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Abstract

A stochastic epidemic model is defined in which infected individuals have different
severities of disease (e.g. mildly and severely infected) and the severity of an infected
individual depends on the severity of the individual he or she was infected by; typically,
severe or mild infectives have an increased tendency to infect others severely or,
respectively, mildly. Large-population properties of the model are derived, using
branching process approximations for the initial stages of an outbreak and density-
dependent population processes when a major outbreak occurs. The effects of vaccination
are considered, using two distinct models for vaccine action. The consequences of
launching a vaccination program are studied in terms of the effect it has on reducing the
final size in the event of a major outbreak as a function of the vaccination coverage, and
also by determining the critical vaccination coverage above which only small outbreaks
can occur.
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1. Introduction

Many infectious diseases have the property that the degree of severity of infected individuals
varies, and the degree of severity of an infective is also believed to affect potential future
spreading, e.g. measles (Morley and Aaby (1997)), varicella (Parang and Archana (2004)), and
dengue fever (Mangada and Igarashi (1998)). In the present paper we study a model which
attempts to capture this feature within the class of SIR (susceptible → infective → removed)
epidemic models, describing the spread of an infectious disease in a closed finite community;
see, for example, Lefèvre (1990) and Andersson and Britton (2000, Chapter 2).

For the same purpose, Ball and Britton (2005) defined an epidemic model for a homoge-
neously mixing community, where the degree of severity of an infective depended on the amount
of ‘infection force’ an individual had been exposed to, and where severe infectives typically
exposed more force of infection than mildly infected. The new model of the present paper
captures the same phenomenon but from a different perspective, also assuming a homogeneously
mixing community. Here the severity of an infective depends on who this individual was infected
by, in that he or she is typically more likely to become severely infected if infected by a severe
infective and mildly infective if infected by a mild infective. Contrary to the model in Ball and
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Britton (2005), an infective always remains the same type and cannot become a severe infective
by additional exposure to infection. We denote our model the infector-dependent severity (IDS)
model.

For a large community starting with few initial infectives, we show a threshold limit theorem
for the IDS model, which states that the epidemic has a (strictly) positive chance of becoming
established and growing beyond all limits if and only if a suitably defined threshold parameter
(reproduction number) is larger than unity. We also show that if the epidemic is initiated by
a positive fraction of infectives then the numbers of ultimately mildly and severely infected
individuals (i.e. the total size of the epidemic) satisfies a law of large numbers. Furthermore,
we make plausible that if either (i) the epidemic is initiated by a positive fraction of infectives
or (ii) the epidemic is initiated by few infectives but it becomes established, then the total size
of the epidemic satisfies a central limit theorem.

We study two different models for the effect of vaccination. In one model the vaccine reduces
the severity of disease, in the sense that an individual who would have become severely infected
becomes only mildly infected if he or she has been vaccinated, and someone who would have
become mildly infected avoids becoming infected altogether. The other vaccination model
is more general and flexible in that it reduces susceptibility and infectivity (if infected) by
possibly dependent random factors. For both vaccination models, the effect of vaccination on
the reproduction number and the final outbreak size are studied, as is the critical vaccination
coverage, i.e. the fraction necessary to vaccinate in order to surely prevent a major outbreak.

In Section 2 we define the IDS model, state the main results, and give some heuristic
arguments motivating the results. In Section 3 we define the two vaccine-response models
and study their effect on outbreak sizes as a function of the vaccination coverage. Sections 2
and 3 also contain some numerical examples that illustrate the theory. In Section 4 we give the
formal theorems and their proofs, together with heuristic arguments for results that are strongly
supported by numerical examples but currently lack fully rigorous proofs. The paper ends with
a discussion in Section 5.

2. The IDS epidemic model

2.1. Definition of the model

Consider a closed homogeneously mixing population consisting of n initially susceptible
individuals, mM mildly infectious individuals and mS severely infectious individuals. An
individual who becomes mildly infected remains so for a period IM with distribution FM.
During this period the individual has ‘close contacts’ with other individuals, chosen uniformly
among the initial susceptibles, at rate λM (i.e. at the points of a homogeneous Poisson process
with rate λM). If the contacted person is still susceptible he or she becomes a mild case with
probability p

(M)
M and a severe case with the remaining probability p

(M)
S = 1 − p

(M)
M . Similarly,

an individual who becomes severely infected remains so for a period IS with distribution FS,
during which he or she has ‘close contacts’ with others, chosen uniformly among the initially
susceptible individuals, at rate λS. In this case a contacted person becomes a mild case with
probability p

(S)
M and a severe case with the remaining probability p

(S)
S = 1 − p

(S)
M . At the end

of his or her infectious period an infective individual recovers, becomes immune, and plays no
further part in the epidemic—a state called removed. All infectious periods, contact processes,
and uniform ‘selections’ are mutually independent. The infectious period distributions FM and
FS are arbitrary but specified and have finite means. The epidemic process continues until there
is no mild or severe infective in the population, at which point the epidemic stops. The numbers
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of individuals who were mildly and severely infected during the outbreak specifies the final
size of the epidemic.

Some special choices of parameter values of the IDS model give rise to models previously
studied in the literature. The case where a contacted susceptible necessarily becomes the same
type as his or her infector (i.e. p

(M)
M = 1 and p

(S)
S = 1) is identical to the so-called competing

epidemic model investigated (with exponentially distributed infectious periods) by Kendall and
Saunders (1983) and Scalia-Tomba and Svensson (2001); see also Scalia-Tomba (2005). The
case where the infectious type of an individual is independent of that of his or her infector (i.e.
p

(M)
M = p

(S)
M = pM and p

(M)
S = p

(S)
S = pS) has been studied by Ball and Clancy (1995) (see

also Picard and Lefèvre (1990)), who allowed for more than two different infectious states.
Epidemics with p

(M)
M = 1 or p

(S)
S = 1, such as the competing epidemic, have a quite different

and more complicated asymptotic behaviour than epidemics with other parameter values, since
in the early stages of an epidemic in a large population at least one of the mild and severe
outbreaks evolves (almost) independently of the other. We exclude such cases from the analysis
in this paper and assume throughout that p

(M)
M < 1 and p

(S)
S < 1, or equivalently that p

(M)
S > 0

and p
(S)
M > 0.

2.2. Main results and ideas

2.2.1. Early stages and minor outbreaks. Suppose that the number of susceptibles n is large
and that the initial numbers of mild and severe infectives, mM and mS, are both small. Then,
during the early stages of the epidemic, the probability that a contact is made with an infective
or removed individual is very small, so the process of infectives can be approximated by a
branching process, in which every infectious contact gives rise to a new infective. The branching
process is two type, with the type being either mild or severe. A typical mild or severe individual
lives for a time having distribution FM or FS, respectively, during which he or she has offspring
at the points of a homogeneous Poisson process with rate λM or λS, respectively. Offspring of
a mild or severe individual are mild independently with probability p

(M)
M or p

(S)
M , respectively,

and severe otherwise.
The approximation of the epidemic process by a branching process is made fully rigorous in

Section 4.1 by letting n tend to ∞ and using a coupling argument; see Theorem 4.1. The
branching process either goes extinct or it grows unboundedly. A threshold theorem for
the epidemic model can be obtained by associating the epidemic becoming established with
nonextinction of the branching process.

The mean offspring matrix for the branching process is given by

M =
⎡
⎣λMιMp

(M)
M λMιMp

(M)
S

λSιSp
(S)
M λSιSp

(S)
S

⎤
⎦ , (2.1)

where ιM = E[IM] and ιS = E[IS]. The largest eigenvalue of this matrix is denoted by R0
and called the basic reproduction number; see, e.g. Heesterbeek and Dietz (1996). Letting
T = λMιMp

(M)
M + λSιSp

(S)
S , it is given by

R0 = 1
2

(
T +

√
T 2 + 4λMιMλSιS(1 − p

(M)
M − p

(S)
S )

)
. (2.2)

By standard branching process theory (e.g. Haccou et al. (2005, Chapter 5)), the epidemic
with few initial infectives has a nonzero probability of becoming established if and only if
R0 > 1. The probability that an epidemic becomes established can be determined as follows.
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For i, j ∈ {M, S}, let R
(i)
j denote the number of type-j offspring of a typical type-i individual,

and define probability generating functions

fM(sM, sS) = E
[
s
R

(M)
M

M s
R

(M)
S

S

]
and fS(sM, sS) = E

[
s
R

(S)
M

M s
R

(S)
S

S

]
.

Then, provided R0 > 1, the probability that the epidemic becomes established is given by
1 − π

mM
M π

mS
S , where (πM, πS) is the unique solution in (0, 1)2 of the equations

πM = fM(πM, πS), πS = fS(πM, πS). (2.3)

(If R0 ≤ 1 then (πM, πS) = (1, 1) is the only solution of (2.3) and there is zero probability
of an epidemic becoming established.) Note that if φM(θ) = E[exp(−θIM)] and φS(θ) =
E[exp(−θIS)] denote the moment generating functions of typical mild and severe infectious
periods, respectively, then

fM(sM, sS) = φM(λM(p
(M)
M (1 − sM) + p

(M)
S (1 − sS)))

and

fS(sM, sS) = φS(λS(p
(S)
M (1 − sM) + p

(S)
S (1 − sS))).

