
1 Introduction

This chapter defines the term “speaker recognition” and looks at this technology from
a high-level perspective. Then, it introduces the fundamental concepts of speaker
recognition, including feature extraction, speaker modeling, scoring, and performance
measures.

1.1 Fundamentals of Speaker Recognition

From time to time we hear that the information of millions of customers of remote
services has been compromised. These security leaks cause concerns about the security
of the remote services that everyone uses on a daily basis. While these remote services
bring convenience and benefit to users, they are also gold mines for criminals to carry
out fraudulent acts. The conventional approach to user authentication, such as user-
names and passwords, is no longer adequate for securing these services. A number of
companies have now introduced voice biometrics as a complement to the conventional
username–password approach. With this new authentication method, it is much harder
for the criminals to imitate the legitimate users. Voice biometrics can also reduce the risk
of leaking customers’ information caused by social engineering fraudulence. Central to
voice biometrics authentication is speaker recognition.

Another application domain of voice biometrics is to address the privacy issues of
smartphones, home assistants, and smart speakers. With the increasing intelligence
capabilities of these devices, we can interact with them as if they were human. Because
these devices are typically used solely by their owners or their family members and
speech is the primary means of interaction, it is natural to use the voice of the owners
for authentication, i.e., a device can only be used by its owner.

Speaker recognition is a technique to recognize the identity of a speaker from a speech
utterance. As shown in Figure 1.1, in terms of recognition tasks, speaker recognition can
be categorized into speaker identification, speaker verification, and speaker diarization.
In all of these tasks, the number of speakers involved can be fixed (closed set) or varied
(open set).

Speaker identification is to determine whether the voice of an unknown speaker
matches one of the N speakers in a dataset, where N could be very large (thou-
sands). It is a one-to-many mapping and it is often assumed that the unknown voice

3

https://doi.org/10.1017/9781108552332.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781108552332.002

4 Introduction

Figure 1.1 Categorization of speaker recognition in terms of tasks (top), text restriction (middle),
and datasets (bottom).

must come from a set of known speakers – referred to as closed-set identification.
Adding a “none of the above” option to closed-set identification gives us open-set
identification.

Speaker verification is to determine whether the voice of an unknown speaker matches
a specific speaker. It is a one-to-one mapping. In closed-set verification, the population
of clients is fixed, whereas in open-set verification, new clients can be added without
having to redesign the system.

Speaker diarization [5] is to determine when speaker changes have occurred in speech
signals, which is an analogy to the speech segmentation task in speech recognition.
When it is also needed to group together speech segments corresponding to the same
speaker, we have speaker clustering. In both cases, prior speaker information may or
may not be available.

There are two input modes in speaker recognition systems: text dependent and text
independent. Text-dependent recognition systems know the texts that will be spoken
by the speakers or expect legitimate users to speak some fixed or prompted phrases.
The phrases are typically very short. Because the phrases are known, speech recog-
nition can be used for checking spoken text to improve system performance. Text-
dependent systems are mainly used for applications with strong control over user input,
e.g., biometric authentication. On the contrary, in text-independent systems, there is no
restriction on the spoken text. Typically, conversational speech is used as the input.
So, the sentences are much longer than those in text-dependent systems. While the
spoken text is unknown, speech recognition can still be used for extracting high-level
features to boost performance. Text-independent systems are mainly used in applica-
tions with less control over user input, e.g., forensic speaker ID. Compared with text-
dependent systems, text-independent systems are more flexible but recognition is more
difficult.

https://doi.org/10.1017/9781108552332.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781108552332.002

1.2 Feature Extraction 5

1.2 Feature Extraction

Speech is a time-varying signal conveying multiple layers of information, including
words, speaker identities, acoustic features, languages, and emotions. Information in
speech can be observed in the time and frequency domains. The most widely used
visualization tool is the spectrogram in which the frequency spectra of consecutive
short-term speech segments are displayed as an image. In the image, the horizontal and
vertical dimensions represent time and frequency, respectively, and the intensity of each
point in the image indicates the magnitude of a particular frequency at a particular time.

