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Homogeneous Einstein Finsler Metrics on
(4n + 3)-dimensional Spheres

Libing Huang and Xiaohuan Mo

Abstract. In this paper,we study a class of homogeneous Finslermetrics of vanishing S-curvature on a
(4n+3)-dimensional sphere. We ûnd a second order ordinary diòerential equation that characterizes
Einsteinmetricswith constant Ricci curvature 1 in this class. Using this equationwe show that there are
inûnitely many homogeneous Einstein metrics on S4n+3 of constant Ricci curvature 1 and vanishing
S-curvature. hey contain the canonical metric on S4n+3 of constant sectional curvature 1 and the
Einstein metric of non-constant sectional curvature given by Jensen in 1973.

1 Introduction

A Finsler metric F on an n-dimensional manifold M is said to be Einstein if its Ricci
curvature satisûes

Ric = (n − 1)κF2 ,
where κ = κ(x) is a constant. In particular, F is said to be Ricci-constant if κ is a con-
stant. Ricci-constant (or Einstein and dimension ≥ 3) Finsler metrics are the natural
extension of Einstein Riemann metrics.

In [3], S. S. Chern has asked: does every smooth manifold admit a Ricci-constant
(or Einstein) Finsler metric (also see [1, 6, 8])? Recently, the ûrst author showed that
if the Lie group G is nilpotent and noncommutative, then G does not admit any le�
invariant Ricci-constant Finsler metric [6]. Very recently, the ûrst author studied a
class of homogenous Finsler metrics of vanishing S-curvature on a 7-dimensional
sphere S7. He found a second order ODE that characterizes Einstein metrics with
constant Ricci curvature 1 in this class [8]. Moreover,Huang showed that its two linear
solutions correspond to the canonical metric on S7 of constant sectional curvature 1
and the Einstein metric of non-constant sectional curvature given by Jensen in 1973
[9], respectively.

We know that the standard action of Sp(2) on the sphere S7 ⊂ H2 is transitivewith
isotropy subgroup Sp(1). hus, S7 = Sp(2)/Sp(1) is a reductive homogeneous space
onwhich Sp(2) acts transitively. Recall that a Finslermetric F on S7 = Sp(2)/Sp(1) is
said to be homogeneous if F is invariant by Sp(2). Similarly, we can deûne the notion
of homogeneous Finsler metric on reductive homogeneous space S4n+3 = Sp(n + 1)/
Sp(n) (see Section 2).
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his paper studies a class of homogeneous Finsler metrics on S4n+3. We show
that these homogeneous Finsler metrics are of vanishing S-curvature (see Proposi-
tion 3.6 below). he S-curvature is one of most important non-Riemannian quanti-
ties in Finsler geometry. It interacts with the �ag curvature in a delicate way [11]. It is
shown that the Bishop–Gromov volume comparison holds for Finsler manifold with
vanishing S-curvature [13]. Shen proves that the S-curvature and the Ricci curvature
determine the local behavior for the Busemann–Hausdorò measure of small metric
balls around a point [14]. We know that the S-curvature vanishes for Berwaldmetrics
including Riemannian metrics [13].

In the spirit of [8], we establish a second order ordinary diòerential equation that
characterizes Einstein metrics with constant Ricci curvature 1 among these homoge-
neous metrics on S4n+3. Precisely, we prove the following theorem.

heorem 1.1 he Finsler metric F, deûned in (2.14), has constant Ricci curvature,
Ric = (4n + 2)F2, if and only if

(1.1) (8n + 4)ϕ = 4n + 5 + 3ψ + (2nψ2 − 4nψ − 3ψ − 2n − 1)s + 2s(1 − s)(1 − sψ)ψ′ ,

where ψ is given in (3.10).

By investigating (1.1) and the regularity condition, we show that there are only two
linear solutions ofODE (1.1). Furthermore, two linear solutions satisfy regularity con-
dition and correspond to the canonical metric on S4n+3 of constant sectional curva-
ture 1 and to the Einstein metric of non-constant sectional curvature given by Jensen
in 1973 [9, 17], respectively.
Combining this with the theory of vector ûelds, we prove the following theorem.

heorem 1.2 On S4n+3, there are inûnitelymany homogeneous Einstein Finsler met-
ricswith constant Ricci curvature 1 and vanishing S-curvature. Furthermore, thesemet-
rics depend on two parameters.

Wewill proveheorem 1.2 in Section 4. For related results of Einstein Finsler met-
rics, we refer the reader to [2, 5, 12, 15, 16].

2 Preliminaries

Let F be a Finsler metric on a manifold M and let (x i) be a local chart on M. hen
we have a natural local coordinate (x i , y i) on TM/{0}. Let gy = g i jdx i ⊗dx j , where
g i j = 1

2 (F
2)y i y j . Furthermore, we can deûne the Cartan tensor by Cy = C i jkdx i ⊗

dx j ⊗ dxk , where C i jk = 1
2 (g i j)yk .

he standard action of Sp(n + 1) on the sphere S4n+3 ⊂ Hn is transitive with
isotropy subgroup Sp(n) at the point o = (0, . . . , 0, 1). hus, S4n+3 = Sp(n+1)/Sp(n)
is a reductive homogeneous space. A Finsler metric F on S4n+3 = Sp(n + 1)/Sp(n) is
said to be homogeneous if F is invariant under the action of Sp(n+ 1) [8]. A (4n+3)-
dimensional Finsler sphere (S4n+3 , F) is said to be homogeneous if F is homogeneous.

