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IDEMPOTENTS IN BICATEGORIES

R. PARE, R. ROSEBRUGH AND R.J. WOOD

It is shown that the category of fixed points of a left exact idempotent functoi on a topos
is again a topos. As well as a direct proof, a bicategorical proof is given which shows that
the result only depends on certain bicategorical exactness properties.

1. INTRODUCTION.

The results presented here arose from the following observation and question by
F.W. Lawvere. If G is a graph, the category of sets with an action by G (that is,
diagrams G —> set) is a very simply described example of a topos. In fact any presheaf
topos is a geometric quotient of such a topos since any small category is a quotient
of the free category on a graph. Since there is an inclusion from any Grothendieck
topos to a presheaf topos, there is always a presentation of a Grothendieck topos as a
"subquotient" of sets with action by a graph. Indeed, the topos so presented is exactly
the objects fixed by the idempotent left exact functor on the sets with graph action
obtained by using the direct and inverse images of the geometric morphisms in the
presentation. The question which arises then is the following: if E is a topos and
F: E —> E is a left exact idempotent functor, is the category fix(F), whose objects
and arrows are those fixed by F, again a topos?

In the next section we provide a positive answer. The question above involves
left exact functors between toposes and these have been viewed as "progeometric mor-
phisms" [5] and [6]. Moreover, our solution involves universal algebras for promonads
(the left exact comonads) and idempotent procomonads (the idempotent left exact
monads associated with the sheaf construction). The situation evoked is a bicategory
equipped with a notion of proarrow and satisfying additional exactness axioms. In the
third section we study the question of splitting idempotents (slightly generalised) in
terms of universal algebras in a bicategory. In the last section we apply this to various
proarrow equipments and show further that some of the required universal objects do
not exist in the bicategory of categories and profunctors.

A few remarks on notation may be helpful. We use the standard () P and ()C

conventions. We write TOP for the bicategory of toposes and geometric morphisms;
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422 R. Pare, R. Rosebrugh and R.J. Wood [2]

TOPLEX for toposes, left exact functors and natural transformations. TOPLEX is
the bicategory whose arrows are progeometric morphisms and which shares important
exactness properties with PROF, the bicategory of categories and profunctors [10] and
[11]. We assume the reader to be familiar with the basic facts about toposes and the
theory of bicategories. Standard references are [3, 1] and [8].

2. IDEMPOTENT LEFT EXACT FUNCTORS

In this section we prove the result about idempotent progeometric morphisms
of toposes mentioned above. The notion of idempotent is first generalised slightly
to a concept more appropriate to bicategories. An Idempotent (with capital I) is
a functorF: E —» E together with a natural isomorphism <f>: F^F2 such that
<f>F • <f> = F(j> • <j>, that is, the following (coassociativity) diagram commutes:

F

*\
F2

— - » F2

\F<I>

» F3

d>F

For example, if H: Eo —* E and G: E —* Eo are such that there is a natural isomor-

phism 6: lEo=>GH then (HG,H0G) is an Idempotent.

The category COALG(F, (f>) has objects the pairs (A,a) with A in E and a: A —>

FA subject to the requirement that

A —

•i
FA —

—> FA

It A

—•+ F2A
Fa

commutes. A morphism / : (A, a) —> (B,b) in COALG(JJ1, <f>) is a morphism / : A —» B

in E such that b- f - Ff -a. The objects "fixed" by the Idempotent {F,<f>) are those
in the full subcategoryFIX(.F,<£) of COALG(.F,0) determined by the (A, a) with a
invertible. There is a functor G: E -» FIX(f, 0) defined by G{A) = (FA, <f>A) and
G(f) = Ff. If H: F1X(F,4>) -* E is the forgetful functor, then HG = F and
^ :

 1FIX(F,0) —* Gjff defined by 0(A,a) = a is a natural isomorphism. Thus G, H and
6 provide a "Splitting" for (F, <j>), a concept about which we will say more in the next
section.