If the epidemic fails to become established, its final outcome can be approximated by that of
the corresponding branching process; explicit results for moments are easily obtained using
standard branching process theory.

2.2.2. Large outbreaks. We now consider the final outcome of epidemics that become estab-
lished. Suppose that n is large, and let µM = mM/n and µS = mS/n. Let rM and rS denote
the proportions of susceptibles that ultimately become mild and severe infectives, respectively.
Then the total force of infection exerted on a given susceptible during the entire epidemic
is λMιM(µM + rM) + λSιS(µS + rS). This follows since n(µM + rM) is the total number of
mild infectives, each of which has contact with a given susceptible at the average accumulated
rate λMιM/n; similarly, n(µS + rS) is the total number of severe infectives, each of which
has contact with a given susceptible at the average accumulated rate λSιS/n. It follows
that the probability that a given susceptible remains uninfected throughout the epidemic is
exp(−(λMιM(µM + rM) + λSιS(µS + rS))), since infectious individuals make contacts at the
points of independent Poisson processes. Thus, (rM, rS) satisfies

1 − rM − rS = exp(−(λMιM(µM + rM) + λSιS(µS + rS))). (2.4)

In general, it is not possible to derive a second balance equation satisfied by (rM, rS)

and, hence, to uniquely determine the final outcome of the epidemic. If λMιM = λSιS then
(2.4) yields an equation for rM + rS and, hence, for the final proportion of susceptibles, but
the individual rM and rS still need to be determined. In the special case studied by Ball
and Clancy (1995), where p

(M)
M = p

(S)
M = pM and p

(M)
S = p

(S)
S = pS, contacted susceptibles

become mildly infected independently with probability pM, irrespective of the type of their
infectors, so rM/rS = pM/pS and the final outcome can be determined. We now assume that
the infectious periods follow exponential distributions, with rate γM for mild infectives and γS
for severe infectives, so ιM = γ −1

M and ιS = γ −1
S . If the numbers of susceptibles and initial
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infectives are both large, the stochastic model can be approximated by the deterministic model

dx

dt
= −(λMyM + λSyS)x, (2.5a)

dyM

dt
= (λMp

(M)
M yM + λSp

(S)
M yS)x − γMyM, (2.5b)

dyS

dt
= (λMp

(M)
S yM + λSp

(S)
S yS)x − γSyS, (2.5c)

dzM

dt
= γMyM, (2.5d)

dzS

dt
= γSyS, (2.5e)

with initial condition

(x(0), yM(0), yS(0), zM(0), zS(0)) = (1, µM, µS, 0, 0). (2.6)

Here, x(t), yM(t), yS(t), zM(t), and zS(t) respectively denote the ‘proportions’ of susceptible,
mild infective, severe infective, mild removed, and severe removed individuals in the population
at time t . The final outcome of the deterministic epidemic can be obtained by solving (2.5a)–
(2.5e) numerically. Note that (rM, rS) = (zM(∞) − µM, zS(∞) − µS). The balance equation
(2.4) and the above observations concerning (rM, rS) are easily verified by analysing the
differential equations (2.5a)–(2.5e).

The approximation of the stochastic epidemic relies on n, the number of initial susceptibles,
becoming large, whilst keeping the infection and removal parameters fixed. We study two
distinct cases for the initial number of infectives:

(i) n−1mM → µM and n−1mS → µS, where µM + µS > 0, so there are many initial
infectives when n is large; and

(ii) (mM, mS) is fixed, so the numbers of initial infectives of the two types is held fixed as n

tends to ∞ and, hence, there are relatively few initial infectives when n is large.

For case (i), the theory of density dependent population processes described in Ethier and
Kurtz (1986, Chapter 11) can be used to show that the stochastic epidemic, suitably normalized,
converges as n tends to ∞ to the deterministic model (2.5a)–(2.5e), with fluctuations about the
deterministic limit following a zero-mean Gaussian process. The theory also enables a central
limit theorem to be derived for the final outcome of the epidemic. Let R

(n)
M and R

(n)
S denote the

number of susceptibles that ultimately become mild and severe infectives, respectively. Then,
writing (rM, rS) as (rM(µM, µS), rS(µM, µS)),

√
n

⎛
⎝n−1R

(n)
M − rM(µM, µS)

n−1R
(n)
S − rS(µM, µS)

⎞
⎠ d−→ N(0, �(µM, µS)) as n → ∞, (2.7)

where ‘
d−→’ denotes convergence in distribution and N(0, �(µM, µS)) denotes a bivariate

normal distribution with mean vector zero and variance-covariance matrix �(µM, µS). It
follows from (2.7) that (R

(n)
M , R

(n)
S ) is approximately bivariate normally distributed with mean

vector n(rM(µM, µS), rS(µM, µS))�, where ‘�’ denotes transpose, and variance-covariance
matrix n�(µM, µS). Of course, the mean vector and variance-covariance matrix also depend on
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the infection and removal parameters, but that dependence is not shown explicitly. A heuristic
proof of (2.7) is given in Section 4.2, where the calculation of �(µM, µS) is described. A
formal proof that n−1(R

(n)
M , R

(n)
S ) converges in probability to (rM, rS) as n tends to ∞ is given

in Section 4.2; see Theorem 4.3. Note that (2.4) and Theorem 4.3 also hold for the competing
epidemic model.

Finally, consider case (ii), in which there are few initial infectives. For t ≥ 0, let YM(t)

and YS(t) respectively denote the numbers of mild and severe individuals alive at time t in the
approximating branching process, and let T (t) denote the total number of births (irrespective
of type) during (0, t]. The theory of exponential growth and asymptotic composition of a
branching process (e.g. Haccou et al. (2005, Chapter 6)) implies that there exists a random
variable W ≥ 0 such that, as t → ∞,

YM(t) ∼ WeαtvM, YS(t) ∼ WeαtvS, and T (t) ∼ WeαtuT , (2.8)

where α is the Malthusian parameter of the branching process, (vM, vS) is the left eigenvector
(normalized so that vM + vS = 1) corresponding to the eigenvalue eαt of an associated mean
matrix, and uT > 0 is a constant that can be determined. Moreover, W = 0 if and only if the
branching process goes extinct.

Suppose that R0 > 1 and that the branching process does not go extinct. In Section 4.1 it is
shown that, for large n, the process of infectives in the epidemic process and the approximating
branching process coincide until order

√
n susceptibles have been infected in the epidemic, i.e

until T (t) is of order
√

n. Let tn = inf{t > 0 : T (t) ≥ log n} be the time elapsing until at
least log n individuals have been born in the branching process. Then, using (2.8), for large n,
the numbers of susceptibles, mild infectives, and severe infectives at time tn in the epidemic
process are approximately n− log n, vMu−1

T log n, and vSu−1
T log n, respectively. In Section 4.3

it is shown that if the epidemic infects at least log n susceptibles then there exists c∗ > 0 such
that the probability that the epidemic infects at least c∗n susceptibles tends to 1 as n tends to
∞; see Lemma 4.1, in which c∗ = 1 − ε0. The above suggests that as c ↓ 0, the ratio of mild
to severe infectives, when cn susceptibles have been infected, is given by vM/vS and, hence,
from (2.7), that, conditional upon the epidemic becoming established,

√
n

⎛
⎝R

(n)
M − r

(0)
M

R
(n)
S − r

(0)
S

⎞
⎠ d−→ N(0, �(0)) as n → ∞, (2.9)

where r
(0)
i = limc↓0 ri(cvM, cvS), i ∈ {M, S}, and �(0) = limc↓0 �(cvM, cvS). Further

details and a heuristic proof of (2.9) are given in Section 4.3. Result (2.9) yields a normal
approximation for the final outcome of epidemics, with few initial cases, that become estab-
lished.