In the following, we will discuss homogeneous Finsler sphere (S4n+3 , F). To as-
sign a Sp(n + 1)-invariant Finsler metric on S4n+3 = Sp(n + 1)/Sp(n), it suõces to
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assign a Sp(n)-invariant Minkowski norm on ToS4n+3, where o = (0, . . . , 0, 1), and
then translate to other tangent space by the action of Sp(n + 1) [4]. Similarly, every
Sp(n+ 1)-invariant object on S4n+3 can be viewed as an Sp(n)-invariant on ToS4n+3.

Since Sp(n + 1) is compact, there exists an Ad(Sp(n))-invariant subspace m of
sp(n + 1) that is complimentary to sp(n), namely, we have the direct sum decom-
position sp(n + 1) = sp(n) + m. he Ad(Sp(n))-invariance of m is equivalent to
[sp(n),m] ⊂ m, because Sp(n) is connected.
For each X ∈ sp(n + 1), the action of the 1-parameter subgroup φt = exp(tX) on

S4n+3 induces a vector ûeld X∗ on S4n+3. he map sending X to X∗(o) is a linear
isomorphism betweenm and ToS4n+3. From now on, we will always identity ToS4n+3

with m in this manner. Henceforth, theMinkowski norm F on ToS4n+3 will be iden-
tiûed with aMinkowski norm on m.
Deûne Q ∶ g × g→ R by

(2.1) Q(u, v) = − tr(uv),

where g ∶= sp(n + 1) is the Lie algebra of Sp(n + 1). hen Q is a (positive deûnite)
inner product. A simple calculation gives the formula

(2.2) Q([u, v],w) + Q([v , [u,w]) = 0.

It follows that Q isAd(G) invariant, where G = Sp(n+ 1). Moreover, g = h+m0 +m1
and the subspaces h,m0 ,m1 aremutually orthogonal with respect to Q, where

h = { (A 0
0 0) ∈ g} = sp(n),(2.3)

m0 = { (0 0
0 a) ∣ a + a = 0, a ∈ H} ,(2.4)

m1 = { ( 0 ξ
−ξ∗ 0) ∣ ξ ∈ H} ≃ Hn .(2.5)

Lemma 2.1 For y0 ∈ m0 and y1 ∈ m1, we have

Q([y0 , y1], [y0 , y1]) = Q(y0 , y0)Q(y1 , y1).

Proof his is proved by

(2.6) y0 = (0 0
0 a) and y1 = ( 0 ξ

−ξ∗ 0) .

Taking this together with (2.1), we obtain

Q(y0 , y0) = − tr(0 0
0 a2) = −a2 ,

Q(y1 , y1) = − tr(−ξξ
∗ 0

0 −ξ∗ξ) = tr(ξξ∗) + ξ∗ξ = 2ξ∗ξ.(2.7)
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On the other hand, from (2.6) one obtains [y0 , y1] = ( 0 0
−aξ∗ 0 ) − ( 0 ξa

0 0 ) = −( 0 ξa
aξ∗ 0 ).

Combining this with (2.1), (2.6) and (2.7), we get

Q([y0 , y1], [y0 , y1]) = − tr(−ξa
2ξ∗ 0
0 −aξ∗ξa) = Q(y0 , y0)Q(y1 , y1). ∎

Lemma 2.2 Let {e i} be an orthonormal basis ofm1 with respect to the inner product
Q. hen for y1 ∈ m1, we have

(2.8) Σ iQ([y1 , e i], [y1 , e i]m) = 3Q(y1 , y1).

Proof Deûne f ∶ m1 → R+ ∪ {0} by
(2.9) f (X) ∶= Q([y1 , X], [y1 , X]m) .
We claim that the sum Σ i f (e i) does not depend on the choice of the orthonormal
basis {e i}. In fact,
(2.10) f (e i) = Q([y1 , e i], [y1 , e i]m) = −Q( e i , [y1 , [y1 , e i]]m) ,
wherewe havemade use of (2.2) and (2.9). By using (2.5), (2.3), and (2.4), one obtains

(2.11) [m0 ,m0] ⊂ m0 , [m0 ,m1] ⊂ m1 , [m1 ,m1] ⊂ m0 + h

and [h,m0] = 0, [h,m1] ⊂ m1 . From (2.11) we have, for y1 ∈ m1, [y1 , [y1 , v]]m ∈ m1 .
It follows that P(v) ∶= −[y1 , [y1 , v]]m , v ∈ m1 deûned a linear operator P ∶ m1 → m1.
Furthermore, trP = Σ iQ(e i ,−[y1 , [y1 , e i]]m) = Σ i f (e i), where we have used (2.10).
As a result, Σ i f (e i) is independent of the choice of the orthonormal basis {e i}.

We describe an orthonormal basis ofm1 as follows. Let {Yα} be the standard basis
of Hn over H. hen {Yα , iYα , jYα , kYα} is a basis of Hn over R, where i, j, k are pure
imaginary quaternions satisfying

ii = −1, jj = −1, kk = −1, ij = −ji = k, jk = kj = i, ki = ik = j.

