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1. Introduction. The term rank p of a matrix is the order of the largest 
minor which has a non-zero term in the expansion of its determinant. In a 
recent paper (1), the authors made the following conjecture. If S is the sum 
of all the entries in a square matrix of non-negative real numbers and if M 
is the maximum row or column sum, then the term rank p of the matrix is 
greater than or equal to the least integer which is greater than or equal to 
S/M. A generalization of this conjecture is proved in § 2. 

The term doubly stochastic has been used to describe a matrix of non-
negative entries in which the row and column sums are all equal to one. In 
this paper, by a doubly stochastic matrix, the, authors mean a matrix of 
non-negative entries in which the row and column sums are all equal to the 
same real number T. If an n X n matrix A is embedded by the addition to 
A of r rows and columns in an (n + r) X (n + r) matrix B with row and 
column sums equal to T, we say that B is an (r, T) doubly stochastic (abbreviated 
as (r, T) d.s.) extension of A. In (1), the authors made use of a d.s. extension 
of a matrix A to obtain an estimate of the term rank of A. In this paper, the 
authors describe all such extensions and give a necessary and sufficient con
dition that a matrix £ be a vertex matrix of the convex set of all (r, T) d.s. 
extensions of A. 

For a square matrix of non-negative entries, the concept of stochastic rank 
is introduced. Some results concerning this rank are obtained and the con
nection between it and term rank is noted. 

In the final section, the problem of finding all d.s. extensions of a matrix A 
is formulated as a linear programming problem. 

2. A lower bound for term rank. Let / and J be arbitrary sets and 
let f(i, j), i € / , j £ / , be a real-valued non-negative function on I X J which 
is not identically zero. The concept of term rank can be extended to such a 
function f(i,j) as follows. A finite set of pairs (ii,ji), (̂ 2,7*2), . . . , (injr) is 
disjoint if iv — iq only if p = a and if jp = j q only if p = q. A function f(i, j) 
has term rank p if, and only if, there exists a disjoint set of pairs (iuji), 
(̂ 2,7*2), . . . , (ipyjp) such that f(iT,jr) > 0 for r = 1, 2, . . . , p but for any 
disjoint set consisting of p + 1 pairs, f(i,j) — 0 for at least one pair of the 
set. If no such maximal disjoint set exists, the term rank is infinite. 

Let a be the collection of finite subsets of / and r the collection of finite 
subsets of / . In this setting, we have the following theorem. 

Received May 8, 1958. 

269 

https://doi.org/10.4153/CJM-1959-029-8 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1959-029-8


270 A. L. DULMAGE AND N. S. MENDELSOHN 

THEOREM 1. If f(i,j) satisfies the conditions 

(i) Ri = sup 2 f(hj) is finite for all i Ç / 
Btr L jeB J 

and 

(ii) Cj = sup ^ /(^» J) is finite for all j € / 

then either the term rank p of the function f(i, j) is infinite or 

S = sup J2 ]T f(ij) land M = sup[Ru Cj] 
Aea L it A JeB J iel 
Ber je J 

are finite and p is greater than or equal to the least integer which is greater than 
or equal to S/M. 

Proof. Let K be the graph of which the edges are the pairs (i, j) for which 
f(iyj) > 0. The vertex sets of this (bipartite) graph K are I and J. If p is 
finite, the exterior dimension (see (3)) of K is equal to p. If [P, Q] is a minimal 
exterior pair for K and if U, V is any pair of finite subsets of / and Jy then, 
since f(i, j) = 0 for i Ç P and j £ Q, we have 

E £ /(*,./) = E E /(M) 
i€C7 j /cF te t / f lP jeVOQ 

+ Z . Z /(ii) + E E./(».j) 
ie t / f lP j/eTTIQ fee/HP jeFf lQ 

< E E/(*,J) + E E / ( M ) 
ie£7 jeVftQ ieUOP jeV 

ieP jeQ 

which is finite and independent of U and V. 
Now 

s = sup E E /(ii) < Z ^ + S c , 
I7e<r *e*7 
Ver 

so that 5 is finite. Further 

Uea ieU jeV 
Ver 

urther 

ieP jeQ 

Ri = sup 
Ve<r 

E /(*. i)l 
- J e F J 
r~ ~i 

< sup 
Uea 

E E fdJ) = 5, 
L ieC7 jeV -J 

for all i. Similarly Cj < 5 for all j . Thus, 

Af = sup[2?«, Cj] < S so that M is finite. 