While spectrograms are great for visualization of speech signals, they are not appro-
priate for speech and speaker recognition. There are two reasons for this. First, the fre-
quency dimension is still too high. For 1024-point fast Fourier transform (FFT), the
frequency dimension is 512, which is far too large for statistical modeling. Second,
the frequency components after FFT are highly correlated with each other, which do not
facilitate the use of diagonal covariance matrices to model the variability in the feature
vectors. To obtain a more compact representation of speech signals and to de-correlate
the feature components, cepstral representation of speech is often used. The most widely
used representation is the Mel-frequency cepstral coefficients (MFCCs) [6]. Figure 1.2
shows the process of extracting MFCCs from a frame of speech. In the figure, s(n)
represents a frame of speech, X(m) is the logarithm of the spectrum at frequencies
defined by the mth filter in the filter bank, and

oi =
M∑

m=1

cos

[
i

(
m− 1

2

)
π

M

]
X(m), i = 1, . . . ,P (1.1)

are its MFCCs. In Figure 1.2, the symbols � and �� represent velocity and acceleration
of MFCCs, respectively. Denoting e as the log-energy, an acoustic vector corresponding
to s(n) is given by

o = [e,o1, . . . ,oP ,�e,�o1 . . . ,�oP,��e,��o1, . . . ,��oP]T . (1.2)

In most speaker recognition systems, P = 19, giving o ∈ �60.

Filter bank

Figure 1.2 Process of extracting MFCCs from a frame of speech. Refer to Eq. 1.1 and Eq. 1.2 for
oi and o, respectively.

https://doi.org/10.1017/9781108552332.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781108552332.002

6 Introduction

1.3 Speaker Modeling and Scoring

For text-independent speaker recognition, we assume that the acoustic vectors are inde-
pendent. Therefore, speaker modeling amounts to modeling a batch of independent
acoustic vectors derived from speech waveform as shown in Figure 1.3. The process can
be considered as mapping the consecutive frames independently to an acoustic space
(Figure 1.4(a)). In the most traditional approach, the distribution of these vectors is
represented by a Gaussian mixture model (GMM) as shown in Figure 1.4(b).

Figure 1.3 From waveform to a sequence of acoustic vectors.

Feature Space

Signal space

Feature vectors from
many utterances

GMM

(a) (b)

Figure 1.4 Modeling the statistical properties of acoustic vectors by a Gaussian mixture model.

https://doi.org/10.1017/9781108552332.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781108552332.002

1.4 Modern Speaker Recognition Approaches 7

O(t)

O(t

acceptScore

rejectScore

Figure 1.5 GMM–UBM scoring process.

1.3.1 Speaker Modeling

In 2000, Reynolds [7] proposed using the speech of a large number of speakers to train a
GMM to model the acoustic characteristics of a general population. The resulting model
is called the universal background model (UBM). The density of acoustic vectors o’s is
given by

p(o|UBM) = p(o|�ubm) =
C∑

c=1

πubm
c N (o|μubm

c
,�ubm

c). (1.3)

The UBM parameters �ubm = {πubm
c ,μubm

c
,�ubm

c }Cc=1 are estimated by the expectation-
maximization (EM) algorithm [8] using the speech of many speakers. See Section 3.1.1
for the detail of the EM algorithm.

While the UBM represents the general population, individual speakers are modeled
by speaker-dependent Gaussian mixture models. Specifically, for a target-speaker s,
his/her GMM is given by

p(o|Spk s) = p(o|�(s)) =
C∑

c=1

π(s)
c N (o|μ(s)

c
,�(s)

c)

where �(s) = {π(s)
c ,μ(s)

c
,�

(s)
c }Cc=1 are learned by using a maximum a posteriori (MAP)

adaptation [7]. See Section 3.1.3 for the details of a MAP adaptation.

1.3.2 Speaker Scoring

Given the acoustic vectors O(t) from a test speaker and a claimed identity s, speaker
verification amounts to computing the log-likelihood ratio:

SGMM–UBM(O(t)|�(s),�ubm) = log p(O(t)|�(s)) − log p(O(t)|�ubm), (1.4)

where log p(O(t)|�(s)) is the log-likelihood of O(t) given the speaker model �(s).
Figure 1.5 shows the scoring process.

1.4 Modern Speaker Recognition Approaches

GMM–UBM is a frame-based approach in that the speaker models (GMMs) describe
the distribution of acoustic frames. Since its introduction in 2000, it has been the

https://doi.org/10.1017/9781108552332.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781108552332.002

8 Introduction

state-of-the-art method for speaker verification for a number of years. However, it has its
own limitations. One major drawback is that the training of the GMMs and the UBM is
disjointed, meaning that contrastive information between target speakers and impostors
cannot be explicitly incorporated into the training process. Another drawback is that
suppressing nonspeaker information (e.g., channel and noise) is difficult. Although
attempts have been made to suppress channel and noise variabilities in the feature
[9, 10], model [11, 12], and score domains [13], they are not as effective as the modern
approaches outlined below and explained in detail in this book.