For ξ ∈ Hn , denote ( 0 ξ
−ξ∗ 0 ) by ξ̂. hen Q(ξ̂, η̂) = − tr( −ξη

∗ 0
0 −ξ∗η ) = tr(ξη∗) + ξ∗η =

2Re(ξ∗η), where η ∈ Hn . It follows that

(2.12) { 1√
2
Ŷα ,

1√
2
îYα ,

1√
2
ĵYα ,

1√
2
k̂Yα}

is an orthonormal basis of m1. Let y1 ,w ∈ m1. We can assume that y1 = ξ̂, w = σ̂ ,
where ξ, σ ∈ Hn . Direct calculations yield

[y1 ,w] = (σ ξ
∗ − ξσ∗ 0
0 σ∗ξ − ξ∗σ) , [y1 ,w]m = (0 0

0 σ∗ξ − ξ∗σ) ,

where we have used (2.3). Together with (2.1) and (2.9) we have

f (w) = Q([y1 ,w], [y1 ,w]m) = − tr(0 0
0 (σ∗ξ − ξ∗σ)2)

= −(σ∗ξ − ξ∗σ)2 .

(2.13)

For τ ∈ H, we have the identity

−(τ − τ∗)2 − (−iτ − τ∗i)2 − (−jτ − τ∗j)2 − (−kτ − τ∗k)2 = τ∗τ.
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Note that ΣαYαY∗
α is an unit matrix. Combining this with (2.7), (2.12), and (2.13), we

obtain (2.8). ∎

Now we are going to describe our Finsler metrics. Note that S4n+3 = Sp(n + 1)/
Sp(n) is single colored andm(= m0 +m1) ≃ ToS4n+3, where o = (0, . . . , 0, 1) ∈ S4n+3.
We think of the Finsler metric on S4n+3 as aMinkowski norm on m [7, 8].

Let y ∈ m∖{0} and let y0 and y1 be the component of y inm0 andm1 respectively.
Deûne

(2.14) F(y) ∶=
√

Q(y, y)ϕ(s), s ∶= Q(y0 , y0)
Q(y, y) .

From (2.2) we have

(2.15) Q(Ad(h)y, Ad(h)y) = Q(y, y)
for h ∈ Sp(n), y ∈ m. On the other hand, by [16],

(2.16) m0 = {X ∈ m ∣ Ad(h)X = X ,∀h ∈ Sp(n)} .

It follows that Ad(h)m1 = m1 . Combining this with (2.16) yields (Ad(h)y)0 = y0 .
From which, together with (2.14) and (2.15), we obtain F(Ad(h)y) = F(y) for h ∈
Sp(n), y ∈ m. hus the Finsler metric (2.14) is invariant under the action of Sp(n+ 1)
(see [7] and [4,heorem 1.3]).

To ensure regularity, the C∞ function ϕ ∶ [0, 1]→ R+ should satisfy

ϕ + (1 − s)ϕ′ > 0, ϕ + (1 − s)ϕ′ + 2s(1 − s)ϕ′′ > 0,(2.17)

ϕ − sϕ′ > 0, ϕ − sϕ′ + 2s(1 − s)ϕ′′ > 0.

Let ϕ = 1
2 (1 + s). hen F(y) = 1/

√
2
√

2Q(y0 , y0) + Q(y1 , y1). he metric F is the
standardmetric on S4n+3 of constant sectional curvature 1 [16]. Let

ϕ = 4n2 + 14n + 9
2(2n + 1)(2n + 3)

( 1 − 2n + 1
2n + 3

s) .

hen

F(y) =
¿
ÁÁÀ 4n2 + 14n + 9

2(2n + 1)(2n + 3)

√
2

2n + 3
Q(y0 , y0) + Q(y1 , y1).

hemetric F is the Einstein metric given by Jensen in 1973 [9, 16, 17].

3 The Einstein Equation

In this section,we are going to calculate theRicci curvature of the Finslermetric given
in (2.14) and give the proof ofheorem1.1. We deûne a trivial �at connectionD,which
is just directional derivatives.

Lemma 3.1 For any v ∈ m, we have Dv s = ds(v) = 2
Q(y ,y) [Q(y0 , v0) − sQ(y, v)],

where v0 (resp., y0) is the component of v (resp., y) in m0.

Proof By simple calculations, we have

(3.1) Dv y = v , Dv y0 = v0 .
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It follows that

(3.2) Dv[Q(y, y)] = Q(Dv y, y) + Q(y,Dv y) = 2Q(y, v).
Similarly, we have Dv[Q(y0 , y0)] = 2Q(y0 , v), where we have used the second equa-
tion of (3.1). Combining this with (2.14) and (3.2), we obtain

Dv s = Dv[
Q(y0 , y0)
Q(y, y) ]

= Q(y, y)Dv[Q(y0 , y0)] − Q(y0 , y0)Dv[Q(y, y)]
[Q(y, y)]2

= 2
Q(y, y)

[Q(y0 , v0) − sQ(y, v)] . ∎

Lemma 3.2 For any v ∈ m, we have gy(y, v) = Dv( F
2

2 ) = ϕ′Q(y0 , v0)+
(ϕ − sϕ′)Q(y, v).

Proof In fact,

gy(y, v) = g i j y iv j = v j ∂
∂y j (

F2

2
)

= Dv(
F2

2
) = 1

2
Q(y, y)Dvϕ +

ϕ
2
Dv[Q(y, y)]

= ϕ′

2
Q(y, y)Dv s + ϕQ(y, v) = ϕ′Q(y0 , v0) + (ϕ − sϕ′)Q(y, v),

where we havemade use of (3.2) and Lemma 3.1 ∎

Lemma 3.3 For any v ,w ∈ m, we have

gy(v ,w) = ϕ′Q(v0 ,w0) + (ϕ − sϕ′)Q(v ,w)

+ 2ϕ′′

Q(y, y)
[Q(y0 , v0) − sQ(y, v)][Q(y0 ,w0) − sQ(y,w)] .