Now, let t be the unique integer such that t — 1 < S/ikf < t. We must 
show p > /. If p < / then, since p is integral, we have p < / — 1. If [P, Ç] is 
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a minimal exterior pair for K and v(P) denotes the number of elements in P 
then p = v{P) + v(Q) (3, Theorem 2). It follows that 

PM = (v(P) + v(Q))M > E Rt+T, Cj>S. 
ieP jeQ 

Thus S/M < p < £ — 1, a contradiction. 
If the sets 7 and / in Theorem 1 are finite sets of orders n and m, p becomes 

the term rank of an n X m matrix ati in which atj = f(i,j), M becomes the 
maximum row or column sum and 5 is the sum of all the entries in the matrix. 
If, in addition, n = m, Theorem 1 reduces to the conjecture in (1) referred 
to in the Introduction. 

3. The stochastic rank of a matrix. Let A be an n X n matrix with 
non-negative entries atj. If M is the maximum row or column sum in A, 
then, for every T > M, and for every integer r > n, there exists a matrix B 
which is an (r, T) d.s. extension of A. In fact, if 

n 

Pi = ]C atj 

and 
n 

Cj = 2ij aiJ 
i=l 

for i,j = 1, 2, . . . , n, the matrix B = (btj) may be defined as follows 

bij = an for i < n, j < w, 

60- = a2w+i_;, 2n+i-«. for n + 1 < i < 2», » + 1 < j < 2rc. 
£ 0 = 0 for 2* < n, n + 1 < j < 2w provided i + j 7e 2n + 1, 

= r — i?*; for i + j = 2n + 1, i < w, 

£ZJ/ = 0 for n + 1 < 2* < 2n, j < w provided i -\- j 9^ 2n -\- 1, 
= T — Cj for i + j = 2n + 1, j < w, 

6^ = 0 for 2rc + 1 < i < w + r, or 2n + 1 < j < w + r, provided iy^j 
= 7" for 2n + 1 < i = j < ^ + r. 

The question naturally arises, for what r < w — 1 and 7" > M is an (r, 7") 
d.s. extension of 4̂ possible? In Theorem 2, we have a complete answer to 
this question. Its proof will make use of the following lemma. 

LEMMA 1. Let B be an m X m doubly stochastic matrix with row and column 
sums equal to T. Let A be a u X v submatrix of B and let B be partitioned into 
submatrices A, A\, A2, Az as in Figure 1. If S is the sum of all the elements 
in A and S\ is the sum of all the elements in A2, then 

S — S2 = (u + v — m)T. 

Proof. Let Si and S3 be the sums of the elements in A\ and A3 respectively. 
We have 
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272 A. L. DULMAGE AND N. S. MENDELSOHN 

S + Si = uT 
S + Sz = vT 

S + Si + S2 + Ss = mT, 

from which the result follows. 

THEOREM 2. Let A = (a^) be an n X n matrix of non-negative real numbers 
and let M be the maximum row or column sum and S the sum of all the entries. 
If r < n — 1, the necessary and sufficient condition that there exist a matrix B 
which is an (r, T) d.s. extension of A is that M < T < S/(n — r). 

