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ABSTRACT 
The development of cloud-based Computer-aided design (CAD) enabled real-time CAD collaboration 
between multiple designers. While this technology has great potential to change the way CAD work is 
done, it is still little explored. This paper presents a case with two high-performing and two low-
performing three-member teams monitored with non-invasive methods (log data) during a six-week 
design project. The results show that high-performing teams focused more on the editing of assembly, 
while low-performing teams focused on creating and editing a part. Furthermore, high-performing teams 
tended to perform consecutive deleting actions and to transition to creating and editing classes of CAD 
actions after performing viewing actions. Two modelling approaches which lead to high-quality CAD 
models were identified. One approach is characterized by frequent use of transitions between editing 
and Organizing-Design (collaborative actions) classes, while the other between creating, editing and 
reversing classes. Presented results allow design teams to gain insight into sequential patterns which led 
to the generation of a high-quality CAD model and to better understand the CAD modelling process. 
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1 INTRODUCTION 

CAD models are one of the primary artefacts in the design process (Chandrasegaran et al., 2013). They 

enable designers to straightforwardly develop, exchange, and collaborate on design concepts as part of 

the design workflow. Generated CAD models can be stored for future reference, therefore building up a 

rich source of information related to CAD modelling. Other benefits of using CAD models in a design 

process include great visualization, ease of generating technical documentation and the possibility of 

conducting various analyses (Um, 2015). Building on said capabilities, the current CAD paradigm 

follows an industrial trend which includes more frequent use of collaborative tools, enabling thus a 

virtual collaboration between designers (Deng et al., 2022). While these technologies enable new ways 

of working, it remains unclear how to best utilise their potential. Hence, it is essential to examine the 

possibilities of a collaborative CAD environment, which enables the simultaneous collaboration of 

design team members and simplifies real-time data sharing. 

As CAD has a central role in the design process, the efficacy of user interaction with CAD needs to be 

considered (Gopsill et al., 2016). This encompasses methods and approaches to the generation of 

digital CAD models while taking into consideration how models can be manipulated, edited, re-used, 

modified, combined and post-processed. Furthermore, CAD users might generate different CAD 

model structures (for same design), which are resembled in varying sequences of CAD actions 

performed during the design process (Rosso et al., 2021). Therefore, it is essential to better understand 

how to identify and analyse patterns of CAD actions. 

During the designers' involvement in a design process, they look to improve their current design by 

performing sequential and iterative actions while navigating their way through the design space. Namely, 

sequence information may lead to identifying the strengths and weaknesses of taking actions in a certain 

temporal order (Atman et al., 2007). Furthermore, designers learn which sequences of actions are 

optimal to use during the design process, which is essential due to sequential decision-making impacting 

the quality of the design outcomes (Rahman et al., 2018). To successfully facilitate the design process, a 

deeper understanding of designers' behaviours, as well as the sequential actions they carry out are of 

great importance to the improvement of design processes and modelling patterns. 

Given the potential of collaborative CAD features, coupled with the importance of performing 

sequences in an order suited for the design process, it is necessary to identify sequences of CAD 

actions which lead to high-quality CAD models. Therefore, this paper gives insights into the following 

research question: “What insights can be gathered from the comparison between CAD actions of high- 

and low-performing design teams?" 

To answer the question, this paper gives an overview of previous work in Section 2, describes the 

context and methods used to gather and analyse the data in Section 3, presents results in Section 4, and 

discusses findings and implications in Section 5. Finally, Section 6 concludes our findings and 

provides implications for future work. 

2 LITERATURE REVIEW 

Cloud-based CAD enables new means of collaboration by introducing a real-time collaborative CAD 

environment (Deng et al., 2022). Moreover, cloud-based CAD offers state-of-the-art modelling features 

which further enhance collaboration. It is capable of a non-invasive way of collecting data on performed 

user actions, which serve as a proxy for the design process. Data collection enables automated storage of 

designer CAD action data within the CAD environment without impacting or interfering with the 

modelling process. However, to successfully identify sequences of CAD actions which are present in 

high-performing design teams, these capabilities are yet to be fully explored and utilized. Researchers 

have already begun to explore the collaborative capabilities of cloud-based CAD. Namely, Eves et al. 

(2018) compared a cloud-based multi-user CAD (MUCAD) environment with a traditional, solitary one. 

It was revealed that MUCAD users were more aware of the actions performed by their colleagues. 