2.3. Illustrations

In order to see how well our approximations works in finite populations we have performed
simulations. Figure 1 is based on 10 000 simulations of the IDS model for a community
consisting of n = 100 000 individuals. The contact parameters were chosen to be λM = 2.5
and λS = 1, which reflect that severely infected people might not be as socially active as
mildly infected people. The duration of the infectious period was modelled by a unit-mean
exponential distribution for both mild and severe cases, so ιM = ιS = 1. It was further assumed
that both mild and severe cases infected new individuals to the same type as themselves with
probability 0.8, implying that p(M)

M = 0.8, p(M)
S = 0.2, p(S)

M = 0.2, and p
(S)
S = 0.8. Using (2.2),

R0 = 2.0782 for this set of parameter values, so the epidemic is clearly above threshold. Each

https://doi.org/10.1239/aap/1198177234 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1198177234


Epidemic model with infector-dependent severity 955

0

50

100

150

200

250

300

350

0

50

100

150

200

250

300

350

5.7 5.8 5.9 6.0 6.1
× 104

2.20 2.25 2.30 2.35 2.40
× 104(a) (b)

Figure 1: Histograms of the final number of (a) mild cases and (b) severe cases from the simulations of the
IDS model in a community of 100 000 individuals, with theoretical normal approximation superimposed.

simulation was initiated by 100 mild and 100 severely infectious individuals, thus avoiding
minor outbreaks. Figure 1 contains histograms of the final numbers of mild (Figure 1(a))
and severe (Figure 1(b)) cases from the simulations. The average scaled (i.e. divided by the
initial number of susceptibles, n) numbers of mildly and severely infected in the simulations,
including initial infectives, were 0.5878 and 0.2317, respectively. The corresponding theoretical
values rM + µM and rS + µS were computed as described in Section 2.2.2 and found to be
rM + µM = 0.5879 and rS + µS = 0.2317, i.e. (almost) the same as the empirical means.
Similarly, the limiting covariance matrix � (see (2.7)) was computed numerically. The limiting
scaled variances and covariance (now multiplied by n) for the proportions infected (elements
(1, 1), (2, 2), and (1, 2) of � in (2.7)) were σ11 = 1.2052, σ22 = 0.3871, and σ12 = −0.3780.
The corresponding empirical variances from the simulations were 1.2117, 0.3871, and −0.3712,
respectively, also very close to their asymptotic counterparts. In the histograms we have
superimposed the limiting normal distributions having the asymptotic means and variances just
mentioned. It is seen that the empirical distributions agree remarkably well with the limiting
normal distributions.

In order to study how quickly the asymptotics kick in, both for the branching process and
the final size approximations, we simulated outbreaks starting with few initially infected for
different community sizes. We chose the same values for the contact parameters and removal
parameters as above (i.e. λM = 2.5 and λS = γM = γS = 1), and always started with
one mild and one severe infective, for community sizes n = 100, 1000, 10 000, 100 000, and
1 000 000. It turned out that the speed with which the asymptotics kick in depends on how
well the two types of infected mix, i.e. on the distance of p

(M)
M and p

(S)
S from 1. (Recall

that when they are equal to 1 we have the competing epidemic model which has a rather
different and more complicated asymptotic behaviour.) For this reason, in Table 1 we list the
theoretical and empirical probabilities of major outbreaks for different community sizes and
choices of (p

(M)
M , p

(S)
S ). We chose to let p

(M)
M = p

(S)
S = p and varied p from p = 0.5, so

individuals are equally likely to infect someone mildly or severely (independent of their own
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Table 1: Empirical proportions of major outbreaks for different community sizes, n, and values of
p = p

(M)
M = p

(S)
S .

P(major outbreak)

n p = 0.5 p = 0.8 p = 0.9 p = 0.99 p = 0.999

100 0.6068 0.6350 0.6332 0.6360 0.6348
1000 0.6354 0.6416 0.6474 0.6239 0.6035

10 000 0.6384 0.6423 0.6496 0.6221 0.6060
100 000 0.6336 0.6446 0.6424 0.6307 0.6139

1 000 000 0.6372 0.6426 0.6427 0.6328 0.6103
∞ 0.6307 0.6479 0.6475 0.6247 0.6091

Table 2: Empirical mean proportions for mild and severe cases among major outbreaks, for different
community sizes and values of p = p

(M)
M = p

(S)
S .

Mean proportions for mild cases

n p = 0.5 p = 0.8 p = 0.9 p = 0.99 p = 0.999

100 0.3580 0.5655 0.6770 0.7929 0.8074
1000 0.3566 0.5853 0.7199 0.8662 0.8795

10 000 0.3562 0.5871 0.7240 0.8731 0.8899
100 000 0.3563 0.5872 0.7243 0.8744 0.8906

1 000 000 0.3563 0.5872 0.7244 0.8746 0.8908
∞ 0.3566 0.5871 0.7246 0.8748 0.8910

Mean proportions for severe cases

100 0.3552 0.2384 0.1611 0.0667 0.0547
1000 0.3566 0.2321 0.1369 0.0222 0.0086

10 000 0.3564 0.2299 0.1328 0.0160 0.0024
100 000 0.3563 0.2297 0.1325 0.0149 0.0017

1 000 000 0.3563 0.2297 0.1324 0.0147 0.0015
∞ 0.3566 0.2296 0.1324 0.0147 0.0015

state), up to p = 0.999, where individuals nearly always create infectives of the same type as
themselves. For each p and community size n, the results are based on 10 000 simulations.
For the asymptotic values (n = ∞), the probability of a major outbreak is computed from the
branching process approximation.

As seen in Table 1, the probability of a major outbreak, computed as the proportion out of the
10 000 simulations resulting in more than 20% becoming infected, agrees quite well with the
branching process approximation. The approximation seems adequate when the community
consists of at least a few thousand individuals, more or less irrespective of the value of p.

Using the same simulations as in Table 1, we also calculated the proportions infected of the
two types in the major epidemics. In Table 2 we present the means of these proportions for the
different community sizes, n, and values of p. The asymptotic (n = ∞) proportions infected of
the two types are the numerical solutions r

(0)
M and r

(0)
S , obtained as described in Section 2.2.2,

for a small value of c. (In practice, c was divided successively by 10 until the change in the
total proportion infected was less than 10−5.)
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It is seen that the mean proportions infected of the two types agree better and better with
their asymptotic counterparts as n grows. Unless p is close to 1, the asymptotics provide a
good approximation when n is as small as 1000, whereas when p approaches 1 (making the
model close to the competing epidemic), the community size has to be considerably larger for
the asymptotics to kick in.

3. Vaccination

3.1. Reduction in susceptibility and infectivity model

In this model it is assumed that vaccinated individuals independently have a random reduction
in susceptibility and infectivity described by the pair of (possibly dependent) random variables
(A, B), where A denotes the relative susceptibility and B denotes the relative infectivity if
infected; see, e.g. Becker and Starczak (1998) and Becker et al. (2006). For simplicity we
assume that the distribution of (A, B) is discrete: P(A = ai, B = bi) = pi, i = 1, . . . ; see
Becker and Starczak (1998) and Ball and Becker (2006).

By relative susceptibility and relative infectivity we mean the following. A vaccinated, not
yet infected, individual having vaccine response (ai, bi) that is contacted by an infective, be it
a severe or mild contact, becomes infected with probability ai . A vaccinated individual with
vaccine response (ai, bi) who still gets infected has a reduced contact rate. If the individual
is mildly infected, the contact rate is biλM, and if the individual is severely infected, the
contact rate is biλS. Thus, the smaller A is, the more effective the vaccine is in terms of
reducing susceptibility, and the smaller B is, the more effective the vaccine is in terms of
reducing infectivity. As reduced infectivity really matters only for individuals who do become
infected, the product AB is also a relevant measure of vaccine efficacy. Vaccine efficacy is
usually defined to equal 1 for perfect vaccines and 0 for completely useless ones. Thus, we
have the following definitions of vaccine efficacies in terms of susceptibility, infectivity, and
susceptibility-infectivity (see Becker et al. (2006)):

V ES = 1 − E[A], V EI = 1 −
(

E[AB]
E[A]

)
, V ESI = 1 − E[AB].

Suppose that a proportion v of susceptibles are vaccinated prior to the arrival of the infectious
disease, and that the vaccine response is as above. Then the initial stages of the epidemic also
admits an approximation by a suitable two-type branching process, in which (mild or severe)
individuals correspond to (mild or severe) contacts in the epidemic process, and births in
the branching process correspond to contacts emanating from the corresponding contact in
the epidemic process. Consider a mild contact. This will be with a vaccinated individual
having vaccine response (ai, bi) with probability vpi and with an unvaccinated individual with
probability 1−v. If the contacted individual has response (ai, bi), an infection takes place with
probability ai and, if it does, the expected number of new contacts he or she makes is biλMιM.
Thus, a mild contact, on average, gives rise to (1 − v + v E[AB])λMιM new contacts, of which
a fraction p

(M)
M are mild and the remaining fraction p

(M)
S are severe. The same reasoning can

be applied to severe contacts, so the mean offspring matrix is given by

M(AB)(v) = (1 − v + v E[AB])M,

where M is the mean offspring matrix without vaccination defined in (2.1). Hence, the largest
eigenvalue R

(AB)
v of M(AB)(v) satisfies R

(AB)
v = (1 − v + v E[AB])R0, where R0 is the largest
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eigenvalue without vaccination. Thus, if 1 < R0 ≤ (E[AB])−1 then the critical vaccination
coverage, above which the entire community is protected from major outbreaks, is given by

v(AB)
c = (1 − E[AB])−1(1 − R−1

0 ) = (V ESI)
−1(1 − R−1

0 ); (3.1)

cf. Becker and Starczak (1998). If R0 > (E[AB])−1 then vaccination alone cannot protect the
community from major outbreaks.