Proof. If B is an (r, T) d.s. extension of A, we apply Lemma 1 to B. We 
have S — 52 = (n ~~ r)T. Since 0 < 52, it follows that 

M<T = — "---2 < S 

n — r n — r 
Clearly, T = S/in — r) if, and only if, S2 = 0 and T = M if and only if 

S2 = S — (n — r)M. To show the possibility of such extreme d.s. extensions 
we construct the appropriate matrices. We first construct a matrix C = (dj) 
which is an {r,S/{n — r)) d.s. extension of A. Let 

Ctj = a a for i < n, j < w, 

— i^i for i < n, n + 1 < j < w + r, 
_ V: ~ 7 

Cij — r 

S C, 
71 — 1 

Cij = for n + 1 < i < n + r, j < w, 

c^ = 0 for w + 1 < i < » + r, w + 1 < j < w + r. 

We next construct a matrix D = (dij) which is an (r, ikf) d.s. extension of 
A. Let 

for i < w, j < n, 

for i < w, n + 1 < j < n + r, 

^ — for w + 1 < i < w + r, j < n, 

dij = 2: for?z + l < ^ < w + r and w + l < j < w + r. 

For any T, M < J" < 5 / (w — r), let £ be the unique real number 0 < p < 1 
denned by />S/(» ~ r) + (1 - />)Jlf = T. The matrix £ = pC + (1 - p)D 
is an (r, 2") d.s. extension of A. 

We now define stochastic rank. An n X n matrix A with non-negative 
entries has stochastic rank a if A can be embedded in a d.s. matrix J3 formed 

d^ = dij 

dij = 
M _ Rt 

dij = r 

j 
M — Cj 
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from A by the addition of n — a rows and columns and if A cannot be em
bedded in a d.s. matrix B by the addition of fewer than n — a rows and 
columns. By Theorem 2, the least r for which A can be embedded in an 
(n + r) X (n + r) d.s. matrix B is the minimum r for which M/S < \/{n — r). 
This minimum r is n — [S/M]. It follows that a = [S/M]. 

An n X n sub-permutation matrix of rank r is an n X n matrix consisting 
of r ones, no two of which are in the same row or column, and n2 — r zeros. 
The convex hull of the sub-permutation matrices Pk

(r) of rank r consists of 
all matrices A expressible in the form A = Z^AjJY0 where ^k\k = 1 and 
A* > 0 for all k. The convex polyhedral cone generated by the sub-permutation 
matrices i V r ) of rank r consists of all matrices A expressible in the form 
A = Z^MA-^V70 where nk > 0 for all k. In (2), the authors showed that the 
necessary and sufficient condition that a matrix A of non-negative entries 
is in the convex hull of sub-permutation matrices of rank n — r is that 
S = n — r and M < 1. A simple restatement of this theorem is that the 
necessary and sufficient condition that a matrix of non-negative entries is in 
the convex polyhedral cone generated by the sub-permutation matrices of 
rank n — r is that M/S < l/(n — r). Hence, the maximum rank n — r 
satisfying this inequality is [S/M] and this is equal to the stochastic rank a 
of A. Thus, we have the following corollary to Theorem 2. 

COROLLARY. The stochastic rank of an n X n matrix A of non-negative entries 
is a if, and only if, A is in the convex polyhedral cone of then X m sub-permutation 
matrices of rank v but is not in the convex polyhedral cone of the n X n sub-
permutation matrices of rank a + 1. 

4. Vertices of a set of doubly stochastic extensions. If we consider 
each (r, T) d.s. extension of a matrix A as a point in a space of dimension 
(n + r)2, it is apparent the set a of all such matrices is convex. An extreme 
or vertex matrix for the convex set a is an (r, T) d.s. extension of A which 
is not expressible in the form pC + (1 — p)D in which C and D belong to 
a, C 9* D and 0 < p < 1. 

We may define the bipartite graph KA of an n X m matrix A of non-
negative entries to be the graph in which the vertex sets are the set of indices 
of the n rows and m columns and the edges are the places of the matrix in 
which the entries are positive. A graph is disjoint if no two of its edges have 
a vertex in common. A graph Ki is a subgraph of K2 if every edge of K\ is 
an edge of K2. 