Before proceeding, we wish to remark tha if F2 = F: E —> E is an idempotent,
then fix(F) is equivalent to FIX(F,1F). Explictly, A *-* (A,1A) and (B,b) >-> FB

provide an equivalence.

https://doi.org/10.1017/S0004972700003336 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700003336


[3] Idempotents in bicategories 423

LEMMA 2.1. Let E be a topos and (F,<f>) a left exact Idempotent on E . The
forgetful functor U: COALG(F,<f>) -> E is cotripleable, and COALG(F,</>) is a topos.

PROOF: Standard arguments show that GOALG(F, <f>) has all finite limits. More-
over, since F is left exact, these are created by U and so U is cotripleable by the
Crude Tripleability Theorem provided that it has a right adjoint. Define R: E —+
GOALG(F,<f>) on objects by RA = (A x FA,iA • (p2,4>A-p2)) in which p2 is the
second projection from A x FA and {A- FA x F2A=>F(A x FA). RA satisfies the
coassociativity condition

(Pi,<t>A-pi)

Ax FA > FA x F2A

(P2,4>A-P2>\ \{P2,F<t>A.p2)

FA x F2A > F2A x F3A
<t>Ax<j>FA

(in which we have suppressed mention of IA and ip(A-x.FA)) since <j> is coassociative.

A morphism {B,b) —> RA in COALG(F, <j>) is a commutive diagram

B

4
B

4
FB

y Ax

FAx
ai

F(U,9))
y F(Ax

FA

< * *

F2A

U

FA)

The commutativity of this diagram is equivalent to the condition g = Ff • b, so a
morphism (f,g). (B,b) —> RA is the same thing as a morphism / : B —t A, that
is, U H R. Thus U is cotripleable and since it is also left exact, COALG(F, <f>) is a
topos. |

We note that the cotriple UR = E X F is obtained by adjoining a counit to the
already coassociative (F, <f>).

LEMMA 2.2. Let E be a topos and (F, <j>) a left exact Idempotent on E . The full
inclusion J: FlX(F,<f>) -» COALG(F,<£) has a left exact left adjoint.

P R O O F : Define K: GOALG{F,<j>) -> FIX{F,<t>) by K(A,a) = (FA,<f>A) and
Kf - Ff. Define a natural transformation 77: COALG(F,^) -y JK by v{A,a) =
a: A —> FA (well-defined since Fa • a — <j>A • a) and another natural transformation
e: KJ -> FlX(F,<j>) by e(A,a) = a"1 (well-defined since F(a~1)4>A = aa'1). With
these definitions we get commutativity of

https://doi.org/10.1017/S0004972700003336 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700003336


424 R. Pare, R. Rosebrugh and R.J. Wood [4]

JKJ

J
for it reduces to a~1a = A at the underlying object level. On the other hand eK • Ki)
reduces to {<f>A)~ • Fa, which need not be an identity. However, eK • Kr\ is an
idempotent transformation on K. Splitting eK • Kr] as L^K provides a left adjoint
to J [4, p.84], and since K is left exact, so is L. |

It is worth pointing out immediately that eK • Ki] = K need not hold with the
hypotheses of the lemma. Consider F : E x E -• E x E, E any topos, defined by
F(A,B) = (A, A) and <f>: F^F2 denned by the identity. An object in COALG(F,</!>)
is an arrow (f,g): {A,B) —• (A, A) such that f2 — f and fg — g. Then

eK((A,B),(/,<?)) • Kv((A,B),(f,g)) = (A, A) • (/,/)

Combining the Lemmas above we have:

PROPOSITION 2.3. Let E be a topos and (F,<f>) & left exact Idempotent on E .
Then FIX(F, 4>) is a topos.

Two points should be noted about the proof. First, consider the functor 5 =
JK: COALG(F,<£) -> COALG(F,<£). This is a left exact functor with natural trans-
formations TJ: COALG(ir,</>) —t 5 and fi = JeK: S2 —» 5 satisfying associativity for
H and (JLT]S = S. However, /it • 57? = S is merely idempotent. The endofunctor which
splits an idempotent natural transformation arising in this way is always a monad, and
if 5 is idempotent, so is the monad. Secondly, we have not only shown that FIX(ir, <f>)
is a topos, but we have done so by showing that it is a "subquotient" of E, that is,
there is an inclusion FIX(F, </>) —> COALG(ir", <j>) to a topos which has a surjection from
E. We will expand on the first point in the next section.