Suppose that the vaccine response is nonrandom, in that A ≡ a and B ≡ b (i.e. P(A =
a, B = b) = 1) for some (a, b) ∈ (0, 1)2. Then the behaviour of large-population epidemics
that take off can be approximated by deriving a deterministic model for

(xU(t), xV(t), yMU(t), yMV(t), ySU(t), ySV(t), zM(t), zS(t)),

where the additional suffices U and V refer to unvaccinated and vaccinated individuals, re-
spectively. The resulting set of ordinary differential equations can be solved numerically to
determine the final outcome of the epidemic for any given set of parameter values and initial
conditions. This can be extended to the case in which there are finitely many vaccine responses
by suitably enlarging the set of differential equations. A vaccine response that has received
considerable attention in the literature is the so-called all-or-nothing model (Halloran et al.
(1992)), in which a vaccinated individual is rendered completely immune with probability ε,
otherwise the vaccine has no effect. Thus, P(A = 0, B = 0) = ε = 1 − P(A = 1, B = 1),
so V ES = V ESI = ε and V EI = 0. The final outcome of a large-population epidemic that
takes off when, prior to the arrival of the disease, a proportion v of susceptibles were vaccinated
with an all-or-nothing vaccine having V ES = ε, can be approximated by solving the ordinary
differential equations (2.5a)–(2.5e) with initial condition (x(0), yM(0), yS(0), zM(0), zS(0)) =
(1 − vε, µM, µS, 0, 0).

3.2. Reduction in severity model

In this model, used in Ball and Becker (2006), vaccination reduces the severity of the
disease, in that an individual who would have become severely infected had he or she not
been vaccinated becomes only mildly infected if vaccinated, and a person who would have
become mildly infected had he or she not been vaccinated avoids becoming infected when
vaccinated. Consequently, a mild or severe case that has contact with a vaccinated but uninfected
individual, infects that person mildly with probability p

(M)
S or p

(S)
S , respectively, and not at all

with probability p
(M)
M or p

(S)
M , respectively.

Suppose that a fraction v of susceptibles are vaccinated prior to the arrival of the infectious
disease, so a fraction v of all contacts are with vaccinated individuals and the remaining fraction
1 − v are with unvaccinated individuals. Just as for the case without vaccination, the initial
stages of the epidemic can be approximated by a two-type branching process, but now the mean
offspring matrix is

M(Sev)(v) =
⎡
⎣λMιM((1 − v)p

(M)
M + vp

(M)
S ) λMιM(1 − v)p

(M)
S

λSιS((1 − v)p
(S)
M + vp

(S)
S ) λSιS(1 − v)p

(S)
S

⎤
⎦ .

Starting with few initial infectives, a major outbreak can occur if and only if the largest eigen-
value R

(Sev)
v of this matrix exceeds unity, though now there is no simple relationship between

R
(Sev)
v and R0. We omit the details but it is easily shown that R

(Sev)
v and the corresponding

critical vaccination coverage v
(Sev)
c are both given by the roots of quadratic equations. Note
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that vaccination alone cannot protect the community from major outbreaks if λMιMp
(M)
S > 1,

since then R
(Sev)
1 > 1.

As with the first vaccine-action model, the behaviour of large-population epidemics that
become established can be approximated by a deterministic model, but now only susceptible
individuals need to be classified by their vaccination status.

3.3. Illustrations

We illustrate the two vaccine-action models by studying their application to the example
given at the beginning of Section 2.3. Thus, in the absence of vaccination, the infectious
periods each follow a unit-mean exponential distribution, λM = 2.5, λS = 1, p

(M)
M = 0.8, and

p
(S)
S = 0.8; so, as noted previously, R0 = 2.078.

Figure 2 shows the proportions of the population that ultimately become mild and severe
cases for the reduction in susceptibility and infectivity model. Graphs are plotted in Figure 2 for
both an all-or-nothing vaccine response with P(A = 1, B = 1) = 0.2 = 1 − P(A = 0, B = 0)

and a leaky vaccine (Halloran et al. (1992)) with A ≡ 0.2 and B ≡ 1. In both cases V ES =
V ESI = 0.8 and V EI = 0, thus, making the two vaccine models comparable. In Figure 2
the limiting proportions of mild and severe cases are plotted as a function of the vaccination
coverage. It is seen that both vaccine responses have the same critical vaccination coverage
v

(AB)
c = 0.649, which follows from (3.1). However, for subcritical vaccination coverages,

the all-or-nothing vaccine outperforms the leaky vaccine in that fewer people become infected
with the all-or-nothing vaccine. This observation holds in general, also for epidemic models
without varying severity, and has the following explanation (Ball and Becker (2006)). Among
vaccinated individuals the chance that a first infectious contact results in infection is the same
in the two models. However, for those who avoid infection at the first contact, the all-or-
nothing vaccinated are completely immune whereas the leaky vaccinated only have reduced
susceptibility and, hence, may become infected at a subsequent contact.

For the reduction in severity model, the corresponding results are presented in Figure 3(a).
The critical vaccination coverage is v

(Sev)
c = 0.738. In this example, the proportions of

the population that ultimately become mild and severe cases both decrease with vaccination
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Figure 2: Limiting proportions infected as a function of the vaccination coverage under the reduction in
susceptibility and infectivity model for both a leaky vaccine (mild (dashed line) and severe (solid line)

cases) and an all-or-nothing vaccine (mild (dash–dot line) and severe (dotted line) cases).
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Figure 3: Limiting proportions infected as a function of the vaccination coverage for the reduction in
severity model, with (a) (λM, λS) = (2.5, 1) and (b) (λM, λS) = (1, 2.5); mild (dashed line) and severe

(solid line) cases.

coverage v. However, this is not always the case. For some parameter values the proportion
mildly infected increases with v in certain v-regions. This is illustrated in Figure 3(b), where we
have interchanged the contact rates so that λM = 1 and λS = 2.5, keeping all other parameters
unchanged. This phenomenon can be explained as follows. In the absence of vaccination
there are more severe than mild cases because severe infectives have a higher contact rate
and infectives tend to produce subsequent cases having the same type as themselves. When
a small proportion of the population is vaccinated, some of the vaccinated individuals, who
previously would have become severe cases, will now become mild cases and consequently
create further mild cases by contacting unvaccinated individuals. However, the total number of
cases will decrease because mild cases make fewer contacts and contacts made by mild cases
with vaccinated individuals are not likely to result in disease transmission. As vaccination
coverage increases, the overall reduction in cases dominates the greater proportion of cases
being mild, and the total number of mild cases eventually decreases.

4. Proofs

4.1. Few initial infectives: branching process approximation

We analyse the initial behaviour of an epidemic with few initial infectives by extending
the coupling argument of Ball and Donnelly (1995) to the IDS model. Consider a sequence
of IDS epidemics, {E(n) : n ≥ 1} say, indexed by the initial number of susceptibles, n, with
each epidemic having mM initial mild infectives and mS initial severe infectives. Let Y =
{Y (t) : t ≥ 0} denote the branching process described in Section 2.2, where, for t ≥ 0,
Y (t) = (YM(t), YS(t)), with YM(t) and YS(t) respectively denoting the numbers of mild
and severe individuals at time t , and Y (0) = (mM, mS). Let (
, F , P) be a probability
space on which is defined the branching process Y and, independently of Y , the random
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variables χ
(n)
i , i, n = 1, 2, . . . , where, for each n, χ(n)

1 , χ
(n)
2 , . . . are independent and uniformly

distributed on {1, 2, . . . , n}.
For n = 1, 2, . . . , the epidemic E(n) is constructed on (
, F , P) as follows. Individuals and

births in the branching process correspond respectively to infectives and infectious contacts in
the epidemic process. Label the initial susceptibles in E(n), 1, 2, . . . , n. For the kth birth in the
branching process, the individual contacted in the epidemic is χ

(n)
k . If the contacted individual

is susceptible then it becomes infected and adopts the same type as the corresponding individual,
i∗ say, in the branching process. If the contacted individual is not susceptible then that contact,
and any descendants of i∗ in the branching process, are ignored in E(n). The epidemic stops
when there is no infective left in the population.

Forn = 1, 2, . . . , letY (n) = {Y (n)(t) : t ≥ 0}, where, for t ≥ 0, Y (n)(t) = (Y
(n)
M (t), Y

(n)
S (t)),

with Y
(n)
M (t) and Y

(n)
S (t) respectively denoting the numbers of mild and severe infectives at time

t in E(n). Observe that Y and Y (n) coincide up until the first time a contact is made with a
previously contacted individual in E(n). For n = 1, 2, . . . , let η(n) = min{k ≥ 2 : χ

(n)
k =

χ
(n)
l for some l < k} denote the number of contacts made in E(n) until a contact is made with

a previously contacted individual. Noting the connection with the birthday problem, it is well
known (see, e.g. Aldous (1985, p. 96)) that n−1/2η(n) d−→ η as n → ∞, where η is a random
variable with probability density function

f (x) = x exp(− 1
2x2), x > 0.

As in the proof of Theorem 2.1 of Ball and Donnelly (1995), the Skorokhod representation
theorem implies that we may assume that the χ

(n)
i , i, n = 1, 2, . . . , are constructed so that

n−1/2η(n) → η almost surely as n → ∞, where η is also defined on (
, F , P).
For n = 1, 2, . . . , let Z

(n)
M and Z

(n)
S respectively denote the total numbers of mild and severe

infectives removed in the epidemic E(n), and let ZM and ZS respectively denote the total mild
and severe progeny, including the initial ancestors, in the branching process Y . Let AE ∈ F
denote the set on which Y becomes extinct.