Furthermore, the final CAD models of the MUCAD teams, which used more collaborative and advanced 

features (e.g., modelling-in-context, versioning, etc.) resulted in higher quality than the others. However, 

the study also identified certain levels of frustration of individual users due to the distribution of 

activities within the team and differences in the modelling skills of individual team members. 

Furthermore, research was conducted relating to the potential of non-invasive data gathering. Gopsill et 

al. (2016) evaluated the potential of providing a non-obtrusive sensor for the monitoring, assessment and 
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evaluation of engineers and the engineering design process. They discovered that inexperienced 

designers tended to delete the entire geometry rather than edit existing geometry. Another research 

relating to CAD performance was conducted by Ahmed-Kristensen et al. (2003) who analysed different 

approaches towards design tasks between novice and expert users and identified their differences. They 

found that experienced users used particular design strategies (e.g., referring to past designs, considering 

issues, etc.), while novice users tended to use a particular pattern of trial and error. 

Various researchers identified typical sequences of actions within the design process. McComb et al. 

(2017a) adopt data-mining techniques to quantitatively study the processes that designers use to solve 

configuration design problems. They used Markov chains to extract beneficial design process heuristics. 

Their finding was the difference between the low- and high-performing designers with the latter 

directing their focus more towards assembly design, especially earlier in the design process, and 

incorporating parameter operations in states that were otherwise dominated by topology operations. This 

allowed high-performing teams to better estimate the final quality of early concepts. In a related study 

(McComb et al., 2017b), it was found that the first-order Markov chains are a better indicator of 

designers’ sequential actions than higher-order Markov chains in configuration design problems. 

Additionally, they simulated a task of designing a truss by using CAD software between teams 

employing a non-sequential design approach (a zero-order Markov model) and a sequential design 

approach (a first-order Markov model), which they validated by using a leave-one-out cross-validation. 

They found that the sequential design approach produced solutions with higher quality. Hence, they 

concluded that exploring design sequences is a beneficial for better understanding of the design process. 

While researchers analysed CAD actions and identified certain sequences in the design process, it 

remains unclear if high- and low-performing teams can be differentiated by the CAD action sequences. 

3 RESEARCH METHODS 

In this section, we present a case study in which the design teams developed a CAD model of a baby 

stroller during a design project course. Each CAD action they performed during the design course was 

tracked and stored. This enabled the data analysis to be conducted, which aim was to identify the 

patterns within sequences of gathered CAD actions. 

3.1 CAD project course 

The study was conducted during a CAD project course, where the main goal was to familiarize students 

with CAD tools in the context of generating a functional CAD model. While working on the 

development of their solutions, students develop teamwork, problem-solving and time-management 

skills. As part of the course, 42 undergraduate engineering students were divided into 14 teams and 

assigned with modelling a CAD model of baby strollers, shown in Figure 1. During the course, students 

were able to reach out to a teaching assistant for instructions and guidelines related to their design task. 

 

Figure 1. Final CAD models generated by analysed teams 

The course starts with the introduction of the CAD modelling tool used during this course - Onshape. 

Onshape offers state-of-the-art collaborative features which include versioning, branching, merging and 

editing-in-context. As such, it enables designers to work on a shared CAD model in different workspaces, 

with the possibility of saving their work at a certain point and merging their designs. After teaching 

students how to navigate the design space of the tool, they were instructed on different aspects of CAD 

methodology. Students were taught methods of part and assembly design. To evaluate their knowledge, 

they were tasked with generating a CAD model based on a 2D sketch. After completing the task, groups 

of 3 students were formed and assigned tasks in the form of patent sketches based on which the students 

modelled a functional CAD model of the product. The deadline for the submission of the CAD model of 

the product was six weeks, after which the final CAD assemblies, shown in Fig. 1, were reviewed by 
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teaching assistants and senior engineers from industrial companies. The review involved examining if 

the CAD model fulfils the task requirements and whether the CAD model is functional, ergonomically 

designed, and suitable for manufacturing. Teams were graded based on the quality of their CAD models 

in the context of adhering to the task’s requirements. The points they were evaluated with range, from 

28.67 to 44, out of possible 45. 

For the purposes of this study, a theoretical sampling approach called Polar types sampling is used. The 

objective of this approach is to observe contrasting patterns in the data in a simpler manner by sampling 

extreme (e.g., very high- and very low-performing) cases (Eisenhardt and Graebner, 2007). Therefore, 

out of 14 design teams participating in the design project course, two of the best-performing teams, as 

well as two of the worst-performing teams were further analysed for the purposes of this paper.  