3. IDEMPOTENT ARROWS IN A BICATEGORY

A monad on a category is a diagram in the bicategory, CAT, of categories and the
category of algebras for the monad is a limit-like notion. The definitions make sense in
any bicategory, B, but if B is "concrete", for example B - CAT or B = TOPLEXCO,
there may be no apparent advantage to considering universal properties. The previous
section provides an efficient proof which settles a question for toposes and left exact
functors. A mention of the univeral properties of GOALG(F,<f>) and FIX(F,<j>) in the
above may have been distracting, but. it is the point of this section that that proof is
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[5] Idempotents in bicategories 425

applicable very generally provided the universal properties are invoked. Applications
are deferred until the last section.

For this section the reader is assumed to be somewhat familiar with universal
properties in a bicategory. We give some standard definitions to set notation, and refer
to [4] and [7] for useful background material on monads.

If A is an object in a bicategory B, a monad on A is a triple t = (t,[i,r)) where
t: A —* A is an arrow in B, and fi: t2 —> t and tj: A —> t are transformations in B
satisfying fi • fit — /x • tfi (associativity axiom) and fi • r\t — t — fi • trj (unitary axiom),
that is, (t,fj,,ri) is a monoid in the monoidal category B(A,A) (with composition as
tensor and identity on A as unit). If (i is an isomorphism, call t an idempotent
monad and recall that necessarily r\t = fi~1 = tr\, so the definition of an idempotent
monad need not involve fj,. A semimonad on A is a pair s = (S,/J.) where s: A —» A,
fi: s2 —> s and /i satisfies the equation (associativity) which makes s a semigroup in
the monoidal category B( A, A) . If fi is an isomorphism, we call s an Idempotent on A .
Every idempotent monad includes the data for an Idempotent, as does every idempotent
comonad. Note that the example in the last section shows that an Idempotent need
not arise in this way.

Let e — (e,e) be an Idempotent on A in B. A splitting for e is the data SPL(e),
p, u, isomorphisms a and T as displayed:

SPL(e)—p- SPL(e)

subject to the equation

= e .

Clearly any homomorphism of bicategories H: B -* B' preserves splittings, so if
Idempotents split in B', then Idempotents split in B if and only if H creates splittings.
For an Idempotent {F,<j>) in TOPLEXCO as in Section 2, FIX{F,4>) clearly provides
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a splitting in CATCO after applying the forgetful homomorphism TOPLEX -+ CAT.
Thus the question answered there, namely, "Is FIK(F, <f>) a topos?" is indeed gener-
alised by "Does B admit splitting of Idempotents?".

For a monad t on A a t -algebra (with domain X) is a pair (x, £) where x : X —*

A and £: tx —• x satisfying £ • TJX = x and £ • fix = £ • t£ (see [4, 7]). If (x,£)
and (x' ,£ ') are t-algebras with the same domain, a morphism (x,£) —» (x',£') is a
transformation x —» x' equivariant with respect to £ and £' . Denote the resulting
category ALG(X,(A,t)) and, since the construction is evidently honioniorphic in X,
there is a homomorphism ALG( — ,(A,t)): Bop —> CAT. If this homomorphism is
birepresentable, A* denotes the birepresenting object. It is called the Eilenberg-Moore
object for t or, as we shall call it here, the universai t-algebra.

A t-opalgebra for the monad t is an algebra in Bop, that is, a pair (x,£) with
x: A —> X and £: xt —> x satisfying "right-module" rather then "left-module" equa-
tions. The other duals of B, namely Bco and B c o o p similarly enable the definition
of coalgebra and opcoalgebra for a comonad on A in B.

For a semimonad s — (s, fj.) on A, it is natural to define an s-algebra (with domain
X) as a pair (x, £) with x: X —• A and £: sx —• x satisfying £ • \ix = £ • s(. Deletion
of requirements concerning the unit in the discussion about algebras for a monad gives
us our definition of universal s-algebra, denoted by A'. Many similar variations are
possible; we use one below.