Proof Using Lemma 3.2, we obtain

gy(w , v) = g i jw iv j = w i ∂
∂y i [v

j ∂
∂y j (

F2

2
)](3.3)

= DwDv(
F2

2
) = (I) + (II) + (III) + (IV),

where

(3.4) (I) ∶= (Dwϕ′)Q(y0 , v0) =
2ϕ′′

Q(y, y)Q(y0 , v0)[Q(y0 ,w0) − sQ(y,w)] ,

where we used the fact Dwϕ′ = ϕ′′Dw s = 2ϕ′′

Q(y ,y) [Q(y0 ,w0) − sQ(y,w)]. In (3.3),

(II) ∶= ϕ′Dw[Q(y0 , v0)](3.5)

= ϕ′[Q(Dw y0 , v0) + Q(y0 ,Dwv0)] = ϕ′Q(v0 ,w0),
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where we have used the fact Dv y0 = v0 ,Dw y0 = 0. In (3.3),

(3.6) (III) ∶= [Dw(ϕ − sϕ′)]Q(y, v) = −2ϕ′′s
Q(y, y)Q(y, v)[Q(y0 ,w0) − sQ(y,w)] ,

where we have used Lemma 3.1. In (3.3),

(3.7) (IV) ∶= (ϕ − sϕ′)[Q(Dw y, v) + Q(y,Dwv)] = (ϕ − sϕ′)Q(v ,w),

where we have made use of the ûrst equation of (3.1). Substituting (3.6), (3.7), (3.4),
and (3.5) into (3.3) we obtain Lemma 3.3. ∎

For each y ∈ m/{0}, there is a unique vector η in m satisfying gy(η, v) = gy(y,
[v , y]m), for all v ∈ m, where the subscript m means a projection to the subspace m
[7, 8]. he vector η is called the spray vector at y.

Lemma 3.4 he spray vector η at y satisûes η = −ϕ′

ϕ−sϕ′ [y0 , y1], where y0 (resp., y1) is
the component of y in m0 (resp.,m1).

Proof Set η̃ = −ϕ′

ϕ−sϕ′ [y0 , y1]. Note that the subspacesm0 ,m1 aremutually orthogonal
with respect to Q. Combining this with Lemma 3.2 and (2.1), we get

(3.8) gy( y, [v , y]m) = −ϕ′Q( y0 , [y, v]) = −ϕ′Q([y0 , y1], v) .

According to Lemma 3.3, we obtain

gy([y0 , y1], v) = ϕ′Q([y0 , y1]m0 , v0) + (ϕ − sϕ′)Q([y0 , y1], v)

+ 2ϕ′′

Q(y, y)(I)
[Q(y0 , v0) − sQ(y, v)] ,

where

(I) ∶ = Q( y0 , [y0 , y1]m0) − sQ( y, [y0 , y1])
= −sQ( y0 , [y0 , y1]) − sQ( y1 , [y0 , y1]) = 0.

Plugging (3.8) into (3.7) andusing the second equation of (2.15)wehave gy([y0 , y1], v)
= (ϕ − sϕ′)Q([y0 , y1], v). It follows that gy(η̃, v) = −ϕ′

ϕ−sϕ′ gy([y0 , y1], v) =
−ϕ′Q([y0 , y1], v). Combining this with (3.6) we have gy(η̃, v) = gy(y, [v , y]m), for
all v ∈ m. Now our conclusion can be obtained from the uniqueness of the spray vector
at y. ∎

Lemma 3.5 For any v ∈ m we have

(3.9) Dvη = ψ′Dv s ⋅ [y0 , y1] + ψ[v0 , y1] + ψ[y0 , v1],

where

(3.10) ψ ∶= ψ(s) = ϕ′

ϕ − sϕ′
.

Consequently, Dvη ∈ m1 for any v ∈ m.
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Proof By (3.1), we obtain Dv y1 = Dv(y − y0) = Dv y −Dv y0 = v − v0 = v1 . It follows
that

Dvη = Dv{
−ϕ′

ϕ − sϕ′
[y0 , y1]} = ψ′Dv s ⋅ [y0 , y1] + ψ[v0 , y1] + ψ[y0 , v1],

where we have used (3.1) and (3.10). ∎

For each y in m/{0}, there is, by [7, 8], a unique (1, 1) tensor N on m satisfying

2gy(N(v), u) = gy([u, v]m , y) + gy([u, y]m , v)
+ gy([v , y]m , u) − 2Cy(u, v , y), ∀u, v ∈ m.

his tensor N is called the connection operator at y. By using the trivial �at connection
D, the connection operator is given by

(3.11) N = 1
2
Dη − 1

2
adm(y),

where adm(y) denotes the linear map sending v ∈ m to [y, v]m. It follows that

N2 = N ○ N = 1
4
Dη ○ Dη − 1

4
adm(y) ○ Dη − 1

4
Dη ○ adm(y) + 1

4
adm(y) ○ adm(y)

Taking the trace of this equation yields

(3.12) tr(N2) = 1
4

tr(Dη ○ Dη) − 1
2
tr(Dη ○ adm(y)) + 1

4
tr(adm(y) ○ adm(y)).

Proposition 3.6 he Finsler metric deûned by (2.14) has vanishing S-curvature.

Proof he compactness ofG = Sp(n+1) implies thatG is unimodular [6]. Together
with [10, Lemma 6.3] we obtain tr ad(y) = 0. Since ad(y) maps h into m, we have

(3.13) tr adm(y) = tr ad(y) = 0.

here is a simple relation between the connection operator and the S-curvature.