In 2006, researchers started to look at the speaker verification problem from another
view. Instead of accumulating the frame-based log-likelihood scores of an utterance,
researchers derived methods to map the acoustic characteristics of the entire utterance
to a high-dimensional vector. These utterance-based vectors live on a high-dimensional
space parameterized by GMMs. Because the dimension is the same regardless of the
utterance duration, standard machine learning methods such as support vector machines
and factor analysis can be applied on this space. The three influential methods based on
this idea are GMM–SVM, joint factor analysis, and i-vectors.

In GMM–SVM [14] (see Section 3.2), supervectors are constructed from MAP-
adapted target-speaker GMMs. For each target speaker, a speaker-dependent SVM is
then trained to discriminate his/her supervectors from those of the impostors. To reduce
channel mismatch, the directions corresponding to nonspeaker variability are projected
out. Scoring amounts to computing the SVM scores of the test utterances and decisions
are made by comparing the scores with a decision threshold.

In joint factor analysis [15] (see Section 3.7), speaker and session variabilities are
represented by latent variables (speaker factors and channel factors) in a factor analysis
model. During scoring, session variabilities are accounted for by integrating over the
latent variables, e.g., the channel factors.

In an i-vector system [16] (see Section 3.6), utterances are represented by the pos-
terior means of latent factors, called the i-vectors. I-vectors capture both speaker and
channel information. During scoring, the unwanted channel variability is removed by
linear discriminant analysis (LDA) or by integrating out the latent factors in a proba-
bilistic LDA model [17].

1.5 Performance Measures

For closed-set speaker identification, recognition rate (accuracy) is the usual perfor-
mance measure:

Recognition rate = No. of correct recognitions

Total no. of trials
.

Speaker verification, on the other hand, has a rich set of performance measures.
Although different datasets have slightly different measures, their principles remain the
same. The common measures include false rejection rate (FRR), false acceptance rate
(FAR), equal error rate (EER), minimum decision cost function (minDCF), and actual
decision cost function (DCF).

https://doi.org/10.1017/9781108552332.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781108552332.002

1.5 Performance Measures 9

1.5.1 FAR, FRR, and DET

The definition of FAR and FRR are as follows:

False rejection rate (FRR) = Miss probability

= No. of true-speakers rejected

Total no. of true-speaker trials
;

False acceptance rate (FAR) = False alarm probability

= No. of impostors accepted

Total no. of impostor attempts
.

Equal error rate (EER) corresponds to the operating point at which FAR = FRR.
The concept of FAR, FRR, and EER can be explained by using the distributions of
speaker scores and impostor scores in two speaker verification systems (System A
and System B) shown in Figure 1.6. When the decision threshold θ is swept from
low to high, FAR drops from 100 percent gradually to 0 percent but FRR gradually
increases from 0 percent to 100 percent. When θ is very large, we have a secure but user-
unfriendly system. On the other hand, when θ is very small, we have a user-friendly but
nonsecure system. A system developer chooses a decision threshold such that the FAR
and FRR meet the requirements of the application.

Error rate

100%

0%

FRR

FAR

System B

System A

System A

System B

1

EER of System BEE

Figure 1.6 Top: Distributions of true-speaker scores and impostor scores of two speaker
verification systems. Bottom: The FAR, FRR, and EER of the two systems.

https://doi.org/10.1017/9781108552332.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781108552332.002

10 Introduction

 increases from small to large in

Figure 1.7 The DET curves correspond to system A and system B in Figure 1.6. System B
performs better because its DET curve is closer to the origin.

Detection error tradeoff (DET) curves [18] are similar to receiver operating charac-
teristic curves but with nonlinear x- and y-axis. The advantage of the nonlinear axes is
that the DET curves of systems with verification scores following Gaussian distributions
will be displayed as straight lines, which facilitate comparison of systems with similar
performance. A DET curve is produced by sweeping the decision threshold of a system
from low to high. Figure 1.7 shows the DET curves of System A and System B in
Figure 1.6.

1.5.2 Decision Cost Function

The decision cost function (DCF) [18] is a weighted sum of the FRR (PMiss|Target) and
FAR (PFalseAlarm|Nontarget):

CDet(θ) = CMiss × PMiss|Target(θ) × PTarget +
CFalseAlarm × PFalseAlarm|Nontarget(θ) × (1 − PTarget),

where θ is a decision threshold, CMiss is the cost of false rejection, CFalseAlarm is the
cost of false acceptance, and PTarget is the prior probability of target speakers. With the
DCF, a normalized cost can be defined:

CNorm(θ) = CDet(θ)/CDefault,

https://doi.org/10.1017/9781108552332.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781108552332.002

1.5 Performance Measures 11

where

CDefault = min

{
CMiss × PTarget

CFalseAlarm × (1 − PTarget).
(1.5)

The normalized DCF and the measures derived from it are the primary performance
index of the NIST speaker recognition evaluations (SRE).1 The parameters in Eq. 1.5
are set differently for different years of evaluations:

• SRE08 and earlier:

CMiss = 10; CFalseAlarm = 1; PTarget = 0.01.