For any of the above notions of algebra, we define a fix algebra, of the same kind
to be an algebra for which the structural transformation, denoted by £ above, is an
isomorphism. Being a fix algebra is stable under composition, so we get a subhomo-
morphism, FIX( —,(A,t)) , of ALG( —,(A,t)) whose value at X is the category of fix
algebras with domain X. A birepresenting object for FIX( — ,(A,t)) will be denoted
by FIX(t) . A universal fix opalgebra will be denoted by FlXOP(t) . Fix algebras allow
us to rephrase the splitting of Idempotents problem.

PROPOSITION 3.1. For aji Idempotent e = (e,e) on A in B , if any one of FIX(e),
SPL(e) or FlXOP(e) exists, then the others exist and all three are equivalent objects
ofB.

PROOF: Given FIX(e) = (U: FIX(e) —» A,a: ew-^uj , consider

A
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[7] Idempotents in bicategories 427

By universality, there exists p: A —> FIX(e) and <re—>up satisfying pa • <re =
<r • e: e2-=>up. For such p and <r, universality further ensures a unique r : pn ->
1: FIX(e) —• FIX(e) satisfying a • a~iu = UT: upu —> u. r is necessarily an isomor-
phism and it is easy to verify that the splitting equation is satisfied for FIX(e), u, p,
a and T.

Given SPL(e), u, p, a and T as in the definition of splitting, consider,

SPL(e)

A routine calcuation shows that this defines a universal fix e-algebra.
The considerations for FlXOP(e) are dual. |

For an idempotent monad t , a pair (x: X —> A,£: tx —* x) is a t-algebra if and
only if rjx isinvertible and £ = (TJX)~ . Thus, in this case FIX(t) and A* are equivalent
objects in B . For a general Idempotent, e = (e,e), this is not the case, but suppose
that (v: A"-> A,(5: ev -n<) is a universal e-algebra. Universality then gives a pair,
/ , <f> as in

A

so that ((3f)-(e<f>) — <f>-e (so <f> is an isomorphism of e algebras from (e,e) to {vf,/3f)).

Now consider the composite fv: Ae —> A* . Transformations fv —+ fvfv, respec-

tively fv —> 1, are in bijective correspondence with homoniorphisins (vfv,/3fv) —^

(vfvfv,fifvfv), respectively (vfv,/3fv) —» (v,/3). We claim that vfv-—*ev'-—»

e2v—^vfvfv and vfv —*"ev—^ are homomorphisms. The first follows since e is
an associative isomorphism (e is an Idempotent). The second follows since (3 is an
e-algebra. Denote g = fv and 6: g —> g2 , respectively 7 • g —> 1 for the transfor-
mations induced by the above homomorphisms. Since the first homomorphism is an
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isomorphism, 6 is invertible. Moreover, associativity of e implies associativity of 8
and 7<7 • 8 — g. (To check the last equation, compose it with v, apply definitions and
invoke faithfulness of composition with v.)

However, g*f • 8 need not equal g (consider again the example from Section 2).
Summarising, g = {g,8,f) is an idempotent semicomonad with a right coidentity on
A" . We define a coalgebra for such a structure to be a pair (z, () where z: X —> A"
and C '• z ~~* 9Z satisfy fz • £ = z and 8z • £ = g£ • £ . (This is the other variation of the
t-algebra notion we promised earlier.) A pair (z,C) is a fix g-coalgebra if and only if 72
is invertible and C, — (yz)~ . (Note that 72 is invertible if and only if j3z is invertible,
and the latter implies e/?z = evz which enables one to check the coassociativity.)

LEMMA 3.2. If B has universal algebras for semimonads and universal fix coal-
gebras for idempotent semicomonads with right coidentity, then Idempotents split in
B.