(3.14) S(y) = tr(N) + tr adm(y) = tr(N),
where we have used (3.13). Combining this with (3.11) and (3.13), we obtain

(3.15) S(y) = tr ( 1
2
Dη − 1

2
adm(y)) = 1

2
trDη.

Let {e i} be an orthonormal basis of m1 with respect to the inner product Q. Lemma
3.5 tells us that

trDη = trm1 Dη = Σ iQ(e i ,De i η)
= Σ iQ( e i ,ψ′De i s ⋅ [y0 , y1] + ψ[y0 , e i])
= ψ′Σ iDe i s ⋅ Q( e i , [y0 , y1]) + ψΣ iQ( e i , [y0 , e i]) ,

(3.16)

where we havemade use of

(3.17) (e i)0 = 0.

From (2.2), we obtain

(3.18) Q( e i , [y0 , e i]) = Q( y0 , [e i , e i]) = 0.
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By (3.17) and Lemma 3.1 we have

(3.19) De i s = ds(v) = −
2s

Q(y, y)Q(y, e i).

Plugging (3.18) and (3.19) into (3.16) we have

trDη = − 2sψ′

Q(y, y)Σ iQ(y, e i)Q( e i , [y0 , y1])

= − 2sψ′

Q(y, y)Σ iQ( y1 , [y0 , y1]) = − 2sψ′

Q(y, y)Σ iQ( y0 , [y1 , y1]) = 0,

(3.20)

wherewe have used (2.2) and the second equation of (2.11). Plugging (3.20) into (3.15)
yields Proposition 3.6. ∎

Lemma 3.7 Let F be a Finslermetric on S4n+3 deûned in (2.12). hen its spray vector
η at y satisûes

(3.21) tr(Dη ○ Dη) = 4sψ[ s(1 − s)ψ′ − nψ]Q(y, y),
where ψ is deûned in (3.10).

Proof For any v ∈ m, we have Dη ○Dη(v) = Dη (Dη(v)) = DDη(v)η = DDv ηη from
which, together with (2.2) and (3.9), we obtain

tr(Dη ○ Dη) = Σ iQ( e i ,Dη ○ Dη(e i))
= Σ iQ(e i ,DDe i ηη) = ψ′Σ i(I)i Q( e i , [y0 , y1]) + ψΣ i(II)i ,

(3.22)

where

(3.23) (II)i ∶= Q([e i , y0],De i η) = Q([e i , y0],ψ′De i s ⋅ [y0 , y1] + ψ[y0 , e i]) ,
where {e i} is an orthonormal basis of m1 with respect to the inner product Q. In
(3.22),

(I)i ∶= DDe i ηs =
2

Q(y, y)
[Q(y0 , (De i η)0) − sQ(y,De i η)](3.24)

= − 2s
Q(y, y)Q(y,De i η),

where we have used Lemmas 3.1 and 3.4. Plugging (3.23) and (3.24) into (3.22) yields

(3.25) tr(Dη ○ Dη) = − 2s
Q(y, y)Σ iQ(y,De i η)Q( e i , [y0 , y1])

+ ψΣ iQ([e i , y0],ψ′De i s ⋅ [y0 , y1] + ψ[y0 , e i])

By (2.2),we see thatQ(y, [y0 , y1]) = Q([y0 , y0], y1)−Q([y1 , y1], y0) = 0 fromwhich,
together with Lemma 3.5, we obtain

Q(y,De i η) = Q( y,ψ′De i s ⋅ [y0 , y1] + ψ[y0 , e i])
= ψ′De i s ⋅ Q( y, [y0 , y1]) + ψQ(y, [y0 , e i])
= −ψQ([y0 , y], e i]) = −ψQ([y0 , y1], e i) .
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It follows that

∑
i

Q(y,De i η)Q(e i , [y0 , y1])(3.26)

= −ψΣ i[Q([y0 , y1], e i)]
2 = −ψQ([y0 , y1], [y0 , y1])

= −ψQ(y0 , y0)Q(y1 , y1) = −s(1 − s)ψ[Q(y, y)] 2
,

where we have used Lemma 2.1 and the second equation of (2.14). Note that dimR =
4n. Combining with Lemma 2.1, we have

(3.27) Σ iQ([e i , y0], [y0 , e i]) = −Q(y0 , y0)Σ iQ(e i , e i) = −4nQ(y0 , y0).

A similar calculation of (3.24) yields De i s = − 2s
Q(y ,y)Q(y1 , e i). It follows that

∑
i

Q([e i , y0],De i s ⋅ [y0 , y1]) = Σ iDe i s ⋅ Q([e i , y0], [y0 , y1])

= − 2s
Q(y, y)Q

( y1 , [y0 , [y0 , y1]])

= 2s
Q(y, y)Q

([y0 , y1], [y0 , y1])

= 2s2(1 − s)Q(y, y).

(3.28)

Plugging (3.26), (3.27), and (3.28) into (3.25) yields

tr(Dη ○ Dη) = 4s2(1 − s)ψψ′Q(y, y) − 4nψ2Q(y0 , y0)
= 4sψ[ s(1 − s)ψ′ − nψ]Q(y, y). ∎

Lemma 3.8 Let F be a Finslermetric on S4n+3 deûned in (2.12). hen its spray vector
η at y satisûes

(3.29) trDη ○ adm(y)) = [2s(s − 1)ψ′ + (3 − 3s − 4ns)ψ]Q(y, y),
where ψ is deûned in (3.10).

