ----t) Zj4Z ----4 0, 

(j: (a, b) t---> (a,4b) 7r : (c, d) t---> d 

(using representative integers to indicate residues) is admissible, while 

0: (3 
0----4 Zj4Z ----;) Zj2Z EB Zj8Z ----;) Zj4Z ----4 0, 

0:: x t---> (x,2x) (3 : (y, z) t---> 2y - z 

is not. Show that (C, Ex( C)) is not a Q-exact category, because it 
falls foul, for example, of QE3. 

Let cp : Zj2Z ----4 Zj4Z, a t---> 2a. Show that Zj2Z EB Zj8Z is 
isomorphic to the push-out of Zj4Z and Zj8Z over Zj2Z with respect 
to cp, (j. 

Deduce that (C, Ex( C)) also violates QE2°P . Thus, the admissible 
monomorphisms of Ex(C) fail even to make C a category with cofi­
brations. 
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