PROOF: Let e = (e, e) be an Idempotent on A and (v,/3), where v: A" —* A
and f3: ev —> v , be universal as in the preceding discussion. For an arbitary e-algebra
(x,£), define y and 77 by universality so that the following commutes:

Now (x,£) is a fix e-algebra if and only if £ is an isomorphism if and only if f3y is an
isomorphism if and only if vyy is an isomorphism if and only if 73/ is an isomorphism
if and only if yy,(-yy)~ ) is a fix g-coalgebra. Hence we have an equivalence in B,
FIX(e) ~ FlXCO(g). I

The apparently unfamiliar hypotheses of Lemma 3.2 are fairly easy to satisfy in
familiar terms.

LEMMA 3.3. If B has (stable) local Unite sums and universal algebras for monads,
then B has universal algebras for semimonads.

PROOF: for s = {s,fi) asemimonadon A, consider t = A + s where "+" denotes
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[9] Idempotents in bicategories 429

the categorical sum in B( A, A). Define /x': t2 —> t to be the following composite:

{A + s){A + s)^A + s + s+s2 — > 4 + s

Note that we use the full force of "local" here; the sums must be stable under compo-
sition from both sides. Define n: A —+ t to be the sum injection. Then t = (t,n',T]) is
a monad on A and A* ~ A" . I

We remark that in checking the details of Lemma 3.3 one may find it convenient
to treat first the case where B has but one object. For if B = (V, ® , I , . . . ) is a
monoidal category with finite sums over which ® distributes, then / + _ provides a left
adjoint to the forgetful functor from monoids in V to semigroups in V. Moreover, for
a semigroup 5 in V, actions S ® X —> X are in bijective correspondence with unitary
actions ( / + 5) ® X —• X. These facts are seen most easily using the language for
monoidal categories developed by Jay [2].

LEMMA 3.4. If B has splitting for local idempotents and universal algebras for
idempotent comonads, then B has universal fix coalgebras for idempotent semicomon-
ads with a right coidentity.

PROOF: Let g = (</,£, 7) be an idempotent semicomonad with right coidentity
on A. Then gf • 6 is a local idempotent, that is, it is an idempotent in the category
B(A, A). Let g —> h —> g be a splitting for it, then 8 and 7 induce an idempotent
comonad structure on h. Call the comouad h , and then FlXCO(g) ~ Ah , the universal
h-coalgebra.

The diagrams which establish these claims are tedious, but straight-forward. How-
ever, as with the previous lemma we can use Jay's language. It seems clearest to write
the arguments for one-object B with "co" variance and use set-like notation.

First, let (5,-) be a semigroup with right identity 1. Then left multiplication
by 1 gives an idempotent on 5 : l ( l s ) = ( l l ) s = la for all s E S. It is split by
M = {s 6 5 I Is = s} , so (M, -,1) is a monoid, even an ideal in 5 , that is, M®S —> M

is a unitary action: l(ms) = (lm)s = ma for m € M, s 6 5 . In fact, for every
(unitary) action X <8> M —» X there is a unique unitary action X ® S —> X which
restricts to *. This follows from xos = (zol)os = xols and Is £ M.

Next, suppose that 5 ® 5 —> 5 is an isomorphism. (The argument then making
5 = {1} in set requires "(s,t) — (s',t') implies 3 = 3' and t = t'" which we do not
have.) We have s®< = s i®l for all s, t G S and hence M®M A M and M®S A M
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are also isomorphisms. M®M —> M being an isomorphism implies that every (unitary)
action X ® M —+ X is an isomorphism. (For monads this is well-known.) In fact every
unitary action X ® S —» X is also an isomorphism. For any such action factors as

I ® « H > (a: ® 1)® s

x ® (m ® a) i-*x

a: ® m. i—> x o m

in which each arrow is an isomorphism.
These arguments apply to g and h as above by showing that coalgebras

are the same thing as fix coalgebras

THEOREM 3.5. If B has local finite sums, splittings for local idempotents, uni-
versal algebras for monads and universal coalgebras for idempotent comonads, then
Idempotents split in B.