Proof Let {e i} be an orthonormal basis of m1 with respect to the inner product Q
and v i = adm(e i)). hen Q(y, v i) = Q(y, [y, e i]) − Q(y, [y, e i]h) = Q([y, y], e i) =
0. Recall that adm(y) denotes the linear map sending v ∈ m to [y, v]m. Together with
Lemma 3.1, we obtain

Dv i s =
2

Q(y, y)
[Q(y0 , (v i)0) − sQ(y, v i)](3.30)

= 2
Q(y, y)Q

( y0 , ([y, e i]m)0)

= 2
Q(y, y)Q

( y0 , ([y, e i]) = 2
Q(y, y)Q

([y0 , y1], e i) .

For any v ∈ m, we have [Dη ○ adm(y)](v) = Dη(adm(y)v) = Dadm(y)vη. In partic-
ular,

[Dη ○ adm(y)](e i) = Dv i η.
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It follows that the linear map Dη ○ adm(y) maps m intom1, where we havemade use
of Lemma 3.5. hus, we have

trDη ○ adm(y))(3.31)
= Σ iQ(e i ,Dη ○ adm(y)(e i))
= Σ iQ(e i ,ψ′Dv i s ⋅ [y0 , y1] + ψ[(v i)0 , y1] + ψ[y0 , (v i)1])
= (I) + (II) + (III),

where we have used (3.31) and Lemma 3.5, and

(I) ∶ = Σ iQ(e i ,ψ′Dv i s ⋅ [y0 , y1]) =
2ψ′

Q(y, y)Σ i[Q([y0 , y1], e i])]
2

(3.32)

= 2ψ′

Q(y, y)Q
([y0 , y1], [y0 , y1]) = 2s(1 − s)ψ′Q(y, y),

where we havemade use of (3.26) and (3.30). Using (2.11), we obtain

(v i)0 = [y0 , e i]m0 + [y1 , e i]m0 = [y1 , e i]m0 + [y1 , e i]m1 = [y1 , e i]m .

In (3.32),

(II) ∶ = Σ iQ( e i ,ψ[(v i)0 , y1])(3.33)

= ψΣ iQ([y1 , e i], [y1 , e i]m)
= 3ψQ(y1 , y1) = 3s(1 − s)ψ ⋅ Q(y, y),

where we have used (2.2), (3.27), and (3.33). By (2.11), we have

(3.34) (v i)1 = [y, e i]m∣m1 = [y, e i]m1 = [y0 , e i]m1 + [y1 , e i]m1 = [y0 , e i].

In (3.32),

(III) ∶ = Σ iQ(e i ,ψ[y0 , (v i)1)(3.35)
= ψΣ iQ([e i , y0], (v i)1) = −ψΣ iQ(y0 , y0)Q(e i , e i)
= −4nsψ ⋅ Q(y, y),

wherewe havemade use of (2.2), (3.34), Lemma 2.1 and the second equation of (2.14).
Plugging (3.32), (3.33), and (3.35) into (3.31) yields (3.21). ∎

Proposition 3.9 Let F be a Finsler metric on S4n+3 deûned in (2.12). hen its Ricci
curvature Ric at y satisûes

(3.36) Ric(y) = 1
2
Q(y, y)

× [4n + 5 + 3ψ + (2nψ2 − 4nψ − 3ψ − 2n − 1)s + 2s(1 − s)(1 − sψ)ψ′] .

Proof By [7, Corollary 4.9], we have

(3.37) Ric(y) = − trm ( ad(y) ○ adh(y)) + Dη( tr(N)) − tr(N2).
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From (3.14) and Proposition 3.6, we obtain tr(N) = S = 0. Plugging this into (3.37)
yields

Ric(y) = − trm ( ad(y) ○ adh(y)) − tr(N2)(3.38)

= (I) − trm ( ad(y) ○ adh(y)) −
1
4

tr ( adm(y) ○ adm(y)) ,

where

(I) = 1
2
tr(Dη ○ adm(y)) − 1

4
tr(Dη ○ Dη)

= [nsψ2 − s2(1 − s)ψψ′ + s(1 − s)ψ′ + 3
2
(1 − s)ψ − 2nsψ]Q(y, y),

where we have used (3.12), (3.21), and (3.29). Substituting this into (3.38) yields

(3.39) Ric(y) = − trm ( ad(y) ○ adh(y)) −
1
4

trm ( adm(y) ○ adm(y))

+ [nsψ2 − s2(1 − s)ψψ′ + s(1 − s)ψ′ + 3
2
(1 − s)ψ − 2nsψ]Q(y, y).

Let ϕ = 1
2 (1 + s). hen ϕ′ = ϕ − sϕ′ = 1

2 . It follows that ψ = −1,ψ′ = 0, where ψ is
deûned in (3.10). Hence the Ricci curvature Ric of F ∶=

√
Q(y, y)(1 + s)/2 is given

by

Ric = Q(y, y)[3ns− 3
2
(1− s)] − trm ( ad(y)○ adh(y)) −

1
4

trm ( adm(y)○ adm(y)) .

We know that F is the standard metric on S4n+3 of constant sectional curvature 1. It
follows that Ric = (4n+2)F2 = (2n+ 1)(1+ s)Q(y, y). Plugging this into (3.39) yields
(3.36). ∎

Remark When n = 1, (3.36) is equivalent to the following formula given in [8]:

Ric(y) = 2g(y, y)
(φ − tφ′)3

× [2t(t − 1)φφ′′ + t2(4t − 5)φ′3 + t(8 − 5t)φφ′2 − (2t + 3)φ2φ′ + 3φ3] ,

where s = t
2−t , ϕ(s) =

φ(t)
2−t .