A cycle in a bipartite graph K is a finite subgraph K1 with the following 
properties. Let / and / be the vertex sets. If {ii,ji) is any edge of K1 then 
there exists exactly one vertex i2 6 I, U 7e ii, such that (Î2,ji) is an edge 
of K1, and there exists exactly one vertex j 2 G / , j 2 ^ ju such that (i2,j2) 
is an edge of K1, and there exists exactly one vertex Û £ I, u 9* i2, such that 
(t'3,72) is an edge of K1, etc. If after 2& — 1 such steps, k > 2, we find that 

https://doi.org/10.4153/CJM-1959-029-8 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1959-029-8


274 A. L. DULMAGE AND N. S. MENDELSOHN 

(iii j i ) , (*2,ji), (̂ 2,7*2), . . • , (ik,jk), (ii,jk) are distinct and are exactly the 
edges of K1, then K1 is a cycle. It follows that for a cycle K1 in the bipartite 
graph of a matrix, there exists no row or column which contains exactly one 
edge of the cycle. 

In (1) the core of an R and C marking of an incidence matrix consists of 
the union of a number of cycles no two of which have an edge in common. 

In Theorem 3 we require the following lemma. 

LEMMA 2. For a bipartite graph K, a necessary and sufficient condition that 
there exist a subgraph of K which is a cycle is that there exist a finite subgraph 
of K in which no vertex of either vertex set is edge connected to exactly one vertex 
of the other vertex set. 

Proof. The necessity is immediate. 

To establish the sufficiency, we show that any finite subgraph K1 of K in 
which no vertex of either vertex set is edge connected to exactly one vertex 
of the other, contains a subgraph which is a cycle of K. Let the vertex sets 
of K be I and J. If (iuji) is an edge of K1, ii £ I and ji G / , there exists 
i2 y£ ii, such that (̂ 2, ji) is an edge of K1. Similarly, there exists j 2 J* j \ such 
that fe, 72) is an edge of X1. Continuing this process, since Kl is a finite 
graph, it follows that in the sequence (ii,ji), (72, j i ) , (̂ 2,7*2, ) . . . , there must 
exist a first edge E\ in which either the i is identical with the i of a previous 
edge or the j is identical with the j of some previous edge. In either case, let 
this previous edge be E0. The sequence of edges beginning with E0 and ending 
with Ei is a cycle. 

Now, consider any. (r, T) d.s. extension B of a matrix A of non-negative 
elements and let B be partitioned into submatrices A, A\, A2, and A3 as in 
Figure 1. Let 

KAI, KA<i1 KAzi 
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be the bipart i te graphs of Au A2, and Az and let LB be the union of 

KAII &A21 KAZI 

so t h a t KB is the union of KA and LB. We are now in a position to s ta te the 
main theorem of this section. 

T H E O R E M 3. Let a be the convex set of all (r, T) d.s. extensions of a matrix A. 
A necessary and sufficient condition that a matrix B Ç a be a vertex matrix of 
the convex set a is that no subgraph of LB is a cycle. 

Proof. If a subgraph LB
l of LB is a cycle, let the edges of the cycle be 

(iuji), fe j i ) , (^2,72), . .'. , (ijcjk), (iit j t ) . 

Let e = \ min btj taken over all edges (i, j) of LE1. N O W , if C = (ctj) is 

defined by 

ctj = bij if (i,j) is not an edge of LB
l, 

Cij = b^ + e if (ij) is (ii, j i ) , (i2, 72), . . . , or (ik,jk), 

= btj - e if (i,j) is (i2,ji), (is, 72), . . . , (ii, j * ) , 

and if D = (dZJ7) is defined by 

d i y = bij if (i, j ) is not an edge of LB
l 

= bij - e . if (i,j) is (ii, j i ) , (i2,72), . . . , or (ifc, j*) 

= i i^ + € if (i, j ) is (i2, j i ) , (is, J2), . . . , ( i i , i*) , 

clearly C and P belong to a. Since £ = \C + JZ}, £ is not a vertex matr ix 
of the set a. 