3.2 Data collection and analysis procedure 

Data was collected in a non-intrusive manner by tracking and storing information related to CAD actions 

performed by users within a MUCAD environment. This was enabled by the usage of Onshape which 

allows non-intrusive data capturing by storing every performed CAD action in an audit trail. Data is 

gathered and stored in a structured way adequate for data analysis. In this case, the gathered dataset 

consists of a timestamp when the action was performed, a document and a tab in which it was performed, 

the designer who performed it and the name of the action itself. Furthermore, some of the gathered 

actions were not performed by the designers themselves but were rather automatically stored by the 

software (e.g., Update Metadata, Content update, etc.). Given that the focus of this paper was on 

designers' actions, automatically generated actions were excluded from the dataset. Moreover, redundant 

actions clustered by timestamp values were identified. Redundant actions occur, e.g., when a user inserts 

a sketch, namely, OnShape then registers four actions – Add part studio feature, Commit add or edit of 

part studio feature, Insert feature: Sketch, Add or modify a sketch. As this would lead to inaccurate 

results of the data analysis, redundant actions were excluded from the analysed dataset. Finally, actions 

related to the generation of technical documentation were also excluded due to the emphasis of this study 

being on the modelling of parts and assemblies. The remaining actions were then classified using a 

classification of CAD actions based on Gopsill et al. (2016), Deng et al. (2022) and Celjak et al. (2022). 

The classification enables the data analysis on different levels of granularity as it may be conducted on 

class, subclass or action level. The classification includes six general classes of CAD actions: Creating, 

Editing, Deleting, Reversing, Viewing, and Organizing. Creating, Editing, and Deleting were further 

divided on a Part and Assembly level, while Editing also to non-geometry, and Organizing was split into 

Design and Support design process (the former is related to CAD model and workspace, while the latter 

is related to CAD files). This classification (Figure 2) separates constructive actions that make direct, 

visible modifications to the design (e.g., Creating, Editing, etc.) from Organizing and Viewing actions 

that are related to the process. Hence, it serves as a basis for further data analysis. 

 

Figure 2. Classification of CAD actions (based on Deng et al. (2022) and Celjak et al. 
(2022)) 
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The goal of data analysis was to better understand the design process and identify patterns within 

performed CAD actions. Analysis of classes of performed CAD actions was conducted using the class 

distribution of design teams' CAD actions and Markov chain transition matrices. Class distribution of CAD 

teams' actions provided insight into the usage percentage of various CAD action classes of different design 

teams. Transition matrices allowed us to explore the number of occurrences of one action or class of 

actions transitioning into another action or class of actions. Subsequently, they also provide an insight into 

the spectrum of CAD actions used by designers. Finally, the most common sequences between classes of 

CAD actions performed by design teams during an overall design process have been identified by dividing 

the number of each transition by the total number of recorded transitions. 

Data analysis was conducted using the Python programming language and its libraries. As shown in 

Figure 3, the first two phases of the process involve initializing and reading the dataset, which is 

followed by filtering the aforementioned undesired CAD actions from the dataset. Furthermore, 

variables related to CAD actions and classes have been defined. Consequently, the process of iterating 

through the dataset is initialized and CAD actions are mapped. This is followed by generating results 

which are then prepared for visualization. Finally, the results of this coding process are displayed in 

the form of a quadratic transition Markov matrix which provides insight into the probabilities of 

transitioning from one state to another, as well as in form of a stacked bar chart which gives insight 

into the class distribution of design teams' CAD actions. 

 

Figure 3. Data analysis and visualization coding process 

4 RESULTS 

The data analysis was conducted by using the collected data about CAD actions performed by two 

high-performing and two low-performing teams during the design course. The four analysed design 

teams performed a various number of CAD actions. The high-performing teams recorded 14264 

(Team HP1) and 8601 (Team HP2) actions, while low-performing teams recorded 3049 (Team LP1) 

and 5460 (Team LP2) actions. The results are structured in the following way. Firstly, the distribution 

of classes of CAD actions performed by each team is shown in a grouped bar chart. Secondly, Markov 

transition matrices are used to show the probability of each team transitioning from one class of CAD 

actions to another. Finally, the most commonly used sequences of classes of CAD actions are shown. 