Proof of Theorem 1.1 By (3.36) and the ûrst equation of (2.14),

(8n + 4)ϕ = 2(4n + 2)
Q(y, y) F

2

= 4n + 5 + 3ψ + (2nψ2 − 4nψ − 3ψ − 2n − 1)s
+ 2s(1 − s)(1 − sψ)ψ′ .

Inspection shows that there are two solutions of (1.1) in the form ϕ(s) = λ + µs,
given by

(3.40) ϕ(s) = 1
2
(1 + s), ϕ(s) = 4n2 + 14n + 9

2(2n + 1)(2n + 3)( 1 − 2n + 1
2n + 3

s) .
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In fact, they are the only linear solutions of (1.1). When n = 1, (3.40) is equivalent
to the following linear solutions of Einstein equation given in [8]: φ(t) = 1, φ(t) =
9
5 −

36
25 s, where s = t/(2 − t), ϕ(s) = φ(t)/(2 − t). ∎

4 Regularity of Solutions

In this section we are going to investigate the regularity of solutions of the ordinary
diòerential equation (1.1). Concretely, we will discuss the following two problems.
(i) Are there any nontrivial solutions of (1.1) that satisfy the regularity condition

(2.17)?
(ii) How many regular solutions are there?

he ûrst problem is easy to answer. Two linear solutions ϕ(s) = λ + µs are always
regular. In this case, the four inequalities in (2.17) are all reduced to the inequality
min{λ, λ + µ} > 0, because ϕ − sϕ′ = ϕ − sϕ′ + 2s(1 − s)ϕ′′ = λ and ϕ + (1 − s)ϕ′ =
ϕ + (1 − s)ϕ′ + 2s(1 − s)ϕ′′ = λ + µ. Moreover, for the linear solutions (1.1),

min{λ, λ + µ} = 1
2

and min{λ, λ + µ} = 4n2 + 14n + 9
(2n + 1)(2n + 3)2 ,

respectively. hey correspond to the canonical metric on S4n+3 of constant sectional
curvature 1 and the Einstein metric of non-constant sectional curvature given by
Jensen in 1973 [9, 16, 17], respectivel.

Observe that (3.10) is equivalent to the equation ϕ′ = −ϕψ
1−sϕ . It follows that F has

constant Ricci curvature, Ric = (4n + 2)F, if and only if (ϕ, φ) satisûes

(4.1)

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

ψ′ = (8n + 4)ϕ − 4n − 5 − 3ψ − (2nψ2 − 4nψ − 3ψ − 2n − 1)s
2s(1 − s)(1 − sψ) ,

ϕ′ = −ϕψ
1 − sψ

.

A solution of (1.1) gives rise to a curve s ↦ (s, ϕ(s),ψ(s)) in R3 with coordinate
(s, ϕ,ψ). For instance, for the linear solutions (3.40), they correspond the following
curves:

ΓC ∶ s z→ ( s,
1 + s
2
,−1) ,

ΓJ ∶ s z→ ( s,
4n2 + 14n + 9

2(2n + 1)(2n + 3)( 1 − 2n + 1
2n + 3

s) , 2n + 1
2n + 3

) .

By (3.10) and (4.1), ϕ satisûes the regularity conditions (2.15) if and only if

(1 − ψ)ϕ
1 − sψ

> 0, ϕ
Θ − (8n − 4)ϕ − (1 − sψ)2ψ

(1 − sψ)3 > 0,(4.2)

ϕ
1 − sψ

> 0, ϕ
Θ − (8n − 4)ϕ

(1 − sψ)3 > 0,

where Θ ∶= s2ψ2 + 2nsψ2 − s(4n + s)ψ − (2n + 1)s + 3ψ + 4n + 6. Note that Q is a
positive deûnite inner product. It follows that

(4.3) ϕ > 0, s ≥ 0,
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wherewehaveused (2.14). Furthermore,Q(y, y) = Q(y0 , y0)+Q(y1 , y1) ≥ Q(y0 , y0).
Hence, we have

(4.4) 0 ≤ s ≤ 1.

Togetherwith the ûrst equation of (4.3),we obtain that (4.2) is equivalent to (4.4) and

ψ < 1, 0 < (8n + 4)ϕ < min{Θ,Θ − ψ(1 − sψ)2} .

Deûne Ω ∶= {(s, ϕ,ψ) ∈ [0, 1] × (−∞, 1) × (0, 1
8n+4 min[Θ,Θ − ψ(1 − sψ)2])} . hen

Ω looks like a bottom-free box with one face bent. Deûne X = (1, X2 , X3), where

X2 =
−ϕψ
1 − sψ

,

X3 =
(8n + 4)ϕ − 4n − 5 − 3ψ − (2nψ2 − 4nψ − 3ψ − 2n − 1)s

2s(1 − s)(1 − sψ) .

hen the vector ûeld X has no singularities in the interior of Ω. Consequently, ev-
ery integral curve will eventually cross the boundary of Ω. It follows from (4.1) that
d
d s (s, ϕ,ψ) = (1, ϕ′ ,ψ′) = X . Hence, the solutions of (4.1) can also be described as the
integral curves of vectorûeld X. It is easy to see that a solution (ϕ,ψ) of (4.1) is regular,
if and only if the corresponding integral curve (s, ϕ(s),ψ(s)) lies in Ω and it connects
the two boundary plane s = 0 and s = 1. he ûrst linear solution in (3.40) gives rise to
a line segment that connects the two points p0 = (0, 1

2 ,−1) and p1 = (1, 1,−1). Since
p0 and p1 are interior points in the corresponding boundary planes,we conclude that
the nearby integral curves also connect the two planes; thus, they are also regular.
Similarly, the second linear solution in (1.1) gives rise to a line segment that connects
the two points

p2 = (0, 4n2 + 14n + 9
2(2n + 1)(2n + 3) ,

2n + 1
2n + 3

) ,

p3 = ( 1,
4n2 + 14n + 9

(2n + 1)(2n + 3)2 ,
2n + 1
2n + 3

) .

