A SPECTRAL STUDY OF MARKARIAN 297

A. N. Burenkov

Special Astrophysical Observatory
357147 Stavropolskij kraj, Nizhnij Arkhyz,USSR

ABSTRACT. The results of a spectral study of the galaxy IIr 297 with the $6-m$ telescope are presented.Estimations of mass and heavy element abundance for some knots in galaxy are made. Chemical composition of these knots is close to the normal one.

1. INTRODUCTION

The galaxy Mr 297 (NGC 6052=UGC $10182=\mathrm{ARP} 209=\mathrm{VV}$ 86) was included in the list of the objects with superassociations (Sahakian, Khachikian, 1975) and attracted great attention of many astronomers for the past two decades. It has been included in the list of clumpy irregular galaxies too (Casini et al.,1979). Taniguchi and Tamura (1981) made a spectrophotometric study of clump "b" ("kl" in our designation).Spectral UV observations have allowed Benvenuti et al(1982) to make a conclusion that some clumps emit at 1550 A 100 times more than 30 Dor and contain up to $0,7 x$ 10^{5} early stars.
2. OBSERVATIONS AND MASS ESTIMATION.

Fig.1a presents a direct plate of Mr. 297 obtained with the 60 cm teleacope of SAO USSR without a filter with an exposure of 45 minutes. The figure shows the spectrograph slit position angles (PA) and the observed knots.

The photographic spectra (in $P A=96^{\circ}$ and 94°) have been obtained with the $6-\mathrm{m}$ telescope prime focus diffraction spectrograph and Image-tube (dispersions 65 and 100 A / mm) within 3700-7000 AA. On the spectra with $P A=94^{\circ} \mathrm{k} 2$ and kl knots of Mr 297 show rotation.

More detailed spectra were obtained in April 1986
with $P A=114^{\circ}$ and 4°. We used the panoramic photon countin_{f} system (512x512) with a dispersion of $1.6 \mathrm{~A} / \mathrm{channel}$, within 6100-7000 AA. The spectrum with PA=114 ${ }^{\circ}$ near H_{α} is presented in Fig. 1 b .

At the same time the spectra of the knots k1, k2, k3, $k 4$ and k5 were obtained with the 6-m telescope 1024-channel scanner with a dispersion of $1.7 \mathrm{~A} /$ channel within 3700-7000 AA.

Pigure 1. a - A direct plate of Mr 297 (slit positions, PA, knots); b - The spectrum of $k 1$, $k 2$, and $k 3$ ($P A=114$ near H_{α}; c - Relative velocities of some knots and the rotation directions of $k 1, k 2$ and $k 3$.

The velocities of some knots relative to the radial velocity of the system $V=4700 \mathrm{~km} / \mathrm{s}$ and the rotation direction of the three central knots are show in Fif. 1c. The velocity of Mir 297 was assumed to be the mean velocity of the three greatest central knots (k1, k2 and k3): $V=$ $4700+32 \mathrm{~km} / \mathrm{s}, \quad r=63 \mathrm{llnc}$ if $\mathrm{H}_{0}=75 \mathrm{~km} / \mathrm{s}$ lipc). The rough estimation of the rotational velocity V (rot) with the radius R of the knots provides the mass estimation of the condensations:

$$
\begin{aligned}
& M(\mathrm{k} 1)=2.0 \times 10^{9} \mathrm{M}_{0},(\mathrm{R}=0.7 \mathrm{kpc}, V(\operatorname{rot})=110 \mathrm{~km} / \mathrm{s}) ; \\
& M(\mathrm{k} 2)=3.1 \times 10^{9} \mathrm{Mo},(\mathrm{R}=0.7 \mathrm{kpc}, V(\operatorname{rot})=140 \mathrm{~km} / \mathrm{s}) ; \\
& M(\mathrm{k} 3)=2.2 \times 10^{8} \mathrm{Mo},(\mathrm{R}=0.5 \mathrm{kpc}, V(\operatorname{rot})=43 \mathrm{~km} / \mathrm{s})
\end{aligned}
$$

The velocity dispersions for these knots obtained from the FIHI of emission lines and corrected for the instrumental ones are within the limits $80-130 \mathrm{~km} / \mathrm{s}$.
3. EISEIENT ABUNDANCES.

In Table 1 the total element abundances for the studied knots (Burenkov, 1986) and also similar data for the Sun, planetary nebulae (Aller, 1983), averages for HII regions in 6774, SMC andMM (Talent, 1982) and for nuclear region and superassociation of $\operatorname{IIr} 35$ (Burenkov, Khachikian, 1986) are presented.

Table 1. Total relative abundances $\mathrm{X} / \mathrm{H}=$ $12+\operatorname{Lg}(\mathrm{X} / \mathrm{H})$.

Object	O/H	N/H	S / H	Te / H	He / H Reference
MR 297 kl	8.85	7.57	7.24		11.29:
Mir 297 k 2	8.58	7.05	6.88	8.45:	11.11
MR 297 k 3	8.76	7.49	7.13		11.05
IR 297 k 4	8.58	7.44	7.10	7.73	11.08
MR 297 k 5	8.58	7.41	7.26	< 8.29:	11.23:
MR 297 k 6	8.58	7.06	6.96		11.21:
MR 297 k 7	8.60	7.33	7.23	8.22	11.10
Sun	8.87	7.96	7.23	8.05	11.0 Aller,(1983)
plan.nebul.	8.64	8.26	7.00	8.03	11.04 Aller,(983)
<N6744 HII>	8.44	7.34	6.75	7.80	10.96 Talent (1982)
< SMC >	8.02	6.48	6.40	7.29	10.90 - " -
< IMC >	8.49	6.95	7.20	7.80	10.94 - "
Mr 35 SA	8.19	6.80	6.43	7.70	11.14 Burenkov
Mrr 35 core	8.48	7.05	6.63	7.81	10.94 Khachikian,

4. CONCLUSION.

Rotation of at least three knots in 1 rr 297, k1, k2 and k3 is observed. The masses of $\mathrm{k} 1, \mathrm{k} 2$, k 3 are within 2×10^{8} 3×10^{9} Mo. Judging by the direct plate of the galaxy the number of such massive knots can not exceed 5. However, the indicative mass is $M_{i}=1.88 \times 10^{\prime \prime} M^{\text {and }}$ from the radio data presented by Gordon and Gottesman (1981) the gas mass is $M_{H}=1.18 \times 10^{10} \mathrm{M}_{C}$. The element abundances in the majority of Mr 297 knots is close to the normal one.

References
Aller, I., Czyzak, S.: 1983, Astrophys.J. (Suppl.), 51,pp.211-247. Burenkov,A.N.:1986,Astrofisika, (in press).

Burenkov, A.N., Khachikian, F. Ye.:1986,Astrofisika, 24,pp.349361.

Casini,C., IHeidmann, J., Tarenghi, M.:1979,Astron.Astrophys.,
73, pp.216-221.
Gordon, D., Gottesman, S.T.:1981, Astron.J., 86, pp.161-177. Sahakian, K.A., Khachikian,E.Ye.:1975,Astrofisika,11,pp.207220.

Talent,D.L.:1982,Astrophys.J.,252, pp.594-600.
Taniguchi, Y., Tamura, S.:1981, Publ.Astr.Soc.Japan, 33, pp. 653-664.