Theorem 4.1. (a) For P-almost all ω ∈ AE , (Z
(n)
M , Z

(n)
S ) → (ZM, ZS) as n → ∞.

(b) For P-almost all ω ∈ Ac
E = 
 \ AE , (Z

(n)
M , Z

(n)
S ) → (∞, ∞) as n → ∞.

Proof. For P-almost all ω ∈ AE , ZM(ω) and ZS(ω) are both finite, and η(n)(ω) > 1
2

√
nη(ω)

for all sufficiently large n. Hence, for such ω and n, every birth in the branching process yields
an infection in E(n), and part (a) follows. Part (b) is proved by noting that, for P-almost all
ω ∈ Ac

E , the above argument shows that, for any l ∈ Z
+, if ZM + ZS ≥ l then Z

(n)
M + Z

(n)
S ≥ l

for all sufficiently large n.

The assertions in Section 2.2.1, concerning the probability that an epidemic with few
initial infectives becomes established and the final outcome of epidemics that do not become
established, follow using Theorem 4.1 and standard branching process theory.

4.2. Many initial infectives: a law of large numbers and central limit theorem for the final
outcome

Suppose that the infectious periods follow exponential distributions, with rate γM for mild
infectives and rate γS for severe infectives, and that initially, i.e. at time t = 0, there are
n susceptibles, m

(n)
M mild infectives, and m

(n)
S severe infectives. For t ≥ 0, let X(n)(t),

Y
(n)
M (t), Y

(n)
S (t), Z

(n)
M (t), and Z

(n)
S (t) respectively denote the numbers of susceptible, mild

infective, severe infective, mild removed, and severe removed individuals at time t . The

https://doi.org/10.1239/aap/1198177234 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1198177234


962 F. BALL AND T. BRITTON

epidemic is completely specified by the process X(n) = {X(n)(t) : t ≥ 0}, where X(n)(t) =
(X(n)(t), Y

(n)
M (t), Y

(n)
S (t), Z

(n)
M (t))�, since

X(n)(t) + Y
(n)
M (t) + Y

(n)
S (t) + Z

(n)
M (t) + Z

(n)
S (t) = n + m

(n)
M + m

(n)
S for all t ≥ 0.

The process X(n) is a continuous-time Markov chain with transition intensities

q
(n)
(i,jM,jS,kM),(i−1,jM+1,jS,kM) = n

(
i

n

)(
λMp

(M)
M

(
jM

n

)
+ λSp

(S)
M

(
jS

n

))
,

q
(n)
(i,jM,jS,kM),(i−1,jM,jS+1,kM) = n

(
i

n

)(
λMp

(M)
S

(
jM

n

)
+ λSp

(S)
S

(
jS

n

))
,

q
(n)
(i,jM,jS,kM),(i,jM−1,jS,kM+1) = nγM

(
jM

n

)
,

q
(n)
(i,jM,jS,kM),(i,jM,jS−1,kM) = nγS

(
jS

n

)
,

corresponding to a mild infection, a severe infection, a mild removal, and a severe removal,
respectively, where (i, jM, jS, kM) is the state of X(n) at a given time.

The transition intensities are expressed in the above form to indicate that X(n) is a density
dependent population process, as defined by Ethier and Kurtz (1986, Chapter 11). Consider
a sequence of epidemics, indexed by n, and suppose that n−1m

(n)
M → µM and n−1m

(n)
S → µS

as n → ∞, where µM + µS > 0. It follows, from Theorems 11.2.1 and 11.2.3 of Ethier and
Kurtz (1986), that, as n → ∞, n−1X(n) converges almost surely over any finite time interval
to x = {x(t) : t ≥ 0}, where x(t) = (x(t), yM(t), yS(t), zM(t))� is given by the solution of
(2.5a)–(2.5e) with initial condition (2.6), and a central limit theorem holds for fluctuations of
X(n) about x.

Let τ (n) = inf{t > 0 : Y
(n)
M (t) + Y

(n)
S (t) = 0} denote the duration of the nth epidemic and

let τ = inf{t > 0 : yM(t) + yS(t) ≤ 0}. Then X(n)(τ (n)) is the final outcome of the nth
epidemic and Theorem 11.4.1 of Ethier and Kurtz (1986) yields a central limit theorem for
X(n)(τ (n)), provided τ < ∞. However, τ = ∞, since τ is clearly greater than the time until
all initial infectives have been removed and the latter equals ∞ in the deterministic model as
the number of initial infectives decays exponentially. This difficulty can be overcome by using
the following random time-scale transformation of X(n); cf. Ethier and Kurtz (1986, p. 467).

For t ≥ 0, let

A(n)(t) =
∫ t

0
n−1(λMY

(n)
M (u) + λSY

(n)
S (u)) du

denote the total force of infection exerted on a given susceptible during [0, t], and let
A(n) = A(n)(∞) (= A(n)(τ (n))). For 0 ≤ t ≤ A(n), let

U(n)(t) = inf{u ≥ 0 : A(n)(u) = t} and X̃(n)(t) = X(n)(U(n)(t)),

and write X̃(n)(t) = (X̃(n)(t), Ỹ
(n)
M (t), Ỹ

(n)
S (t), Z̃

(n)
M (t))�. The process

X̃(n) = {X̃(n)(t) : 0 ≤ t ≤ A(n)}
is a random time-scale transformation of X(n), obtained by running the clock at rate

n(λMY
(n)
M (t) + λSY

(n)
S (t))−1.
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Hence, X̃(n) is a continuous-time Markov chain with transition intensities

q̃
(n)
(i,jM,jS,kM),(i−1,jM+1,jS,kM) = n(i/n)(λMp

(M)
M (jM/n) + λSp

(S)
M (jS/n))

λM(jM/n) + λS(jS/n)
,

q̃
(n)
(i,jM,jS,kM),(i−1,jM,jS+1,kM) = n(i/n)(λMp

(M)
S (jM/n) + λSp

(S)
S (jS/n))

λM(jM/n) + λS(jS/n)
,

q̃
(n)
(i,jM,jS,kM),(i,jM−1,jS,kM+1) = nγM(jM/n)

λM(jM/n) + λS(jS/n)
,

q̃
(n)
(i,jM,jS,kM),(i,jM,jS−1,kM) = nγS(jS/n)

λM(jM/n) + λS(jS/n)
,

and initial condition X̃(n)(0) = (n, m
(n)
M , m

(n)
S , 0)�.

The possible jumps of X̃(n) from a typical state i = (i, jM, jS, kM)� are

� = {(−1, 1, 0, 0)�, (−1, 0, 1, 0)�, (0, −1, 0, 1)�, (0, 0, −1, 0)�}.
The intensities of these jumps admit the form nβ̃l(n

−1i), l ∈ �, with the functions β̃l (l ∈ �)

given by

β̃(−1,1,0,0)(x̃, ỹM, ỹS, z̃M) = x̃(λMp
(M)
M ỹM + λSp

(S)
M ỹS)

λMỹM + λSỹS
, (4.1a)

β̃(−1,0,1,0)(x̃, ỹM, ỹS, z̃M) = x̃(λMp
(M)
S ỹM + λSp

(S)
S ỹS)

λMỹM + λSỹS
, (4.1b)

β̃(0,−1,0,1)(x̃, ỹM, ỹS, z̃M) = γMỹM

λMỹM + λSỹS
, (4.1c)

β̃(0,0,−1,0)(x̃, ỹM, ỹS, z̃M) = γSỹS

λMỹM + λSỹS
. (4.1d)

The processes X̃(n) (n ≥ 1) can be defined on a probability space, (
, F , P) say, using a
special case of a construction given in Ethier and Kurtz (1986, Chapter 11). Let

Nl = {Nl(t) : t ≥ 0}, l ∈ �,

be independent unit-rate Poisson processes defined on (
, F , P). Then, for n ≥ 1, a realisation
of the nth epidemic process is given by

X̃(n)(t) = X̃(n)(0) +
∑
l∈�

lNl

(
n

∫ t

0
β̃l(n

−1X̃(n)(u)) du

)
.