4.1 Class distribution of design teams' CAD actions 

The distribution of classes of CAD actions provided insight into how the design teams divided their 

work during the modelling process. Furthermore, it showed similarities and differences in the 

approach to the modelling process between the design teams. Namely, as can be observed from Figure 

4, the most used class of CAD actions by each team was Editing-Part. Furthermore, low-performing 

teams frequently used Reversing and Creating-Part classes of CAD actions. A similar tendency is 

observed in the case of one of the high-performing teams (Team HP1). Contrary, Team HP2 

frequently performed CAD actions classified within Organizing-Design and Editing-Assembly classes. 

On the opposite side of the usage spectrum, Editing-Non-geometry was the least frequently used class 

of CAD actions in the case of each observed team. High-performing teams also less frequently used 

Organizing-Support design process and Deleting classes of CAD actions, while low-performing teams 

tended to less frequently use Editing-Assembly class. Moreover, Team LP2 rarely used Organizing-

Design class, while Team LP1 rarely used Viewing class of CAD actions. 

Similarities between high and low-performing teams emerge in Deleting class as each team recorded 

3-5% usage. Conversely, dissimilarities between high and low-performing teams include Creating, 

Editing and Organizing-Support design process classes. Namely, both low-performing teams recorded 

17% usage of Creating-Part CAD actions. Contrary, high-performing teams recorded notably lower 

9% usage in the case of team HP2, and slightly lower 15% usage in the case of team HP1. Consistency 
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between high and low-performing teams can be observed in the case of Creating-Assembly class as the 

former recorded 10% usage, while the latter recorded 13% (LP2) and 15% usage (LP1). Furthermore, 

25% of the CAD actions performed by low-performing teams are attributed to the Editing-Part class. 

High-performing teams recorded slightly lower values with 18-20% usage. Editing-Assembly equates 

to 14% of overall performed CAD actions by Team HP2, which is two times more than Team HP1 and 

almost five times more than the low-performing teams' record. Organizing-Support design process 

class of CAD actions is used more by low-performing teams which recorded 7% usage, compared to 

the usage of high-performing teams which is halved. 

The remaining classes do not show distinctive dissimilarities between high and low-performing teams, 

as certain values between the teams' usage of classes overlap. Namely, low-performing teams tended 

to frequently use Reversing CAD actions as they recorded around 20% usage. Team HP1 recorded 

similar usage to low-performing teams with 19%, while team HP2 recorded notably lower usage of 

10%. Furthermore, Organizing-Design class of CAD actions is barely used by Team LP2, however, 

teams HP1 and LP1 recorded 5% usage, while Team HP2 was an outlier with 19% usage. Viewing 

class of actions shows Team HP1 recording 12% usage compared to Team LP1 which recorded just 

1% usage, while teams HP2 and LP2 both recorded roughly 7%. 

 

Figure 4. Class distribution of design teams' CAD actions 

4.2 Markov chain transition matrices between classes of CAD actions 

Generated matrices implicitly show different approaches towards CAD modelling between high and 

low-performing design teams as they record different transitions between classes of CAD actions. 

These transitions are depicted in Figure 5 by four Markov chain transition matrices with the upper 

ones representing the design process of high-performing teams HP1 and HP2, and the lower ones 

representing the design process of low-performing teams LP1 and LP2. The matrices consist of values 

which represent the probability of one unique class of CAD actions transitioning into another. Higher 

colour intensity suggests a higher probability of transition from a class of CAD actions defined by the 

row of observed value to the one defined by the column. For example, the probability of Team HP1 

transitioning from the Creating-Assembly to the Reversing class of CAD actions is depicted by the a2,8 

element in the upper left matrix of Figure 5 and is equal to 0.45 (45%). Empty or white elements of the 

matrix suggest the transition from the class of the initially performed CAD action to the class of the 

CAD action which followed has never occurred. 

Both high and low-performing teams show similarities in their respective transitions between classes 

of CAD actions. However, some transitions show major dissimilarities between teams of identical 

performance. Moreover, certain transition frequency is not exclusively linked to high or low-

performing teams but occurs in both high and low-performing teams. Therefore, transitions between 

classes of CAD actions could be divided into several categories. The first category includes consistent 
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similarities between high and low-performing teams (i.e., where both high-performing teams record 

similar transitions, which are also similar to those of both low-performing teams). The second 

category encompasses consistent dissimilarities between high and low-performing teams (i.e., where 

both high-performing teams record similar transitions, which are dissimilar to those of both low-

performing teams). The third category is characterized by inconsistent dissimilarities between high 

and low-performing teams (i.e., where there are no distinctive similarities between teams of identical 

performance, nor is there a distinctive difference between high and low-performing teams). 