We now show t h a t if B and C are (r, J") d.s. extensions of A such t h a t 
B 7* C and i£B = i£c then LB {— Lc) has a subgraph LB

l which is a cycle. 
Indeed, let L s * be the subgraph consisting of the edges (i,j) a t which 0 < btj, 
0 < Cij and ctj 9* bij. Since btj = c ^ for all (i, j) in i £ 4 , Z,B* is a subgraph 
of L B and since B 9^ C, LB* has a t least one edge. Since the matrices B and 
C are doubly stochastic with row and column sums equal to T, they cannot 
differ a t exactly one place in a row or column. By Lemma 2, LB (in fact 
LB*) contains a subgraph LB

l which is a cycle. 
Next , suppose t h a t B £ a is not a vertex, so t h a t B is expressible in the 

form B = pC + (1 - £)£> where 0 < p < 1, C ^ D and C and D belong 
to a. Now Lc and L^, are subgraphs of LBj b u t we cannot say Lc = Lz> = L A , 
for we might have dj — 0, ô^ 5^ 0, and d^ ^ 0. However, if g 5^ £, 0 < g < 1, 
then E = qC + (1 — q)D belongs to a, B 9^ E and KB = i£^ . Hence LB 

contains a subgraph L^1 which is a cycle. This completes the proof of 
Theorem 3. 

COROLLARY. Let a be the convex set of all (r, T) d.s. extensions of a matrix A. 
A necessary and sufficient condition that a matrix B Ç a be a vertex matrix of the 
convex set a, is that there exist no matrix C Ç a such that B 9* C and KB = Kc. 
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LEMMA 3. If P is an r X r matrix of non-negative elements with at least two 
non-zero elements in every row then the bipartite graph KP contains a subgraph 
Kp1 which is a cycle. 

Proof. Delete from P all the columns containing no non-zero elements and 
let the deleted r X s matrix (s < r) be Q. If there are at least two non-zero 
elements in every column of Q then the required cycle exists by Lemma 2. If 
a column contains exactly one non-zero element qijy delete the ith row and 
j th column of Q and denote the deleted matrix by Q\. Continue this process. 
If we find Qt such that every column of Qt contains 2 non-zero elements, the 
cycle exists by Lemma 2. If no such Qt exists for t = 1, 2, . . . , s — 3, then, 
Qs-2 is an (r — s + 2) >< 2 matrix with two columns and with two non-zero 
elements in every row. Since r — s + 2 > 2 the graph of Q{-2 contains a 
cycle. 

Let B be an (r, T) d.s. extension of A. Let the rows and columns of B be 
rearranged as in Figure 1. If in the ith row of B (i = 1, 2, . . . , n) there is at 
most one j > n such that the element b^ > 0 then the ith row of A is simply 
extended. Similarly, if in the j th column of B there is at most one i > n such 
that bij > 0, then the j th column of A is simply extended. 

THEOREM 4. If B is a vertex of the convex set a of all (r, T) d.s. extensions of 
A, then at least n — r + 1 of the rows and at least n — r + 1 of the columns 
of A are simply extended. 

Proof. Suppose that r rows of B are not simply extended. In each of these 
rows we have at least two elements 

bih > 0 and bij2 > 0, j \ > nj2 > n,ji ^ j 2 . 

Thus the n X r matrix Ai (see Figure 1) contains an r X r submatrix Ai in 
every row of which there are two non-zero elements. 

Hence, by Lemma 3, the graph of 

KAl 

contains a subgraph which is a cycle and, by Theorem 3, B is not a vertex of a. 
The proof when r columns of A are not simply extended is similar. 

5. The connection between term rank and stochastic rank. Since p 
is greater than or equal to p the least integer which is greater than or equal 
to S/M and since a = [S/M], we have the following result. If S/M is an 
integer, p > a, and if S/M is not an integer, p > a + 1. 