Let
F̃ (x̃, ỹM, ỹS, z̃M) =

∑
l∈�

lβ̃l(x̃, ỹM, ỹS, z̃M),

and, for t ≥ 0, let x̃(t) = (x̃(t), ỹM(t), ỹS(t), z̃M(t))� be defined by

x̃(t) = x̃(0) +
∫ t

0
F̃ (x̃(u)) du, (4.2)

https://doi.org/10.1239/aap/1198177234 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1198177234


964 F. BALL AND T. BRITTON

where x̃(0) = (1, µM, µS, 0)�. Thus, x̃(t) satisfies the differential equation

dx̃

dt
= −x̃, (4.3a)

dỹM

dt
= x̃(λMp

(M)
M ỹM + λSp

(S)
M ỹS) − γMỹM

λMỹM + λSỹS
, (4.3b)

dỹS

dt
= x̃(λMp

(M)
S ỹM + λSp

(S)
S ỹS) − γSỹS

λMỹM + λSỹS
, (4.3c)

dz̃M

dt
= γMỹM

λMỹM + λSỹS
. (4.3d)

Note that x̃(t) is defined for 0 ≤ t ≤ τ̃ , where τ̃ = inf{t ≥ 0 : ỹM + ỹS ≤ 0}. Now
τ̃ < ∞. For an informal proof, note that τ̃ is the limit as n tends to ∞ of the total force
of infection acting on a given individual in the epidemic X(n), which must be less than the
corresponding quantity if everyone were to become infected, which in turn must be less than
(1 + µM + µS) max(γ −1

M , γ −1
S ). For a formal proof, (4.3a) implies that x̃(t) = exp(−t), and

(4.3b) and (4.3c) imply that (ỹM + ỹS)′(t) ≤ x̃ − (min(γM, γS)/ max(λM, λS)), where ′ denotes
the derivative with respect to t . Thus, there exist t0 > 0 and a < 0 such that (ỹM + ỹS)′(t) ≤ a

for t ≥ t0; whence τ̃ < ∞.
The process X̃(n) terminates at time t = τ̃ (n), where τ̃ (n) = inf{t > 0 : Ỹ

(n)
M (t) + Ỹ

(n)
S (t) =

0}. In the following we assume that X̃(n)(t) = X̃(n)(τ̃ (n)) for t > τ̃ (n).

Theorem 4.2. For 0 ≤ t ≤ τ̃ ,

lim
n→∞ sup

0≤u≤t

|n−1X̃(n)(u) − x̃(u)| = 0 almost surely. (4.4)

Proof. For 0 ≤ t < τ̃ , (4.4) follows directly from Theorem 11.2.1 of Ethier and Kurtz
(1986), since F̃ (x̃) is Lipschitz-continuous in some small neighbourhood of {x̃(u) : 0 ≤ u ≤
t}. There exists E ∈ F , with P(E) = 1, such that, for l ∈ �, t ≥ 0, and ω ∈ E,
limn→∞ supu≤t |n−1(Nl(nu, ω)−nu)| = 0. (This is a key observation in the proof of Theorem
11.2.1 of Ethier and Kurtz (1986) and it implies that, if ω ∈ E, the limit in (4.4) holds for all
t < τ̃ .) Fix an ω ∈ E and an ε > 0. The intensity functions β̃l (l ∈ �) are bounded on
S = [0, 1) × (0, ∞)3, so

Mβ =
∑
l∈�

|l| sup
x̃∈S

β̃(x̃) < ∞.

There exists t1 ∈ (τ̃ − ε/3Mβ, τ̃ ) such that |x̃(τ̃ ) − x̃(t1)| < ε/3. Since ω ∈ E,

|n−1X̃(n)(t1, ω) − x̃(t1)| <
ε

3
and |n−1X̃(n)(τ̃ , ω) − n−1X̃(n)(t1, ω)| <

ε

3

for all sufficiently large n. Thus, |n−1X̃(n)(τ̃ )− x̃(τ̃ )| < ε for all sufficiently large n, and (4.4)
follows with t = τ̃ since ε > 0 is arbitrary and P(E) = 1.

Note that X̃(n)(τ̃ (n)) yields the final outcome of the nth epidemic. For 0 ≤ t ≤ τ̃ (n), let
Z̃(n)(t) = (Z̃

(n)
M (t), Z̃

(n)
S (t)), where Z̃

(n)
S (t) = n+m

(n)
M +m

(n)
S − X̃(n)(t)− Ỹ

(n)
M (t)− Ỹ

(n)
S (t)−

Z̃
(n)
M (t) denotes the number of severe removals in X̃(n) during (0, t]. For 0 ≤ t ≤ τ̃ , let z̃(t) =

(z̃M(t), z̃S(t)), where z̃S(t) = 1 +µM +µS − x̃(t)− ỹM(t)− ỹS(t)− z̃M(t). In the notation of
Section 2.2.2, (R(n)

M , R
(n)
S ) = (Z̃

(n)
M (τ̃ (n)) − m

(n)
M , Z̃

(n)
M (τ̃ (n)) − m

(n)
S ) and (rM, rS) = (z̃M(τ̃ )−

µM, z̃S(τ̃ ) − µS).
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Theorem 4.3. For any ε > 0,

lim
n→∞ P(|n−1Z̃(n)(τ̃ (n)) − z̃(τ )| < ε) = 1, (4.5)

i.e. n−1(R
(n)
M , R

(n)
S )

p−→ (rM, rS) as n → ∞, where ‘
p−→’ denotes convergence in probability.

Proof. For 0 ≤ ξ ≤ 1, let Yξ = {(YMξ (t), YSξ (t)) : t ≥ 0} be the two-type linear birth-and-
death process having birth-rate matrix

�(ξ) = ξ

⎡
⎣λMp

(M)
M λMp

(M)
S

λSp
(S)
M λSp

(S)
S

⎤
⎦ ,

and death rates γM and γS. The process Yξ has basic reproduction number R0(ξ) = ξR0, where
R0 is given by (2.2). Note that the elements of �(ξ) give the rates with which a given mild
or severe infective creates further mild and severe infectives when a fraction ξ of the initial
susceptibles are still susceptible. Note that there exists t0 ∈ (0, τ̃ ) such that R0(x̃(t0)) < 1.
(If this were not the case then the process of infectives in the untransformed deterministic
model (2.5a)–(2.5e) would be bounded below by a deterministic linear two-type birth-and-
death process having reproduction number greater than or equal to 1 and, hence, (yM(t), yS(t))

would not tend to (0, 0) as t tended to ∞.) For 0 ≤ ξ ≤ 1, let T (M)(ξ) denote the total
progeny in Yξ if Yξ (0) = (1, 0), counting both types and including the initial ancestor, and
define T (S)(ξ) similarly when Yξ (0) = (0, 1).

For 0 ≤ t ≤ τ̃ (n), let

T̃
(n)
R (t) = Z̃

(n)
M (τ̃ (n)) − Z̃

(n)
M (t) + Z̃

(n)
S (τ̃ (n)) − Z̃

(n)
S (t)

denote the total number of removals that occur in X̃(n) after time t . For 0 ≤ ξ ≤ 1 and
i ∈ {M, S}, let T (i)

1 (ξ), T
(i)
2 (ξ), . . . be independent and identically distributed copies of T (i)(ξ).

Observe that T (M)(ξ) and T (S)(ξ) are each stochastically increasing in ξ and, since the birth-
and-death process Yξ provides an upper bound for the epidemic process after a fraction 1 − ξ

of susceptibles have been infected,

T̃
(n)
R (t)

st≤
Ỹ

(n)
M (t)∑
i=1

T
(M)
i (n−1X̃(n)(t)) +

Ỹ
(n)
S (t)∑
i=1

T
(S)
i (n−1X̃(n)(t)) (4.6)

for any t ∈ [0, τ̃ (n)), where ‘
st≤’ denotes stochastic ordering. These observations can be proved

formally using the coupling described at the beginning of Section 4.3.
Theorem 4.2 implies that, for any t ∈ (t0, τ̃ ),

lim
n→∞ P(Ỹ

(n)
M (t) ≤ 3

2 ỹM(t)) = 1, lim
n→∞ P(Ỹ

(n)
S (t) ≤ 3

2 ỹS(t)) = 1, (4.7)

and
lim

n→∞ P(n−1X̃(n)(t) ≤ x̃(t0)) = 1. (4.8)

For 0 ≤ ξ ≤ 1, let

µ
(M)
T (ξ) = E[T (M)(ξ)] and µ

(S)
T (ξ) = E[T (S)(ξ)],
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and note that µ
(M)
T (x̃(t0)) < ∞ and µ

(S)
T (x̃(t0)) < ∞ since R0(x̃(t0)) < 1. Using, (4.7), (4.8),

the stochastic monotonicity of T (M)(ξ) and T (S)(ξ), and the weak law of large numbers, it
follows, from (4.6), that, for any t ∈ (t0, τ̃ ),

lim
n→∞ P(n−1T̃

(n)
R (t) ≤ 2[ỹM(t)µ

(M)
T (x̃(t0)) + ỹS(t)µ

(S)
T (x̃(t0))]) = 1. (4.9)

Let ε > 0 be given. Since z̃(t) ↑ z̃(τ̃ ) and (ỹM(t), ỹS(t)) → (0, 0) as t → τ̃−, there exists
t1 ∈ (t0, τ̃ ) such that

z̃M(τ̃ ) − z̃M(t̃1) + z̃S(τ̃ ) − z̃S(t1) <
ε

3
and ỹM(t)µ

(M)
T (x̃(t0)) + ỹS(t)µ

(S)
T (x̃(t0)) <

ε

6
.

Then limn→∞ P(|n−1(Z̃(τ̃ (n)) − Z̃(t1))| < ε/3) = 1, using (4.9), and |z̃(t1) − z̃(τ̃ )| < ε/3.
Furthermore, limn→∞ P(|n−1Z̃(n)(t1) − z̃(t1)| < ε/3) = 1, using Theorem 4.2. The last three
facts imply (4.5), as required.