Since p2 and p3 are interior points in the corresponding boundary planes, we con-
clude that the nearby integral curves also connect the two planes; thus, they are also
regular. We have thus completed the proof ofheorem 1.2.

References

[1] D. Bao and C. Robles, Ricci and �ag curvature. In: A Sampler of Riemann-Finsler geometry,Math.
Sci. Res. Inst. Publ., 50, Cambridge University Press, 2004.

[2] X. Cheng, Z. Shen, and Y. Tian, A class of Einstein (α, β)-metrics. Israel J. Math. 192(2012), 221–249.
https://doi.org/10.1007/s11856-012-0036-x.

[3] S. S. Chern, Finsler geometry is just Riemannian geometry without the quadratic restriction. Notices
Amer. Math. Soc. 43(1996), 959–963.

[4] S. Deng and Z. Hou, Invariant Finsler metrics on homogeneous manifolds. J. Phys. A 37(2004), n. 34,
8245–8253. https://doi.org/10.1088/0305-4470/37/34/004.

[5] L. Huang, Einstein Finsler metrics on S3 with nonconstant �ag curvature. Houston J. Math. 37(2011),
1071–1086.

[6] L. Huang, Ricci curvature of le� invariant Finsler metrics on Lie groups. Israel J. Math. 207(2015),
783–792. https://doi.org/10.1007/s11856-015-1161-0.

522

https://doi.org/10.4153/S0008439518000139 Published online by Cambridge University Press

https://doi.org/10.1007/s11856-012-0036-x
https://doi.org/10.1088/0305-4470/37/34/004
https://doi.org/10.1007/s11856-015-1161-0
https://doi.org/10.4153/S0008439518000139


Homogeneous Einstein Finsler Metrics

[7] L. Huang, On the fundamental equations of homogeneous Finsler spaces.Diò. Geom. Appl. 40(2015),
187–208. https://doi.org/10.1016/j.difgeo.2014.12.009.

[8] L. Huang, Flag curvatures of homogeneous Finsler spaces. European J. Math. 3(2017), 1000–1029.
https://doi.org/10.1007/s40879-017-0157-1.

[9] G. R. Jensen, Einstein metrics on principle ûbre bundles. J. Diò. Geom. 8(1973), 599–614.
[10] J. Milnor, Curvatures of le� invariant metrics on Lie groups. Adv. Math. 21(1976), 293–329.

https://doi.org/10.1016/S0001-8708(76)80002-3.
[11] X. Mo, On the �ag curvature of a Finsler space with constant S-curvature. Houston J. Math. 31(2005),

131–144.
[12] E. S. Sevim, Z. Shen, and L. Zhao, On a class of Ricci �at Douglas metrics. Intern. J. Math. 23(2012),

1250046, 15pp. https://doi.org/10.1142/S0129167X12500462.
[13] Z. Shen, Volume comparison and its application in Riemann-Finsler geometry. Adv. Math. 128(1997),

306–328. https://doi.org/10.1006/aima.1997.1630.
[14] Z. Shen, Lectures on Finsler geometry.World Scientiûc Publishing Co., Singapore, 2001.

https://doi.org/10.1142/9789812811622.
[15] Z. Shen and C. Yu, On a class of Einstein Finsler metrics. Internat. J. Math. 25(2014), 1450030, 18pp.

https://doi.org/10.1142/S0129167X1450030X.
[16] H.Wang, L. Huang, and S. Deng, Homogeneous Einstein-Randers metrics on spheres. Nonlinear

Anal. 74(2011), 6295–6301. https://doi.org/10.1016/j.na.2011.06.008.
[17] W. Ziller, Homogeneous Einstein metrics on spheres and projective spaces. Math. Ann. 259(1982),

351–358. https://doi.org/10.1007/BF01456947.

School ofMathematical Sciences, Nankai University, Tianjin 300071, China
e-mail : huanglb@nankai.edu.cn

Key Laboratory of Pure and AppliedMathematics, School ofMathematical Sciences, Peking University, Bei-
jing 100871, China
e-mail : moxh@pku.edu.cn

523

https://doi.org/10.4153/S0008439518000139 Published online by Cambridge University Press

https://doi.org/10.1016/j.difgeo.2014.12.009
https://doi.org/10.1007/s40879-017-0157-1
https://doi.org/10.1007/s40879-017-0157-1
https://doi.org/10.1016/S0001-8708(76)80002-3
https://doi.org/10.1016/S0001-8708(76)80002-3
https://doi.org/10.1142/S0129167X12500462
https://doi.org/10.1006/aima.1997.1630
https://doi.org/10.1142/9789812811622
https://doi.org/10.1142/9789812811622
https://doi.org/10.1142/S0129167X1450030X
https://doi.org/10.1016/j.na.2011.06.008
https://doi.org/10.1007/BF01456947
mailto:huanglb@nankai.edu.cn
mailto:moxh@pku.edu.cn
https://doi.org/10.4153/S0008439518000139