For an n X n doubly stochastic matrix, p = a = n, and for a sub-permu
tation matrix of rank r, p = a = r. However, there are n X n matrices for 
which p — u — n — 1. In fact, the matrix A = {atj) in which an = n, 
#22 = a33

 = • • • = ann = 1, #i; = 0 for i y^ j is such a matrix. We have 
S/M = 2 - 1/n. Thus a = 1 and p = n. 
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For a matr ix of zeros and ones, Ryser (4;5) has considered the transformation 
which replaces a minor 

(o î) by (Î o)-
T h e effect of this transformation is t h a t the term rank varies between limits 
which Ryser finds. I t is interesting to note t h a t the stochastic rank of a 
matr ix of zeros and ones is invariant under Ryser 's transformation. 

If M < S/(n — r), then, since p > a > n — r there exist integers t such 
t h a t p > t > n — r. We have the following theorem. 

T H E O R E M 5. Let A be an n X n matrix of non-negative elements. If 
M < S/(n — r) and M < T < S/(n — r) and if KA

l is any disjoint subgraph 
of KA consisting of t edges (p > t > n — r) then there exists an (r, T) d.s. 
extension B of A with the property that the graph KB contains a disjoint 
subgraph KB1 consisting of n + r edges such that the edges common to KB1 

and KA are exactly those of KA
l. 

Proof. If we select any p such t ha t 0 < p < 1, then since M < S/(n — r ) , 
the matr ix B = pC + (1 — p)D of Theorem 2 is an (r, T) d.s. extension of 
A in which every element of Ai, A2j and Az (Figure 1) is positive. T h u s all 
the places of Ai, A2, and Az are edges of KB. Rearrange the rows and columns 
of B so t h a t KA

l consists of the places (1, 1) (2, 2) (3, 3) . . . (t, t). Now con
sider the disjoint graph L which has as its edges the places (i,j) of B defined 
by i+j = n + t + r-\-l. Since t > n — r, we have i + j > 2n + 1 and 
hence every edge in L is a place in A\, A2, and A* and L is a subgraph of KB. 
The number of edges in L is n + r — t. For an edge (i,j) of L we cannot 
have i < t, for this would imply j > n + r + 1 and similarly we cannot 
have j < t. T h u s the edges of L and i ^ 1 have no vertices in common. Clearly, 
the graph KB

l defined as the union of L and KA
l is the required disjoint 

subgraph of KB. 

Let K be a bipart i te graph whose edges are a set of places in an n X n 
ar ray and let A be a matr ix formed by put t ing positive entries in the places 
of K and zeros elsewhere. For a given graph K, the term rank p of all such 
matrices A is the same and is equal to the exterior dimension (3) of the 
graph. Thus , term rank is really a graphical concept. On the other hand, for 
a given graph K, the stochastic rank a of such matrices A will vary between 
1 and an a t ta inable maximum which we denote by aK. We now show t h a t 
&K < P < CTR + 1. The inequality on the left is a consequence of Theorems 
1 and 2. T o establish the inequality on the right, consider the matr ix A formed 
by placing 1 in each of the p places of a maximal disjoint subgraph of K and 
e in the other places of K. If a is the maximum number of places of K in any 
row or column of the n X n a r ray and if b is the number of places in K, then 

A = P + _(* - P)J 
M 1 + (a - l)e ' 
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If a = 1, then b = p and aK = p. In other cases, e can be chosen small enough 
that a = [S/M] > p — 1. Hence, aK > a > p — 1 or p < aK + 1. The 
inequality <rK < p < o-̂  + 1 is best possible in the sense that there exist 
graphs K for which <JK — p and others for which p = o^ + 1. The graph K 
consisting of the places on a main diagonal in an n X n array is a graph in 
which aK = p. The graph X consisting of 3 of the 4 places in a 2 X 2 array 
is such that p = 2. But any matrix A with non-zero elements in the places 
of K and a zero in the fourth place of the array lies in the convex polyhedral 
cone of sub-permutation matrices of rank 1 and does not lie in the convex 
polyhedral cone of sub-permutation matrices of rank 2. Hence aK = 1. Con
sider a graph K for which the maximum aK is attained in a matrix A in which 
S/m is non integral. We have p < aK + 1 and p > <JK + 1 so that p = <JK + 1. 