We now seek a central limit theorem (CLT) for the final outcome of the IDS epidemic. Let
∂F̃ (x̃) = [∂j F̃i(x̃)] denote the matrix of first partial derivatives of F̃ (x̃) and, for 0 ≤ s ≤ t ≤ τ̃ ,
let �̃(t, s) be the solution of the matrix differential equation

∂

∂t
�̃(t, s) = ∂F̃ (x̃(t))�̃(t, s), �̃(s, s) = I , (4.10)

where I denotes the 4 × 4 identity matrix. Let G̃(x̃) = ∑
l∈� ll�β̃l(x̃). The following

theorem is an immediate consequence of Theorem 11.2.3 of Ethier and Kurtz (1986) since∑
l∈� |l|2 supx̃∈S β̃l(x̃) < ∞.

Theorem 4.4. For t ∈ [0, τ̃ ], let Ṽ (n)(t) = √
n(n−1X̃(n)(t) − x̃(t)), and suppose that

lim
n→∞

√
n(n−1m

(n)
M − µM) = 0 and lim

n→∞
√

n(n−1m
(n)
S − µS) = 0.

Then, for any t0 < τ̃ ,

{Ṽ (n)(t) : 0 ≤ t ≤ t0} w−→ {Ṽ (t) : 0 ≤ t ≤ t0},
where ‘

w−→’denotes weak convergence in the space of right-continuous functions from [0, t0] →
R

4 with left limits, endowed with the Skorohod topology, and {Ṽ (t) : 0 ≤ t ≤ t0} is a zero-mean
Gaussian process with Ṽ (0) = 0 and covariance function given by

cov(Ṽ (t), Ṽ (s)) =
∫ min(t,s)

0
�̃(t, u)G̃(x̃(u))(�̃(s, u))� du. (4.11)

The final outcome of the nth epidemic is X̃(n)(τ̃ (n)) and, in the notation of Section 2.2.2,
R

(n)
M = Z̃

(n)
M (τ̃ (n)) − m

(n)
M and R

(n)
S = n + m

(n)
M − X̃(n)(τ̃ (n)) − Z̃

(n)
M (τ̃ (n)). Theorem 11.4.1 of

Ethier and Kurtz (1986) would yield a CLT for X̃(n)(τ̃ (n)), but to apply that theorem as stated
requires the processes X̃(n) and x̃ to be defined on the interval [0, t1] for some t1 > τ̃ , and that
Theorems 4.2 and 4.4 hold on [0, t1].

Suppose that θ = limt→τ̃−[ỹM(t)/ỹS(t)] exists. Then, using L’Hôpital’s rule,

θ = lim
t→τ̃−

ỹ′
M(t)

ỹ′
S(t)

= lim
t→τ̃−

[
x̃(t)(λMp

(M)
M ỹM(t) + λSp

(S)
M ỹS(t)) − γMỹM(t)

x̃(t)(λMp
(M)
S ỹM(t) + λSp

(S)
S ỹS(t)) − γSỹS(t)

]

= x̃(τ̃ )(λMp
(M)
M θ + λSp

(S)
M ) − γMθ

x̃(τ̃ )(λMp
(M)
S θ + λSp

(S)
S ) − γS

,

https://doi.org/10.1239/aap/1198177234 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1198177234


Epidemic model with infector-dependent severity 967

provided that x̃(τ̃ )(λMp
(M)
S θ + λSp

(S)
S ) − γS �= 0. If this is the case then θ satisfies

x̃(τ̃ )λMp
(M)
S θ2 + (x(τ̃ )(λSp

(S)
S − λMp

(M)
M ) + γM − γS)θ − x̃(τ̃ )λSp

(S)
M = 0. (4.12)

Now p
(M)
S > 0 and p

(S)
M > 0, so the roots of (4.12) have opposite signs and θ is given by the

positive root as it clearly cannot be negative. We do not have a proof that the limit θ exists
or that x̃(τ̃ )(λMp

(M)
S θ + λSp

(S)
S ) − γS �= 0. However, the latter is easily checked numerically

for any given case and our numerical studies support the former. We assume that these results
both hold. It then follows, from (4.3a)–(4.3d), that F̃ (x̃(τ̃ )) is well defined and, thus, x̃ can
be extended to an interval of the form [0, t1] above. The jump intensities (4.1a)–(4.1d) can be
extended similarly, allowing X̃(n) to be defined on [0, t1], but the corresponding drift function
F̃ is not Lipschitz-continuous at x̃(τ̃ ). We proceed on the basis that Theorem 11.4.1 of Ethier
and Kurtz (1986) still applies in this setting.

Let φ(x̃, ỹM, ỹS, z̃M) = ỹM+ỹS, so τ̃ (n) = inf{t > 0 : φ(X̃(n)(t)) ≤ 0} and τ̃ = inf{t > 0 :
φ(x̃(t)) ≤ 0}. Now ∇φ(x̃) = (0, 1, 1, 0) and, using (4.1a)–(4.1d),

∇φ(x̃(τ̃ ))F̃ (x̃(τ̃ ))

= [x̃(τ̃ )(λMp
(M)
M θ + λSp

(S)
M ) − γMθ ] + [x̃(τ̃ )(λMp

(M)
S θ + λSp

(S)
S ) − γS]

λMθ + λS
. (4.13)

Since θ > 0 and x̃(τ̃ )(λMp
(M)
S θ + λSp

(S)
S ) − γS �= 0, the two terms in square brackets in (4.13)

are nonzero and have the same sign, which must be negative from the definition of τ̃ . Thus,
∇φ(x̃(τ̃ )) < 0; whence Theorem 11.4.1 of Ethier and Kurtz (1986) yields

√
n(n−1X̃(n)(τ̃ (n)) − x̃(τ̃ ))

d−→ Ṽ (τ̃ ) − (0, 1, 1, 0)Ṽ (τ̃ )

(0, 1, 1, 0)F̃ (x̃(τ̃ ))
F̃ (x̃(τ̃ )) as n → ∞. (4.14)

Let �̃(t) = cov(Ṽ (t), Ṽ (t)) denote the variance-covariance matrix of Ṽ (t), and define
matrices B and C by

B = I − F̃ (x̃(τ̃ ))(0, 1, 1, 0)

(0, 1, 1, 0)F̃ (x̃(τ̃ ))
and C =

[
0 0 0 1

−1 0 0 −1

]
. (4.15)

Then (4.14) implies that

√
n(n−1X̃(n)(τ̃ (n)) − x̃(τ̃ ))

d−→ N(0, B�̃(τ̃ )B�) as n → ∞. (4.16)

Hence, the limiting variance-covariance matrix �(µM, µS) in (2.7) is given by �(µM, µS) =
CB�̃(τ̃ )B�C�.

Note that it follows, from (4.10) and (4.11), that �̃(t) satisfies the differential equation

d�̃

dt
= G̃(x̃) + ∂F̃ (x̃)�̃ + �̃[∂F̃ (x̃)]�, (4.17)

with initial condition �̃(0) = 0. Thus, �̃(τ̃ ) can be computed by numerically solving the
differential equations (4.3a)–(4.3d) and (4.17) simultaneously.
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4.3. Few initial infectives: heuristics for a CLT in the case of a major outbreak

We continue to assume that the infectious periods follow exponential distributions, with
rate γM for mild infectives and rate γS for severe infectives, but, as in Section 4.1, we now
consider a sequence of epidemics {E(n) : n ≥ 1}, indexed by the initial number of susceptibles
n, with each epidemic having mM initial mild infectives and mS initial severe infectives. Let
Y = {(YM(t), YS(t)) : t ≥ 0} be the branching process defined in Section 4.1, but with the
above exponential lifetime distributions.

Let (
, F , P) be a probability space, on which is defined the branching process Y and, inde-
pendently, a sequence U1, U2, . . . of independent and identically distributed random variables
that are uniformly distributed on (0, 1). For ε ∈ (0, 1), let Yε denote the branching process
obtained from Y by, for i = 1, 2, . . . , deleting the ith birth in Y and all of its descendants if
Ui ≤ ε. For n = 1, 2, . . . , a realisation of the epidemic E(n) is obtained from Y , by associating
births with infections and, for i = 1, 2, . . . , deleting the ith birth in Y and all of its descendants
if Ui < 1 − n−1X(n)(s−), where s is the time of the ith birth in Y . For t ≥ 0, let T (t), ZM(t),
and ZS(t) respectively denote the total number of births, the total number of mild deaths, and
the total number of severe deaths during (0, t] in Y . Define YMε(t), YSε(t), and Tε(t) for Yε in
the obvious fashion. Observe that if τ

(n)
ε = inf{t ≥ 0 : X(n)(t) < (1 − ε)n}, where ε ∈ (0, 1),

then
n − T (t) ≤ X(n)(t) ≤ n − Tε(t), t ∈ [0, τ (n)

ε ]. (4.18)

Consider the branching process Y . For t ≥ 0, let m̄ij (t) = E[Yj (t)] given that initially there
is one individual, whose type is i, and let M̄(t) = [m̄ij (t)]. The infinitesimal generator of the
semigroup {M̄(t) : t ≥ 0} is

Ā =
⎡
⎣λMp

(M)
M − γM λMp

(M)
S

λSp
(S)
M λSp

(S)
S − γS

⎤
⎦ .