4. APPLICATIONS AND COUNTEREXAMPLES

The applications we have in mind for Theorem 3.5 are to bicategories which are
similar to TOPLEXCO in that

(i) horn categories are locally finitely cocomplete;
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[11] Idempotents in bicategories 431

(ii) finite collages exist, their injections are maps (that is, arrows with right
adjoints), and the right adjoints of injections yield opcollages;

(iii) universal coalgebras exist for idempotent comouads.

Now for any proarrow equipment K —> M. satisfying the collage axiom (ii) (with
collage injections ill K), Wood [11] showed that (ii) => (i). Moreover, satisfying (i)-(iii)
above implies Idempotents split by 3.5.

PROPOSITION 4.1. If K —• M. is a proarrow equipment satisfying the collage axiom

and having universal coalgebras for idempotent comonads in M., then Idempotents split

in M..

COROLLARY 4.2. Idempotents split in TOPLEXCO , ABELLEXCO and LEXC 0 .

PROOF: The bicategories named (the latter two being Abelian categories and left
exact functors and left exact categories and left exact functors) all are M. 's for proarrow
equipment as described. I

Notably missing from the list above in 4.2 is PROF, the bicategory of categories
and profunctors. It is well-known that PROF satisfies conditions i) and ii) above.
Indeed its hom categories are small complete and cocomplete, and all right liftings and
right extensions exist. By contrast iii) seems like a tame requirement. Universal algebras
for idempotent comonads are absolute bilimits (preserved by all homomorpliisms) and
absolute bicoliniits. Nevertheless, their existence distinguishes the examples listed above
from PROF in favour of the former. We will exhibit counterexamples which establish
this after first giving some further consideration to idempotent comonads. The right
adjoint of a map / : A —> B in a bicategory B is denoted by / * and we write / : A->

f*f for the unit and / : / / * —• B for the couuit. If / is an isomorphism, we call / a

proinclusion.

If g = (g,S,e) is a comonad (not necessarily idempotent) on B in B, a universal

coalgebra (u,v) where u: Bg —* B and v: u —+ ug, determines an equivalence of

categories B{X,Bs)^*ALG(X,(B,g)) for all X (by "composition with (u,u)")- It

follows immediately that u is a map and u* is a transpose of (g,S) via the above

equivalence. Necessarily there is an isomorphism of 7 : uu* —> g with e -7 = tt. In fact,

7 must correspond, via adjointness, to v.

Returning to the case of g an idempotent comonad, we recall that 5 is an iso-

morphism, equivalently ge = eg, and any x: X —» B admits at most one coalgebra

structure, namely (ex)~ if ex is an isomorphism. In fact, B% exists if and only if the

inverter e : g —* B: B —* B exists, in which case they are equivalent objects of B. Also

u* underlies a Kleisli object for g , and is a coinverter for e. Most importantly for our

present purposes, u is a proinclusion.
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If / : A —• B is any proinclusion, then A is a universal coalgebra for the canonical

idempotent comonad whose arrow is / / * . It follows that for g as above, if we have an

isomorphism <f>: ff*—*g with e • <f> = / for some proinclusion / : A —• B, then A is a

universal coalgebra for g.

Thus, to show that a bicategory B has universal coalgebras for idempotent comon-
ads is essentially to show that idempotent comonads are essentially coextensive with
proinclusions.

For the remainder of this section we restrict our attention to B = PROF. We
should mention that we define PROF(A,B) to be the category of functors B o p x A —>
SET, and for a functor F: A —• B , the associated profunctor is denoted by F*, its
right adjoint by F*. For a profunctor / : A —* B we denote elements of f(B,A) by
wavy arrows B -*+ A, and note that these have a left action by arrows of B and a right
action by arrows of A .

Now let B be a category and g = (g,6, e) be an idempotent profunctor comonad.
Assume further that B is Cauchy complete. This simplifies the discussion without any
essential loss of generality since B and its Cauchy completion are equivalent in PROF.
We write 7 : B —> B' for the straight arrow (in B) associated with a wavy 7: B —» B'

by e. The common value of g • e and e • g is a transformation g2 —> g which provides

a method of "composing" a wavy pair B ~+ B' ~+ B", modulo the action of arrows of

B . Write 7 * 7 ' for the result, and we obtain 77' — 7 * 7 ' = 77' , associativity of *,

and (7 + 7') = 77 ' . Writing 70 ® 71 for a pair which represents the effect of 6 on 7 ,

we get 70 + 7i = 7 and if also 7' + 7" = 7, then 7' ® 7" = 70 ® 7i •

It follows from the generalities above that if B g —* B exists, it is PROF equivalent

to the inclusion of a full subcategory.