 

Figure 5. Markov chains in the context of CAD actions 

The first category encompasses transitions occurring from Creating-Part, Editing-Part, Deleting-

Assembly and Reversing classes of CAD actions. Transitions occurring from said classes record 

similar frequencies in the overall design process of each of the analysed teams. The second category 

includes transitions occurring from Deleting-Part, Organizing-Design, Organizing-Support design 

process and Viewing. High-performing teams tended to consecutively use Deleting-Part CAD actions 

10-15% more than low-performing teams. Moreover, high-performing teams used consecutive 

Organizing-Design CAD actions 25-35% more than low-performing teams. Low-performing teams 

recorded 10% more consecutive Organizing-Support design process CAD actions. Finally, high-

performing teams tended to transition from Viewing class to one of Creating and Editing classes on an 

average of 17% more frequently than the low-performing teams did. The third category, which 

encompasses inconsistent dissimilarities between high and low-performing teams consists of 

transitions occurring from Creating-Assembly and Editing-Assembly classes of CAD actions. Team 

HP2 tended to perform consecutive Editing-Assembly CAD actions from said classes on an average of 

16% more frequently than low-performing teams. Moreover, they recorded consecutive usage of 

Creating-Assembly class 5% more than Team LP2, however, 9% less than LP1. Contrary, team HP1 
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tended to perform consecutive Creating-Assembly and Editing-Assembly classes of CAD actions an 

average of 8% less often than low-performing teams. Moreover, team HP1 recorded a high frequency 

of transitions to the Reversing class of CAD actions, similar to low-performing teams. 

4.3 Most commonly used sequences of classes of CAD actions 

The results of this section aim to provide insight into the most commonly used sequences of classes of 

CAD actions during the modelling process of design teams. This was enabled by dividing the number 

of each transition by the total number of recorded transitions. Consequently, the ten most common 

sequences between classes of CAD actions performed by design teams during an overall design 

process have been identified and are shown in Figure 6. Both high and low-performing teams recorded 

a high frequency of consecutive Editing-Part CAD actions performed, however, low-performing 

teams tended to do it slightly more often. Moreover, low-performing teams transitioned from 

Creating-Part to Editing-Part and vice versa around 4,5% of the time, while high-performing teams 

tended to do so around 3% (team HP1) or less than 3% (team HP2). Similarly, low-performing teams 

tended to transition slightly more frequently from Creating-Assembly to the Reversing class of CAD 

actions. Furthermore, team HP1 recorded a rather notable number of transitions to/from Reversing 

class of CAD actions.  Contrary, team HP2 did not record any of those transitions, but rather a 

substantial number of transitions to/from Organizing-Design class of CAD actions. A transition 

specific to one of the low-performing teams includes team LP1 performing consecutive Creating-

Assembly CAD actions 8,11% of the time. 

  

Figure 6. Most common transitions between CAD action classes 

5 DISCUSSION 

The results show that there is a major difference between the modelling patterns of high and low-

performing teams in terms of using creating and editing classes of CAD actions. Namely, low-

performing teams tend to focus more on creating a part or assembly and editing a part compared to 

high-performing teams. Contrary, high-performing teams register more usage of Editing-Assembly 

class of CAD actions than the low-performing teams. It might be that high-performing teams started 

earlier with the assembly design to better estimate the final quality of early concepts (McComb et al., 

2017a), which resulted in more editing of assembly later in the modelling process. Furthermore, it was 

observed that high-performing teams are more likely to perform consecutive Deleting-Part CAD 

actions than low-performing teams. Contrary to our finding, Gopsill et al. (2016) found this pattern 

occurring in the modelling process of novice design teams. They interpret it as a sign of participants 

having difficulties in both generating the geometry and the ability to constrain it appropriately so that 
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it can be edited without causing issues with the model. These conflicting insights could be result of 

analysing different CAD complexities (single part vs multi-part product). We suggest that this 

tendency could also be attributed to high-performing teams starting earlier with the assembly design, 

where they experimented with different versions of the design, ultimately resulting in performing 

consecutive deleting actions. 