Let α denote the maximal eigenvalue of Ā (i.e. the Malthusian parameter of Y ), and let
v = (vM, vS) be the corresponding left eigenvector, normalized so that vM + vS = 1. The
branching process Y is positive regular (as p

(M)
S > 0 and p

(S)
M > 0) and nonsingular, so it

follows, using Theorem 2 of Athreya and Ney (1972, p. 206) and the theory of asymptotic
growth and stabilisation of general multitype branching processes (see, e.g. Jagers (1991)), that
there exists a random variable W ≥ 0 such that, almost surely,

lim
t→∞ e−αtYM(t) = vMW, lim

t→∞ e−αtYS(t) = vSW, (4.19)

and

lim
t→∞ e−αtT (t) = λMvM + λSvS

α
W. (4.20)

Moreover, W(ω) > 0 if and only if ω ∈ Ac
E , i.e. if and only if Y does not go extinct.

Lemma 4.1. Suppose that R0 > 1. Then, there exists ε0 > 0 such that

lim
n→∞ P(X(n)(∞) ≤ (1 − ε0)n | Ac

E) = 1. (4.21)

Proof. First note that (4.20) implies that, for P-almost all ω ∈ Ac
E , tn = inf{t : T (t) > log n}

is well defined and finite for n = 1, 2, . . . . Also, by construction, the first [log n]+1 births in Y
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correspond to infections in E(n) if and only if Ui ≥ 1 − (i − 1)/n for i = 1, 2, . . . , [log n]+ 1.
A simple calculation then shows that

lim
n→∞ P(X(n)(tn) = n − T (tn), Y

(n)
M (tn) = YM(tn), Y

(n)
S (tn) = YS(tn) | Ac

E) = 1. (4.22)

It then follows, using (4.19) and (4.20), that

lim
n→∞ P

(
Y

(n)
M (tn) >

cM

2
log n, Y

(n)
S (tn) >

cS

2
log n

∣∣∣∣ Ac
E

)
= 1, (4.23)

where

cM = lim
n→∞

YM(tn)

T (tn)
= αvM

(λMvM + λSvS)
and cS = lim

n→∞
YS(tn)

T (tn)
= αvS

(λMvM + λSvS)
.

The branching process Yε has basic reproduction number R0(ε) = (1−ε)R0. For i = M, S,
let πi(ε) denote the extinction probability of Yε given that initially there is one individual,
whose type is i. Since R0 > 1, there exists ε0 > 0 such that R0(ε0) > 1, which implies that
πM(ε0) < 1 and πS(ε0) < 1.

For each n = 1, 2, . . . , the construction described above (4.18) can be used to define a
realisation of E(n), Ê(n) say, and a realisation of Yε0 , with, in obvious notation,

Ŷ
(n)
M (0) = Y

(n)
Mε0

(0) = YM(tn), Ŷ
(n)
S (0) = Y

(n)
Sε0

(0) = YS(tn), and X̂(n)(0) = n − T (tn),

that are coupled so that X̂(n)(t) ≤ n − Tε0(t), provided that X̂(n)(t) ≥ (1 − ε0)n. Hence,
recalling (4.22) and (4.23),

lim
n→∞ P(X(n)(∞) ≤ (1 − ε0)n | Ac

E) = lim
n→∞ P(X̂(n)(∞) ≤ (1 − ε0)n)

≥ lim
n→∞ P(Tε0(∞) ≥ nε0)

≥ lim
n→∞ P(Tε0(∞) = ∞)

≥ lim
n→∞[1 − (πM(ε0))

(cM/2) log n(πS(ε0))
(cS/2) log n]

= 1,

and (4.21) follows.

It is convenient to return now to the construction of (E(n)) and Y given in Section 4.1. As
above, let tn = inf{t : T (t) > log n}. Then, since n−1/2η(n) → η almost surely as n → ∞, for
P-almost all ω ∈ Ac

E , the process of infectives in E(n) and the branching process Y coincide
over [0, tn] for all sufficiently large n. Thus, for such n,

X(n)(tn) = n−T (tn), Y
(n)
M (tn) = YM(tn), Y

(n)
S (tn) = YS(tn), and Z

(n)
M (tn) = ZM(tn).

It then follows, using (4.19), (4.20), and a similar result for ZM(t), that, for P-almost all ω ∈ Ac
E ,

lim
n→∞

[
Y

(n)
M (tn)

log n

]
= cM, lim

n→∞

[
Y

(n)
S (tn)

log n

]
= cS,

and lim
n→∞

[
Z

(n)
M (tn)

log n

]
= cZM,
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where cZM = γMvM/(λMvM + λSvS). Thus, as n → ∞ and letting gn = n−1 log n,

1

n
(X(n)(tn), Y

(n)
M (tn), Y

(n)
S (tn), Z

(n)
M (tn)) ∼ (1 − gn, cMgn, cSgn, cZMgn). (4.24)

Let X̂(n) denote the time-changed process described in Section 4.2, but with X̂(n)(0) =
X(n)(tn). Recall that τ (n) = inf{t > 0 : Y

(n)
M (t) + Y

(n)
S (t) = 0}, and let

τ̂ (n) = inf{t > 0 : Ŷ
(n)
M (t) + Ŷ

(n)
S (t) = 0}.

In view of (4.24), let x̂(n) denote the solution of the deterministic model (4.2) with

x̂(n)(0) = (1 − gn, cMgn, cSgn, cZMgn),

and let x̂ = limn→∞ x̂(n). Then it is plausible that

n−1X̂(n) w−→ x as n → ∞,

and that
n−1X̂(n)(τ̂ (n))

p−→ x̂(τ̂ ) as n → ∞,

where τ̂ = inf{t > 0 : ŷM(t) + ŷS(t) ≤ 0}.
Recall that A(n) = ∫ ∞

0 n−1(λMY
(n)
M (u) + λ

(n)
S (u)) du. Note that, since there are few initial

infectives, it is possible that A(n) → 0 as n → ∞, in which case the time-changed process
X̃(n), defined in Section 4.2, is defined only for t = 0 in the limit as n → ∞. Indeed, this is
what happens if ω ∈ AE . However, Lemma 4.1 implies that there exists ε1 > 0 such that

P(A(n) ≥ ε1 | Ac
E) → 1 as n → ∞,

so, conditional on the epidemic becoming established, the limiting processes limn→∞ n−1X̃(n)

and limn→∞ n−1X̂(n) do not get stuck at their initial state (1, 0, 0, 0). Furthermore, since
limn→∞ n−1/2 log n = 0, it is also plausible that, conditional upon the outbreak becoming es-
tablished, Theorem 4.4 and the asymptotic distribution of the final outcome given by (4.16) also
hold with obvious modifications. In particular, the asymptotic mean and variance-covariance
matrix of X̃(n)(τ̃ (n)), given Ac

E occurs, is obtained by setting x̃(0) = (1− ε, εcM, εcS, εcZM)�
in (4.3a)–(4.3d), (4.15), and (4.16), and letting ε ↓ 0.

5. Discussion

The aim of the paper is to incorporate the fact that many infectious diseases have varying
severity of the disease, and this severity often affects an individual’s degree of further spreading
the disease. The IDS model allows for two different severities, mild and severe. It is quite
straightforward to generalise the model to allow for an arbitrary number of severities, and the
same proof techniques may be used. Another important step to making the model more realistic
is to incorporate households and allow for the possiblility of a higher transmission rate and a
greater proportion of severe contacts within households. In principle, a household model, e.g.
Ball et al. (1997), could be combined with the present model for different severities, and this
will be the subject of further research.

It would be of interest to study vaccination strategies particularly targeted at reducing
the number of severe cases. In particular, if the basic epidemic model was multitype, e.g.
incorporating age cohorts, it might be of special interest to reduce the number of severe cases
in vulnerable groups, such as the very young and the very old.
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The IDS model resembles a two-type epidemic model (e.g. Andersson and Britton (2000,
Chapter 6)) in certain ways, with mild and severe specifying the two types. The difference
between the IDS model and a two-type epidemic model is that an individual’s type is not
decided in advance, but only upon infection, and the probability that an infective becomes a
specific type depends on who he or she was infected by. Nevertheless, in its initial stages, the IDS
model behaves like a two-type epidemic model, in that given any IDS model the contact rates
in the two-type epidemic can be chosen so that the two processes have the same approximating
branching process. However, once an epidemic becomes established, the behaviours of the IDS
and the two-type epidemic models no longer resemble each other.

In the IDS model the infectious state of an individual depends on the type of his or her
infector. Ball and Britton (2005) treated a different model for varying severity in which each
infected individual was initially mild upon infection, but later may become severely infected if
additionally exposed to the disease. Which of the models is more realistic of course depends
on the disease of interest, but probably a combination of the two would be most realistic. That
is, where the severity of a given infective depends not only on who he or she was infected by
but also on whether or not that infective has been exposed several times.
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