• SRE10:

CMiss = 1; CFalseAlarm = 1; PTarget = 0.001.

In SRE12, the decision cost function has been changed to:

CDet(θ) = CMiss × PMiss|Target(θ) × PTarget + CFalseAlarm × (1 − PTarget)

× [
PFalseAlarm|KnownNontarget(θ) × PKnown

+PFalseAlarm|UnKnownNontarget × (1 − PKnown)
]
,

(1.6)

where “KnownNontarget” and “UnknownNontarget” mean that the impostors are
known and unknown to the evaluator, respectively. Similar to previous years’ SRE, the
DCF is normalized, giving

CNorm(θ) = CDet(θ)/(CMiss × PTarget). (1.7)

The parameters for core test conditions are set to

CMiss = 1; CFalseAlarm = 1; PTarget1 = 0.01; PTarget2 = 0.001; PKnown = 0.5.

Substituting the above PTarget1 and PTarget2 into Eq. 1.6 and Eq. 1.7, we obtain
CNorm1(θ1) and CNorm2(θ2), respectively. Then, the primary cost of NIST 2012 SRE
can be obtained:

CPrimary(θ1,θ2) = CNorm1(θ1) + CNorm2(θ2)

2
. (1.8)

In SRE16, the decision cost was changed to

CDet(θ) = CMiss × PMiss|Target(θ) × PTarget +
CFalseAlarm × PFalseAlarm|Nontarget(θ) × (1 − PTarget).

(1.9)

The normalized DCF remains the same as Eq. 1.7, and the parameters for the core test
conditions are:

CMiss = 1; CFalseAlarm = 1; PTarget1 = 0.01; PTarget2 = 0.001.

The primary cost is computed as in Eq. 1.8.

1 www.nist.gov/itl/iad/mig/speaker-recognition

https://doi.org/10.1017/9781108552332.002 Published online by Cambridge University Press

www.nist.gov/itl/iad/mig/speaker-recognition
https://doi.org/10.1017/9781108552332.002

12 Introduction

Table 1.1 Cost parameters and prior of target-speakers in NIST 2018 SRE.

Speech Type Parameter ID CMiss CFalseAlarm PTarget

CTS 1 1 1 0.01
CTS 2 1 1 0.005

AfV 3 1 1 0.05

Note that in Eq. 1.8, the decision thresholds θ1 and θ2 are assumed unknown and
can be set by system developers. When θ1 and θ2 are optimized to achieve the lowest
CNorm1 and CNorm2, respectively, then we have the minimum primary cost. Sometimes,
researchers simply call it minDCF.

In practical applications of speaker verification, application-independent decision
thresholds [19] are more appropriate. The goal is to minimize not only the EER and
minDCF but also the actual DCF (actDCF) or Cprimary at specific thresholds. For each
SRE, NIST defined specific thresholds to evaluate how well systems were calibrated.
For example in SRE16, θ1 and θ2 were set to 4.5951 and 5.2933, respectively. The
primary cost using these two thresholds are called actual DCF or actual primary cost.
Specifically, we have

CactPrimary = CNorm1(4.5951) + CNorm2(5.2933)

2
.

Any systems with scores that deviate significantly from these two thresholds will get a
high CactPrimary, which could be larger than 1.0.

The decision cost function in SRE18 is identical to that of SRE16 in Eq. 1.9. However,
there are two types of speech: conversational telephone speech (CTS) and audio from
video (AfV). The prior of target-speakers are different for these two types of speech,
as shown in Table 1.1. With the three sets of parameters, the primary cost in Eq. 1.8 is
extended to

CPrimary(θ1,θ2,θ3) = 1

2

[
CNorm1(θ1) + CNorm2(θ2)

2
+ CNorm3(θ3)

]
. (1.10)

Using the PTarget’s in Table 1.1, the actual DCF in SRE18 is

CPrimary = 1

2

[
CNorm1(4.5951) + CNorm2(5.2933)

2
+ CNorm3(2.9444)

]
.

https://doi.org/10.1017/9781108552332.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781108552332.002