LEMMA 4.3. For B , g as above and B € B the following are equivalent:

(i) e,B+ : gB* —* B* is an isomorphism;
(ii) VX[(~): g(X,B) —> B(X,B) is an isomorphism];

(iii) 3t: B ~> B such that I = B: B -> B;

(iv) VX[(~): g{B,X) —v B(5,X) is an isomorphism];

(v) B*e: B*g —* B* is an isomorphism.

Define B(g) to be the full subcategory of B determined by those B satisfying
any (and hence all) of the above conditions. Note that this is a special case of B(g) as
defined in Thiebaud [9].

LEMMA 4.4. If B g exists then it is given by B(g).

s |

PROOF: (Sketch) Since Bg— -̂>B —U B is an inverter diagram in PROF, it follows
B
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that an object 1 —* B g of B g gives rise to an object B of B satisfying (i) above. On
the other hand, such an object gives a profunctor / : 1 —» B g with / * / = 5* . Since
/* is a proinclusion, / is a rriap. Since B is Cauchy complete and B g , determined up
to equivalence in PROF, may be taken to be a full subcategory closed under retracts,
/ is isomorphic to an object of B g . |

For any idempotent profunctor comonad g, write J: B(g) —• B for the inclusion.

The J*J* wavy arrows from B to B' can be described as elements of the form /?o ®/?i

for some B —̂+ A —̂-» B' with A in B(g). The g wavy arrow t: A ~+ A, for such

A, as in (iii) of Lemma 4.3, is unique. The assignment /?o ® /?i *-* /?o<A determines a

morphism of comonads n: J*J* —> g. Lemma 4.4 and the discussion above show that:

PROPOSITION 4.5. B g exists if and only if K is an isomorphism.

Counterexample 4.6. Let B be the monoid of non-negative rationals under addition.
Let g be the positive rationals with both left and right actions given by addition. Let
e be the inclusion and for 7 in g take £(7) to be the equivalence class of (7/2,7/2)
in g2, which we denote by 7/2 0 7/2 in this additive situation. Then g = (g,S, e) is
an idempotent comonad on B in PROF and B g does not exist.

PROOF: Perhaps the only detail of the first assertion which requires comment is
the equivariance of 8. For /? in B and 7 in g,

P + (7/2 e 7/2) = (p + 7/2) © 7/2

= (/?/2 + 7/2+ /?/2) 0 7/2

= (/?/2+ 7/2)© (0/2+ 7/2)

Now B(g) is the empty category since 0, the identity in B , is not in g. It follows that
J*J* is the empty module and not isomorpliic to g. |

Counterexample 4.7. Let B be the partially ordered set of rationals with the usual
order. Let g be strict inequality on the rationals, e the inclusion and for x < y
in g, 6{x < y) = (x < (x + y)/2) ® {{x + j/)/2 < y) in g2 . Then g = (g,8,s) is an
idempotent profunctor comonad on B and B g does not exist.

PROOF: AS above, the first assertion follows if 8 is well-defined. For x' < x < y we
must show (*' <{x+ y)/2) <g> ((* + y)/2 < y) = (*' < («' + y)/2) <8» {{x1 + y)/2 < y).

This follows since (x' + y)/2 ^ (x+y)/2. Again, B(g) is empty, making J+J* the
empty relation on the rationals and not isomorphic to g. I

One could ask about the completeness of V—PROF for V other than a category
of sets. Conceivably there exist suitable monoidal V for which V—PROF admits all
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B g . However, the second counterexample, in addition to being at the opposite extreme
from the first, also shows V—PROF to be incomplete for V = 2 . We are indebted to
G.M. Kelly for this observation.
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