The result just proved may be reformulated as the following theorem. 

THEOREM 6. Let K be a bipartite graph whose edges are the places in an n X n 
array. Let a be the set of all matrices A with positive entries in the places of K 
and zeros elsewhere. Let aK be the maximum stochastic rank attainable by a matrix 
of the set a. Then every matrix A of a has the same term rank p. Furthermore, 
if S A and MA represent the entry sum and maximal row or column sum of A 
respectively then 

p = s.u£ \it) • 
Also if this supremum is attained by some matrix A, then p = aKl otherwise 
P = <*K + I-

6. Linear programming formulation. Some of the theorems con
cerning (r, 7") d.s. extensions of an n X n matrix A may be reformulated as 
problems in the language of linear programming. In these reformulations 
the restrictions on A to non-negative entries may be relaxed somewhat. The 
only requirement is that A satisfy the condition S > (n — r)M > 0. Two 
such formulations follow. 

PROBLEM 1. Let A be an n X n matrix having S > {n — r)M > 0, and let 
T be any number. Find a set of numbers xa (̂  = 1, 2, . . . , « + r; j = 1, 2 , . . . , 
n + r ; at least one of i and j is greater than n), subject to the following conditions. 

for all i, j . 

for i = 1, 2, . . . , n. 

for i = n + 1, n + 2, . . . , n + r. 

for j = 1 , 2 , . . . , n. 

for j = n + 1, n + 2, . . . , n + r. 

(1) Xij > 0 
n n-\-r 

(2) X) aij + Z) xn = 
n+r 

T 

(3) X) Xij = T 

n n+r 

(4) S aij + Z) Xij = 
i=l i=n-\-l 
n+r 

T 

(5) Z ) Xij = T 
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Theorem 2 states that the inequalities have solutions if and only if 
M < T < S/(n — r) and exhibits some of these solutions. If now each set 
of values of xa satisfying (1), (2), . . . , (5) is considered as a point in a space 
of (n + r)2 — n2 dimensions, the set of all such points is convex and Theorem 3 
gives a graphical characterization of the vertices of this set. 

PROBLEM 2. Let A be an n X n matrix having S > (n — r)M > 0. Find a 
set of numbers xa ii — 1, 2, . . . , w + r; j = 1, 2, . . . , n + r; at least one 
of i and j is greater than n), subject to the following conditions: 

for all i, j . 

for i = 1, 2, . . . , n. 

for i = n + 1, n + 2, . . . , n + t — 1. 

for j = 1, 2, . . . , n. 

for j = w + l , n + 2, . . . , « + r — 1. 

(1) Xa>0 
n n+r n+r 

(2) E &U + 2 xtj = 2^t Xn+r,j 
* ~ i i=n+l J = l 

w+r n+r 

(3) £ Xij === ^ ^ Xn+r,j fori 
i = i i - 1 
n n+r n+r 

(4) E «ii + S Xî  = /L/ Xi,n+r 
i = i i=n+l i = l 

n+r n+r 

(5) E Xii = 2-/ Xi,n+r forj 
i=l 2 = 1 

The sum 
n+r 

2-/ Xi,n+r 
i==l 

is to be maximized or minimized. 
In this formulation our theories state that feasible solutions always exist 

for both the maximum and minimum problems. They also exhibit solutions at 
which the maximum and minimum are attained and state that the maximum 
value is S/(n — r) and the minimum value is M. Our graphical theorems 
characterize the sets of all maximal and minimal solutions. 
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