Results also show that low-performing design teams tend to use a high percentage of Reversing class 

of CAD actions after creating or editing a part or an assembly.  This may be attributed to users 

adjusting to the use of new CAD software or lack of design knowledge and general idea. Similarly, 

Ahmed-Kristensen et al. (2003) identified this pattern during the design process of novice users and 

defined it as a trial-and-error pattern. Notably, one high-performing team also registers a high 

percentage of reversing CAD actions used, therefore, the same could be implied for them. However, as 

they generated almost 15000 CAD actions, and relating to the previous finding, this can be attributed 

to them generating various versions of the product. Although the CAD has traditionally been used in 

the detailed design phases, these results suggest that it could also bring benefits in the earlier design 

phases. This could be related to new CAD features (e.g., versioning, branching, merging and editing-

in-context), and new collaborative working practices (Deng et al., 2022; Horvat et al., 2021). 

Moreover, this high-performing team also shows similarities to the low-performing teams in the 

context of Organizing-Design class as they show very limited usage of CAD actions within the said 

class. Contrary, the other high-performing team tends to use advanced modelling features such as 

creating versions and modelling-in-context, while also often transitioning into Organizing-Design 

class after Creating and Editing classes. Implementation of these features in their modelling process 

allowed them to conveniently collaborate on a shared CAD model. This suggests that the use of 

advanced collaborative features relates to the quality of the overall CAD model, which corresponds to 

the findings of Eves et al. (2018), who drew identical conclusions during their research when they 

compared traditional and collaborative CAD. 

Finally, the analysis of the most common transitions between classes of CAD actions identified two 

different modelling approaches that high-performing teams utilise. It was observed that one approach 

most frequently used Organizing-Design class, with the most common transitions to/from Editing 

classes. The other approach is characterized by frequent use of transitions between Reversing and 

Editing- and Creating-Part classes. While both approaches are valid, the high-performing team which 

utilised the latter approach recorded almost 6000 more CAD actions than the other team. Findings of 

this study could indicate that different modelling approaches could affect the overall number of 

performed CAD actions and, consequently, efficiency of CAD modelling. 

Many unanswered questions still exist regarding the quality of CAD work in collaborative CAD. 

Certain limitations of the current research need to be overcome to achieve more generalisable results. 

The first limitation is related to the small sample size in terms of involved teams. Another limitation of 

the study was the lack of design experts as participants. Future research should find ways to involve 

such individuals, as this will likely result in more complete and usable overall CAD models and, 

therefore, associated sequences of CAD actions leading to those models. Furthermore, some sequences 

of certain individuals within the design teams may have notably varied from other individuals, 

therefore hindering the results. Hence, a similar analysis should be conducted on the individual level. 

6 CONCLUSIONS 

This research has provided some initial insights into the potential of utilizing non-intrusive data 

logging to identify CAD modelling sequential patterns and better understand the design process. Using 

Onshape as CAD modelling software for the design project has simplified the process of data 

gathering. Furthermore, the adopted classification has consolidated individual CAD actions into 

different classes and enabled the conduction of analysis on multiple levels of granularity. The analysis 

of two high-performing and two low-performing teams showed similarities and differences in class 

distribution and design sequences of performed CAD actions. The results have shown two different 

approaches towards CAD modelling. High-performing teams were oriented towards editing of 

assembly more than the low-performing teams. Furthermore, one high-performing team shows a 

tendency to use advanced actions such as versioning and modelling-in-context. Moreover, both high-

performing teams tended to transition to creating and editing classes of CAD actions after utilizing the 
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viewing capabilities of the software. However, this was not the case for the low-performing teams. 

Finally, high-performing teams displayed a tendency to perform consecutive deleting actions.  

Scholars and educators can utilise these results to analyse actions performed by students in the design 

project course and to better understand the CAD modelling process. The results presented in this paper 

could be helpful for engineers and educators to gain insight into sequential patterns during the design 

process which could potentially be linked with quality of CAD model in further studies. 

Future work should aim for a deeper understanding of the design process by implementing time 

variables (e.g., duration of a modelling process, timestamp of a specific action) in the analysis. 

Moreover, to identify the optimal sequences in the design process, additional data about CAD 

modelling has to be collected (to enable triangulation). Furthermore, the implementation of machine 

learning algorithms could be used to process said data and enable analysis of the CAD collaboration in 

a more detailed manner. 
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